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Epilepsy is a brain abnormality that leads its patients to suffer from seizures, which conditions their behavior 
and lifestyle. Neurologists use an electroencephalogram (EEG) to diagnose this disease. This test illustrates the 
signaling behavior of a person’s brain, allowing, among other things, the diagnosis of epilepsy. From a visual 
analysis of these signals, neurologists identify patterns such as peaks or valleys, looking for any indication 
of brain disorder that leads to the diagnosis of epilepsy in a purely qualitative way. However, by applying a
test based on Fourier signal analysis through rapid transformation in the frequency domain, patterns can be 
quantitatively identified to differentiate patients diagnosed with the disease and others who are not. In this 
article, an analysis of the EEG signal is performed to extract characteristics in patients already classified as 
epileptic and non-epileptic, which will be used in the training of models based on classification techniques such 
as logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. 
Based on the results obtained with each technique, an analysis is performed to decide which of these behaves 
better.

In this study traditional classification techniques were implemented that had as data frequency data in the 
channels with distinctive information of EEG examinations, this was done through a feature extraction obtained 
with Fourier analysis considering frequency bands. The techniques used for classification were implemented 
in Python and through a comparison of metrics and performance, it was concluded that the best classification 
technique to characterize epileptic patients are artificial neural networks with an accuracy of 86%.
1. Introduction

According to the World Health Organization [1], there are 50 mil-

lion patients worldwide suffering from epilepsy, making it one of the 
most common neurological disorders; when diagnosed in time, it is es-

timated that 70% of patients could live without seizures or attacks [2]. 
Many professionals resort to signal spectrum analysis for the diagnosis 
of epilepsy, in order to identify elements such as peaks and variations 
in frequency [3]. This can lead to ambiguities in the diagnosis, making 
it unclear.

Currently, there have been multiple studies and research around the 
classification of Electroencephalogram (EEG) signals to detect anoma-

lies, epilepsy, sleep disorders, among other special conditions, mostly 
oriented to the integration with Brain Computer Interface (BCI), a con-

cept that has stood out in recent years [4], a system that reads and 
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interprets the signals directly from an individual, make decisions or ex-

ecute some instructions from these input data.

In this regard, in [5] are presented several important questions con-

cerning EEG, showing the importance of nonlinear methods in EEG 
analysis. This work is oriented to determine the applicable technics in 
the field, like Higuchi’s fractal dimension method that is simple and 
useful.

In addition, to develop a model or a classifier of these signals and 
to be able to incorporate them into a BCI, it is necessary to understand 
that the objective of the classification is to be able to use certain met-

rics to decide the origin of the signals and the factors that affect certain 
patterns. Choosing the metrics to be used is always the most complex 
and extensive part of the study problem [6], this information will be 
called features and its extraction is also a subject of ongoing research. 
In many particular cases, varied characteristics must be used to make 
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an efficient classification, the most used techniques in the extraction 
of characteristics are mainly related to time-frequency domain transfor-

mations to find the frequency magnitudes in specific parts of the signal, 
for example the Fourier Transform, and related, as can be seen in [7].

In relation to above, it can be seen in [8] a feature extraction ap-

proach based on frequency bands applied to preictal and interictal 
analysis, i.e., the period before the onset of seizures in the individual 
and the intermediate period between a series of seizures, respectively. 
Through the decomposition with Discrete Transformed Wavelet of the 
signals that are in the Gamma frequency band is made a classification, 
and then prediction of epilepsy in individuals.

On the other hand, there are classification techniques and propos-

als aimed at labeling and detecting epilepsy through the characteristics 
extracted. Machine learning techniques are used to build the classifiers, 
for example, the case of the author of [9] and [10] who uses the Logistic 
Regression (LR) because it facilitates the analysis of results in explana-

tory and predictive terms, since these investigations intend to reduce 
the dimensions of the signals before applying the logistic regression; 
likewise, the results show that the classification accuracy is 97.91% 
with the Gaussian logistic regression model. Artificial Neural Networks 
(ANN) are present in many studies due to the simplicity of implemen-

tation, their advantage to handle large amounts of data and above all, 
for their ability to learn from examples. In the works [11] and [12], 
a retro propagation neural network is implemented to classify sharp 
and acute waves that are known as epileptiform interictal discharges, 
which are characteristic signs of epilepsy. In addition, a noteworthy 
work is performed in [13] where a classifier with Support Vector Ma-

chines (SVM) is built to detect activity closely related to seizures derived 
from epilepsy that were recorded in electroencephalograms. This work 
took into account 5 different types of EEG signals and decomposition 
was made through the Wavelet transform.

Generally, EEGs are used to determine seizure types and syndromes 
related to epilepsy, then used for the selection of antiepileptic drugs. 
Any discovery or distinction in the features of an EEG affects and con-

tributes to the diagnosis, in terms of locating where the disorder or 
seizures occurs is idiopathic or symptomatic, or specific parts of the 
epileptic syndrome [14]. Nowadays, it is still necessary to perform de-

tection and visual analysis in the monitoring of the tests, however, the 
assistance of technologies and frameworks to doctors and profession-

als in the diagnosis of epilepsy has increased considerably the rate of 
successful diagnosis [15].

According to [16], in any society, epilepsy is a severe disease given 
the costs of healthcare and appropriate treatment, therapy, and the sud-

den convulsion episodes. It is mandatory to settle research processes 
about integrated and fast neural investigations that helps doctors to 
efficiently diagnose patients with epilepsy. Commonly, the diagnoses 
have been defined employing electroencephalograms to determine the 
brain’s electrical activity related to epilepsy.

A noticeably related exploration is seen in [16] about a framework 
consisting of various feature extraction algorithms (lower threshold, tar-

get point selection, and current maxima), energy features, and pattern 
matching (segment and domain). The authors’ model proposal, power, 
homogeneity, maxima, energy, and physiological traits have been em-

ployed. Moreover, the domain matching algorithm has been utilized to 
identify specific brain regions like lobes, where the convulsion occurs 
in the previous stage. The authors stated that this model could be em-

ployed in a real-time patient monitoring system since this can send a 
warning message before the convulsion takes place.

The cleaning and pre-processing of the EEG signals are crucial fac-

tors, in [17], the time-frequency analysis is used to describe those char-

acteristics that define the signal it observes, the non-stationary signals 
or those where the frequency changes slowly over time, despite this, 
it is possible to soften the signals using a Fast Fourier Transform (FFT) 
and also applying Principal Component Analysis (PCA) to determine the 
features to feed a Random Forest (RF) model where the experimental 
results show that it is very accurate in the task of classifying epileptic 
2

patients; however, its model is susceptible to signal noise, therefore, a 
pre-processing is suggested to eliminate the artifacts and noise before 
using the model.

Regarding other EEG signal applications, patient’s age and gender 
predictions using EEG analysis, there is a type of application belonging 
to brain-computer interfaces. In this aspect, reference [18] has applied 
an industrial standard EEG data acquisition device for recording cere-

bral activities in 60 subjects (male and female) in relaxed position and 
eyes closed. Deep Bidirectional Long Short Term Memory (BLSTM) net-

work is employed to design a hybrid learning framework to predict age 
and gender.

In addition, according to [19], human emotions are the result of 
psychological changes happening in daily activities. In this regard, ref-

erence [19] researched emotions identification and analyzed the impact 
of positive and negative emotions utilizing EEG signals. This paper has 
studied three types of feelings, namely happiness, anger, and calmness. 
Using ten subjects, EEG signals are recorded in real-time while watch-

ing video clips of different emotions. The features found were classified 
using Support Vector Machine (SVM) with Radial Basis Function (RBF) 
kernel to extract such fractal dimension features from raw EEG to detect 
emotional states.

According to [20], feeling analysis is a fundamental tool to obtain 
information about emotions from massive data. Sentiment analysis is 
used to review customers’ information and social networking. Thus, 
since this is useful for e-commerce retailers to advertise products and 
services based on demographic information, reference [20] examines 
the impact in age and gender regarding sentiment analyses by gath-

ering information from Facebook users asked about book preferences, 
age, and gender. Machine Learning (ML) approach is used to analyze 
feelings, including maximum entropy, Convolutional Neural Network 
(CNN), Support Vector Machine (SVM), and long short term memory. 
Various experiments have taken place to determine new observations 
affecting age and gender for sentiment analyses.

Regarding the use of Fast Fourier Transform (FFT) for EEG signal 
processing, the work presented in [21] aims at finding the preferred ve-

hicle brand in Malaysia using wireless EEG signals. Four vehicle brand 
advertisements were used with a video for stimulating subjects’ brain 
signal responses using 14 wireless channels with a headset. From the 
EEG signal alpha frequency band (8𝐻𝑧 − 13𝐻𝑧) was obtained using 
Butterworth 4th order filter. The alpha band frequency spectrum is cal-

culated using fast Fourier transform to obtain three statistical features, 
namely, Spectral Energy (SE), Power Spectral Density (PSD), and Spec-

tral Centroid (SC). The features are useful to build the vector employed 
in two non-linear classifiers K Nearest Neighbor (KNN) and Probabilis-

tic Neural Network (PNN) to label the subject advertisement.

About Deep Learning (DL), reference [22] presents an analysis of 
154 papers published between January 2010 and July 2018 gauging 
various application domains like epilepsy, sleep, cognitive and affective 
monitoring, and brain-computer interfacing. Multiple aspects were re-

viewed like the processing methodology, DL design choices, the results, 
and possibilities to replicate the experiments. According to analyzes, the 
EGG amount of data employed across studies fluctuate from less than 
10 minutes to thousands of hours; simultaneously, the number of sam-

ples observed during the training varies from a few dozens to millions, 
depending on the extraction of epochs. The authors state that more than 
50 percent of studies utilized publicly available data; besides, there has 
also been a clear move from intra-subject to inter-subject approaches in 
the last years. Those studies used convolutional neural networks, while 
others used Recurrent Neural Networks (RNN), mostly of 3-10 layers. 
Also, almost one-half of the studies trained the models using prepro-

cessed or raw EGG time series; in addition, authors highlighted that 
frequently studies present poor reproducibility since most of the papers 
would be difficult, even impossible to reproduce given the unavailabil-

ity of data and code.

Regarding other works, in [23] is proposed efficient deep and 
spatiotemporal characteristics for Facial Expression Recognition (FER) 



M.C. Guerrero, J.S. Parada and H.E. Espitia Heliyon 7 (2021) e07258
based on deep appearance and geometric neural networks. FER has 
become an essential tool of visual information that could be used to 
understand human emotions. A three-dimensional (3D) convolution is 
applied to collect spatial and temporal features simultaneously. Regard-

ing the geometric network, 23 dominant facial markers are used to 
represent the movement of facial muscle. In this way, it is proposed 
a fusion classifier to combine the features above mentioned.

In addition to expressions recognition, in [24] is proposed a scheme 
for FER system based on deep hierarchical learning. In this work, the 
characteristics extracted from the appearance feature-based network 
is employed with the geometric elements in a hierarchical structure. 
The appearance feature-based network acquires holistic characteristics 
of the face using the preprocessed Local Binary Pattern (LBP) image. 
In addition, the geometric feature-based network learns the coordinate 
change of Action Units (AUs) for muscle movement when facial expres-

sions are made. Also, an approach is proposed to generate facial images 
with neutral emotion using the autoencoder technique. Under this ap-

proach, it is extracted the neutral and emotional dynamic facial features 
without sequence data.

About other CNN related applications, in [25] is shown that the 
methods combining Correlation Filters (CFs) with the features of a 
convolutional neural network are suitable for object tracking. In this re-

gard, in [25] is proposed a scale-adaptive object-tracking method. The 
characteristics are extracted from different layers of “ResNet” to obtain 
response maps. Then, to locate the target, the response maps are fused 
based on the “AdaBoost” algorithm. It is proposed an upgrade strategy 
with occlusion detection for preventing the filters from updating when 
occlusion occurs.

Other related work is presented in [26], developing a disease recog-

nition model based on leaf image classification using deep convolu-

tional networks. It is presented in a way of training and the method-

ology used to promote a suitable system implementation in practice. 
The developed model recognizes different kinds of plant diseases out 
of healthy leaves and distinguish plant leaves from their surroundings. 
The authors used “GoogLeNet”, which is considered a robust deep learn-

ing architecture to identify types of disease. Transfer learning has been 
used to fine-tune the pre-trained model.

On the other hand, an appealing approach for the analysis of EEG 
signal is the use of spectrogram combined with deep learning tech-

niques. In this regard, convolutional neural networks have reached 
great success in image recognition tasks by automatically learning a 
hierarchical feature representation. In [27], it is proposed implement-

ing Recurrence Plots (RP) via transforming time-series into 2D texture 
images allowing the use of deep CNN as classifier. In this way, image 
representation of time-series introduces different feature types that are 
not available for 1D signals, and therefore Time-Series Classification 
(TSC) could be treated as a task of texture image recognition.

About EEG spectrogram application, reference [28] presents the 
classification of brain-wave response based on low-cost EEG spectro-

gram to determine how the images are perceived by a person based on 
their brain waves. The experiments are performed to obtain EEG data 
based on visual stimuli and convert the data into a spectrogram. For 
brain-wave response classification based on EEG spectrogram, is used 
“DenseNet” (deep learning architecture).

Another related application of EEG spectrogram is for diagnosis of 
the Alzheimer’s Disease (AD) at early stages. In this regard, reference 
[29] shows that it can be addressed with multi-task learning strategy 
using discriminative convolutional high-order Boltzmann Machine (BM) 
with hybrid feature maps. This paper describes the implementation of 
an EEG spectral image classification through “inducing label layer”. For 
overfitting reduction, the systems are trained with a multi-task learning 
framework based on identification and verification tasks.

A related application is observed in [30], proposing a two-dimen-

sional (2D) convolutional neural network model to classify Electro-

cardiogram (ECG) signals into eight classes. The one-dimensional ECG 
time-series signals are changed into 2D spectrograms through a short-
3

time Fourier transform. In this work, the 2D CNN consists of four convo-

lutional layers for extracting robust features from input spectrograms.

1.1. Proposal approach and document organization

In the previous review, it was observed that the most common fea-

ture extraction techniques involve Fourier and Wavelet transforms, and 
statistical metrics that provide outstanding information about behaviors 
that are not easily identified visually. Besides, it is essential to reduce 
the dimensions and complexity of these signals given the number of 
channels classifiers that contrast features and allow labeling of healthy 
and unhealthy patients. Considering the above aspects, the proposal of 
this article is to detect characteristics and factors that influence these 
records to differentiate people with epilepsy or could be susceptible to 
suffer it through classification models that fit the selected characteris-

tics and provide the highest accuracy indicator.

As mentioned, the fast Fourier transform frequency band technique 
is common in similar works. However, this research proposed to take 
two representations for the characteristics extracted from each patient 
examination; thus, it is performed a band frequency analysis consider-

ing healthy and unhealthy patients. In the first place, it was decided to 
work with the relative power of each frequency band; secondly, with 
the arithmetic mean of the frequency band values (determined from 
frequency analysis). The contribution in this paper lies in the band fre-

quency analysis and the measures obtained from these bands. Using 
this analysis is obtained the input data for the classifiers and the results 
evaluation to determine the suitable technique for the diagnosis system.

In order to address the problem of epilepsy classification described 
in previous works, this article presents a quantitative analysis of EEG 
signals in the frequency domain. Subsequently, to classify patients into 
epileptic and non-epileptic, different data classification techniques are 
explored: logistic regression, artificial neural networks, vector support 
machines, and convolutional neural networks. Each of these techniques 
is used in the model design to explore alternatives to decide which is 
the best according to the context of the research.

In each model, 40 sessions were taken corresponding to 40 patients, 
half epileptic patients and half non-epileptic. It should be remembered 
that each of these tests is performed according to the 21-channel TCP 
configuration.

Since the article explores quantitative techniques to differentiate 
between epileptic and non-epileptic patients, the analysis and results 
obtained can be applied in the realization of a system to support neu-

rology specialist in diagnosing epilepsy or used in areas where it is not 
possible to have a specialist.

On the other hand, the monitoring of an epileptic patient may arise 
as a result of applying the products of this article, since the analysis is 
made considering previous events of epileptic people from which pat-

terns can be identified to predict whether a person is susceptible to 
epilepsy.

The organization of the document is as follows, in Section 2, the EEG 
data used is described, Section 3 details the feature extraction (features 
used for the epilepsy classification); later, Section 4 describes the ex-

perimental design using logistic regression, artificial neural networks, 
support vector machines, and convolutional neural networks then Sec-

tion 5 presents the results and the performance metrics used; Section 6

displays the discussion, and finally the conclusions are given.

2. EEG data

The technique of encephalography arises from the need to evalu-

ate the dynamic functioning of the brain and its electrical activity. This 
technique has been used throughout history to evaluate patients with 
seizures, phenomena and diseases such as epilepsy. The use of elec-

troencephalograms is increasing for preventive diagnosis, as most of 
these exams have been shown to have distinctive features during epilep-
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Fig. 1. Female and male patient count. Note the predominance of female pa-

tients in the dataset.

tic seizures that are represented by electrical discharges in the form of 
peaks and valleys [31].

For this reason, it is essential for this research to have resources with 
EEG information and exams that serve as inputs for the construction of 
classification models and that later can be compared to measure the 
effectiveness of classification as “Non-epileptic” and “Epileptic”. In this 
section, an exploratory analysis of the data sets and related information 
is performed.

2.1. Data collection

In the literature review, a well known data source called TUH EEG 
Corpus has allowed great advances in the field of classification and 
prediction. This corpus is a product of the work between the Neural 
Engineering Data Consortium (NEDC) and Temple University Hospital. 
It makes available a robust set of clinical EEG data covering the period 
2002-2013 [32].

The EEGs are presented in an European Data Format (EDF) accom-

panied by a plain file in which there is a report of the patient, his 
clinical history and clinical correlation. These tests were collected using 
“NicoletOne” equipment from NMI. The data were stored in a propri-

etary format and they do not have the entire original record since it 
has been pruned by a technician in charge who discards sections of a 
non-informative nature.

2.2. Data description

All these exams use the 10/20 system, each EDF has a set of labels 
that are not standardized. However, the names of such labels are suf-

ficiently descriptive so their nature and location can be easily related 
to the 10/20 system and the bipolar assembly. This assembly is tradi-

tionally used because it reduces noise and emphasizes the most relevant 
events, for example peaks in signals. In the case of Temple University 
Hospital, the most popular mount is the Temporary Central Parasagittal 
(TCP) mount.

2.3. Data selection

In particular for this research, a small data set was created consist-

ing of 40 different patient examinations (sessions), half of which are 
patients belonging to the “Non-Epileptic” class and the other half to 
the “Epileptic” class. Figs. 1 and 2 show general information about the 
patients who were selected as part of the dataset.

2.4. Channel selection

Each channel in the EDF is classified with a set of labels that are 
not standardized. However, the names of these tags are descriptive so 
that their nature and location can be inferred. Even numbers are used 
4

Fig. 2. Age distribution of patients. It is notorious that most of the patients are 
between 1 and 3 years old.

Fig. 3. TCP Configuration and channel distribution [32].

to denote electrodes in the right hemisphere and odd numbers refer to 
those in the left hemisphere.

The pairs of electrodes are combined to form a bipolar array, which 
records voltage difference between two electrodes placed in areas of 
brain activity. This setup is used to reduce noise and emphasize events 
of interest, such as peaks. Sometimes, this results in a clearer and more 
easily interpreted signal. However, there are combinations of electrodes 
that are much more vulnerable to specific artifacts. Several assemblies 
are used at Temple University Hospital [32], although one of the most 
popular bipolar assemblies among neurologists is the Temporal Cen-

tral Parasagittal (TCP) or also known as the double-banana assembly. 
Therefore, for the extraction of characteristics it is worked with all 21 
channels of the bipolar assembly as shown in Fig. 3.

3. Feature extraction

In order to extract features from the data presented in the previous 
section, a spectral analysis is performed on these exams. This analysis 
seeks to quantify the oscillatory activity of the signals at different fre-

quencies of the signal [33]. This method is considered one of the main 
and accepted methods in the field of neuroscience. However, the suc-

cess of the feature extraction depends on the approach to this spectral 
analysis, as there are no officially standardized methods that prevent 
inconsistent results.

The selected approach for this research was decomposition into 
frequency bands. This technique resorts to the application of Fourier 
Transform to the entire signal by means of Fast Fourier Transform 
which facilitates the extraction of relevant events (patterns, peaks, val-

leys, among others). From this transformation from time domain to 
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Fig. 4. Comparison between the signal of an epileptic patient and a non-epileptic patient in time domain. Crucial differences in the two signals cannot be distinguished 
given the nature of the signal.

Fig. 5. Comparison between the signal of an epileptic patient and a non-epileptic patient in frequency domain. Through this transformation, the difference between 
the components of each signal can be noted.
frequency domain and the obtention of such events, it is possible to 
identify and label epileptic and non-epileptic patients.

As an example, the signals in the time domain for patients of both 
classes can be seen in Fig. 4. The signals exhibit behavior from which 
little information can be extracted, if the patients were not labeled, the 
distinction would not be evident.

However, by passing such signals into the frequency domain, certain 
differences between patients can be identified. It is visualized in Fig. 5

that the epileptic patient has low frequency dominant activity, this is 
probably due to severe damage to the brain [7].

The process of transforming time domain to the frequency domain 
is:

1. Taking the EEG signal in the time domain.

2. Apply the Fourier transform via FFT.

3. Determine the frequency bands taking into account the frequency 
spectrum of the EEG signal (obtained from the FFT).

4. Sampling the data (frequency bands).

5. Calculate the absolute and average values.

To identify the different features involved in the classification sys-

tem it is performed an exploratory analysis to observe the behavior of 
the signals and to detail the frequency bands. Below, an example of 
two EEG exams belonging to both an epileptic and a non-epileptic pa-

tients to illustrate the process followed to obtain the features (frequency 
bands) of each channel.

After establishing the classification features the different systems 
used were validated with 40 exams belonging to the subset that was 
made of the corpus [32]. In the following sections, the process followed 
by each EEG examination is illustrated, which allowed the extraction of 
information from the frequency domain for each patient analyzed.
5

3.1. Non-epileptic patient

The patient considered as a demonstrative example is a 75 year-old 
man; his exam is performed due to changes in his mental state. Upon 
arrival at the clinic, he is intubated and given a sedative called Midazo-

lam; normally, the effect of this sedative is quickly stopped. However, 
the patient does not wake up; for this reason, the exam is performed 
during his state of drowsiness. The selected channels, according to a vi-

sual analysis of this exam are: F3, F7, C3, P3, and T4. Fig. 6 shows these 
channels in time domain.

3.1.1. Channels F3, C3 and P3

The relative power information for these channels is tabulated in 
Table 1. The band with the highest value is the Delta band. There is a 
correspondence between the description of the exam clinic correlation 
and the results of the table given the deep sleep state thanks to the 
effects of the sedative, the Delta bands are the ones that abound in the 
signal.

3.1.2. Channel T4

In this channel there are 91.8% of frequencies corresponding to the 
Delta band and 2.6% of the Theta band, the rest of the frequency bands 
have very small values respect to these bands (Delta and Theta).

3.1.3. Channel F7

In the time domain it is observed that the signal ranges from 50 to 
-50 microvolts. By moving such a signal into the frequency domain it 
can be seen in Fig. 7 that its amplitude range is between 0 and 0.05 
microvolts and it has 0.15 microvolt amplitude peaks. When extracting 
the characteristics shown in Table 1, it can be seen that 95.6% of the 
signal is contained in the Delta band.
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Fig. 6. Channels F3, F7, C3, P3, and T4 in time domain.
6
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Fig. 7. Channels F3, F7, C3, P3 and T4 in frequency domain.
7
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Table 1. Summary of relative power for each channel classified by frequency 
bands.

Channel Alpha Beta Delta Gamma Theta

F7 0.0069 0.0062 0.9561 0.0174 0.0131

T4 0.0197 0.0163 0.9187 0.0186 0.0264

F3 0.0172 0.0132 0.9113 0.0306 0.0274

C3 0.0185 0.0153 0.8738 0.0632 0.0287

P3 0.0241 0.0183 0.7439 0.1764 0.0367

Table 2. Summary of relative power for each channel classified by frequency 
bands.

Channel Alpha Beta Delta Gamma Theta

F7 0.0149 0.0484 0.4481 0.2237 0.0527

C4 0.0279 0.0320 0.4599 0.0778 0.0872

T5 0.0209 0.0182 0.5179 0.0451 0.0367

F3 0.0167 0.0379 0.4415 0.1481 0.0636

P4 0.0253 0.0185 0.5307 0.0270 0.0904

3.2. Epileptic patient

Now, as an example for an epileptic patient, the exam of a 75-year-

old woman with urinary incontinence problems is discussed. The exams 
were performed on the patient in an unconscious state. It should be 
noted that this woman has been previously treated with anticonvulsants 
such as Dilantin and Lorazepam. The channels next analyzed are F7, C4, 
T5, F3, and P4 (Fig. 8).

3.2.1. Channels F7, C4 and T5

Channel F7 is part of the frontal lobe of the brain, channel C4 is 
identified as inner right medial, and channel T5 as outer left rear. As 
can be seen in Fig. 9, the channels have low activity in the frequency 
domain with a high presence of the Delta band (0-4 Hz). According to 
[34] this may be related to brain injury.

In Table 2, the relative power information for these 3 channels is 
given, where it is noticeable that the delta band predominates and as 
previously mentioned, the high presence of this band generally indi-

cates brain injuries.

3.2.2. Channel F3

Fig. 9 shows that the amplitude of this channel is low and, as in 
channels F7, C4, and T5, the predominant band is Delta. It can also be 
noticed in Table 2 that the Gamma band occupies almost a third of the 
Delta band. From this information, it can be concluded that the patient 
has problems related to abstract thinking and memory.

3.2.3. Channel P4

This channel of the parietal lobe, which is located in the right rear 
part of the brain, has a high presence of the Delta band for this patient. 
Table 2 shows that more than half of the frequency components are 
contained in this band, reflecting damage to the back of the brain.

4. Experimental design

Within the state of the art review for the elaboration of this article, 
several approaches were found to carry out the extraction of features 
and the classification of patients according to these features. To achieve 
the results obtained in this article, several experiments were carried out 
combining the representation of the data (relative and average poten-

tial) with each one of the classification techniques.

It is this combination between representations and classification 
techniques together with an exhaustive experimentation that allows 
finding the best results according to the context and conditions of the 
data. For each of the techniques applied, this article describes the two 
best experiments obtained with each data representation, therefore, 
there are four models described for each classification technique.
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Table 3. Position of samples on confusion ma-

trix.

Predicted Values

Actual Values
True Negatives False Positives

False Negatives True Positives

4.1. Description

Within the research carried out, several experiments took place to 
observe which configurations show changes in the performance metrics 
and, in this way, modify, remove or add values to parameters looking 
for improvement for these.

These performance metrics are obtained from the results listed in 
the confusion matrix. In each of the four quadrants of this matrix lie the 
corresponding sample quantities according to the predictions made by 
each model. Each of them is defined as:

• True negatives: those samples whose class is zero and, whose model 
managed to classify as such.

• False positives: those samples whose class is zero, but whose model 
is classified as 1.

• False negatives: in this case, the model classified the class 1 samples 
as class 0 samples.

• True positives: in this space is found the number of tests that are 
class 1 and that the model classified as such.

These values are positioned in a 2 × 2 matrix as shown in Table 3. 
From the values found in the confusion matrix, the following three met-

rics are calculated.

• Accuracy: this is the fraction of predictions that the model made 
correctly [35].

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

• Precision: This metric determines the proportion of correctly clas-

sified positive identifications [35].

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

• Recall: this is defined as the proportion of positives that were cor-

rectly identified [35].

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

4.2. Logistic regression

For the first group of experiments with classification techniques, lo-

gistic regression was used. This technique provides the mechanism for 
linear regression to classification problems. The result of the classifi-

cation is actually a value between [0, 1], which is interpreted as the 
probability ℎ(𝑥) that the class of 𝑥 is 1. In particular, the sigmoid func-

tion used in the logistic regression is the logistic function, defined as:

𝑓 (𝑧) = 1
1 + 𝑒−𝑧

(4)

where 𝑧 is of the form: 𝑧 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛, where 𝑥1 to 𝑥𝑛

represent the values of the 𝑛 attributes and 𝛽 or to 𝛽𝑛 represent the 
weights [36].

As mentioned throughout this article, different configurations were 
tested in hopes of changing and improving the metrics of each model. 
For this reason, additional parameters to those explained above were 
applied to the logistic regression models. The first of these was the 𝐶
coefficient called the Regularization Inverse. This is a control variable 
that softens and regulates the overfitting of the model [37]. On the other 
hand, there are the penalties or regularizations to reduce the variance 
of the model and therefore avoid overfitting [38].
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Fig. 8. Channels F3, F7, C4, P4 and T5 in time domain.
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Fig. 9. Channels F3, F7, C4, P4 and T5 in frequency domain.
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Fig. 10. Confusion matrix Model LOG-REG-01. From left to right and from top 
to bottom the number of true negatives, false positives, false negatives, and true 
positives.

4.2.1. Relative power of frequency bands

The first experiments with logistic regression were performed with 
the input data represented in the relative power of the bands. Although 
only two experiments are listed in this section, these are the result of 
comparing 6 previously developed models, in which the best results 
were not observed by applying the total of the samples chosen for this 
research.

• LOG-REG-01:

Since previous experiments, the best results were not achieved us-

ing the total amount of samples selected in this research. In this 
model, only 210 samples were taken, 105 were from epileptic pa-

tients and the other 105 from non-epileptic patients. This, in order 
to avoid problems of underfitting.

The input features for this model are the 5 EEG frequency bands 
(alpha, beta, gamma, theta, delta). These bands are expressed in 
percentage according to their presence in the signal. The optimiza-

tion algorithm of the problem is “lbfgs”, which is analogous to 
Newton’s method; however, it has a particularity that consists of 
the use of an estimation of the inverse of the Hessian [39]. The ap-

plication of this algorithm reduces memory usage, allowing for a 
minimum of the fastest function to be found.

As a penalty, L2 was applied. It should be remembered that reg-

ularization allows for a reduction in the complexity of the model, 
which is also part of the strategies to avoid overfitting. In this case, 
the weights are penalized in proportion to the sum of the squares 
of the weights. The L2 regularization helps to bring the weights of 
outliers, i.e. those distant samples of the epileptic and non-epileptic 
classes, to values close to zero.

From the data of the confusion matrix in Fig. 10, the performance 
metrics for this model are calculated. In this case, 72% was ob-

tained for recall metric and 70% for accuracy metric which may 
indicate acceptable model performance. However, the precision of 
the model was only 60%, which means that just over half of the 
epileptic patient samples were correctly predicted by the model.

• LOG-REG-02:

Based on the analysis and the results obtained in the previous con-

figuration, for this new model, a new strategy was introduced in 
order to avoid underfitting. For this reason, three new character-

istics were added to the input data and therefore, there are now 
eight input characteristics in the model; these new features are:

– Product of the alpha and gamma band values.

– Product of beta and delta band values.

– Average of the percentage coefficients of the 5 bands.

It should be remembered that this is done to avoid underfitting 
the model, which may be caused since current models have fewer 
samples for training. Finally, “liblinear” was applied as an opti-

mization algorithm, which is a linear classifier. It uses a coordinate 
descending algorithm that solves optimization problems by succes-
11
Fig. 11. Confusion matrix Model LOG-REG-02. From left to right and from top 
to bottom the number of true negatives, false positives, false negatives and true 
positives.

sively performing rough minimization along coordinate directions 
or coordinate hyperplanes [40].

Since, the algorithm performs a classification one versus the rest, 
this may represent disadvantages in speed issues with respect to 
“lbfgs”, however, as [40] noted, linear classification presents out-

standing, results in training for large and scattered data with a large 
number of instances and features wanted. These aspects are consid-

ered to perform the application using this technique.

This model obtained an accuracy of 73% and an recall of 68%. Al-

though these values are not much better than the previous model, 
and in fact the value of recall was lower, the precision was con-

siderably increased to 74%, thus increasing the number of correctly 
classified epileptic patient samples (Fig. 11).

4.2.2. Arithmetic mean of frequency bands

• LOG-REG-03:

Unlike the previous models, in this one the total samples were 
applied, and therefore, there are 588 training samples and the re-

maining 252 for the validation. This model was preceded by other 
two in which this same amount of data was used. However, they 
did not show satisfactory results, that is why, as in model LOG-

REG-02 (Fig. 11), new characteristics were generated hoping to 
obtain the same improvements observed for that model. These new 
features were:

– Product of beta and gamma band values.

– Product of delta and gamma band values.

– Product of the beta and theta band values.

In addition, the input data was pre-processed through discretiza-

tion via the KBins algorithm. With this it is possible to generate 
small groups of samples with similar characteristics and classified 
as epileptic or non-epileptic. Now the characteristics are divided 
into discrete values [41].

Continuing with the approach used in the previous section, for 
these new models an exploration of the optimization algorithms 
was made, that is why the “lbfgs” algorithm was applied again. On 
the other hand, the discretization of the input data increases the 
number of characteristics of these. Thus, the “lbfgs” algorithm can 
represent improvements since the dimension of the data grew [42].

As in the last logistic regression model, new features were added 
from polynomial combinations of the existing features. The coeffi-

cient 𝐶 = 10 was taken, using “lbfgs” as the optimization algorithm 
and ridge 2 as the penalty. From the data of the confusion matrix 
in Fig. 12, it is obtained an accuracy of 71% and precision of 67% 
while recall was 77%. In comparison with previous models, there is 
an increase in the metrics in general. It should be noted that in this 
experiment the number of samples was increased, which may make 
the model more susceptible to overfitting problems than previous 
models.

• LOG-REG-04:
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Fig. 12. Confusion matrix Model LOG-REG-03. From left to right and from top 
to bottom the number of true negatives, false positives, false negatives, and true 
positives.

Fig. 13. Confusion matrix Model LOG-REG-04. From left to right and from top 
to bottom the number of true negatives, false positives, false negatives, and true 
positives.

Based on the improvements observed in model LOG-REG-03, in this 
new model two new features were added which were generated 
from the average and median values of the frequency bands; there-

fore, this model has 10 features in the input data. As in the previous 
model, discretization was applied to the data, which further in-

creases the dimension of the input data, since it is now discretized 
based on 10 features.

Despite having generated new characteristics counting on obtain-

ing improvements in the metrics again, these decreased with re-

spect to the previous model. The accuracy was 66% and the preci-

sion 63%. On the other hand, the recall was 70%. These values were 
extracted based on values in Fig. 13. The values of this model are 
lower compared to LOG-REG-03 model, thus, there may be overfit-

ting compared to the mentioned model.

4.3. Artificial neural networks

The second technique to be evaluated is the artificial neural network 
technique. A neural network is nothing more than an architecture of 
interconnected nodes. The artificial neural network stores and processes 
data through the connections that exist between its nodes generated by 
a learning process that distinguishes patterns in the training data [43].

𝑎 = 𝜙

(∑
𝑗

𝑤𝑗𝑥𝑗 + 𝑏

)
(5)

Where 𝑥𝑗 are the unit inputs, 𝑤𝑗 the weights, 𝑏 the bias, 𝜙 is the non 
linear activation function y 𝑎 is the activation unit.

The experiments are performed by taking two different represen-

tations of the frequency bands (relative power and arithmetic mean). 
The following subsections present the experiments performed by alter-

ing parameters between them to obtain efficiency in the classification 
of epileptic and non-epileptic patients.
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Feed-forward neural network are characterized by their relation-

ships in degree without cycles and sequential. The multilayer neural 
network was the subtype selected for these experiments. Each node in 
one layer is connected to a node in the next layer. There are input lay-

ers (first layer), hidden or intermediate layers, and an output layer (the 
last layer of the neural network). In the case of this investigation, there 
is only one node in the last layer as it is a binary type classification.

4.3.1. Relative power of frequency bands

• NN-FF-01:

This experiment has an architecture for the neural network de-

scribed next. It has an input layer that receives five features (one 
for each frequency band). It has six hidden layers with 25, 10, 14, 
15, 20, and 10 nodes respectively. The optimization method em-

ployed is the LBFGS, which commonly converges faster than other 
methods. The memory-limited LBFGS or BFGS algorithm belongs 
to the quasi-Newton family of methods that work similarly to the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a lim-

ited amount of computer memory. It became popular for parameter 
estimation in machine learning problems. Its main purpose is to 
minimize the unrestricted values of the real value where there is 
a differentiable scalar function [44]. The penalty parameter L2 is 
𝛼 = 0.00001 and the trigger function used is “ReLU”.

At the time of running this experiment it was necessary to adjust 
the number of iterations to 3500 for the optimization function to 
converge. Similar to how it was done in the logistic regression sub-

section, it was important to scale the features before training the 
model, tests were done and for this experiment the standard scaler 
obtained better results than the robust scaler. Fig. 14 shows the 
behavior of the model with respect to accuracy metrics.

With this configuration a score of 78% of the model was achieved, 
for the classification of the patients an accuracy of 86.1% was ob-

tained. These results are high and indicate that the number of 
hidden layers has a positive impact on the metrics considered. The 
confusion matrix in Fig. 15 clearly illustrates the classification of 
the test samples.

• NN-FF-02:

Taking the NN-FF-01 experiment as a starting point, the layers de-

scribed below begin to be configured:

– Layer 1 (Input Layer): This layer has five dimensions, the ReLU 
activation function is applied to the point product between each 
dimension and a matrix of weights that is initialized by the same 
layer; therefore the output of this layer is the product between 
the characteristics and those weights.

– Hidden layers 2 and 4: A dropout technique is applied taking 
into account that being a small data set the model may present 
an over-adjustment. In summary, this technique randomly sets 
input nodes at 0 with a certain frequency during the time it takes 
to train the model, the rest of the nodes that are not at 0 are 
expanded by a value corresponding to 1

1−rate so as not to affect 
later the sum of all the input nodes.

– Layer 3: This is similar to the input layer where a ReLU activation 
function is applied.

– Layer 5 (Output Layer): Sigmoid function that transforms the 
product between the inputs and the weights.

Standard feature scaling was performed in 700 epochs with the 
Adam optimization method. The loss calculation was performed 
with the help of the binary cross entropy function, this is an itera-

tive method in which first a random set of values are generated and 
then the parameters are updated to generate better values, more 
approximate in the sense of Kullback-Leibler, in the next iteration. 
The advantage of this method is that it can be applied both to de-

terministic problems and to problems with noise [45], the results 
for the model loss are 3.44% and the overall model score is 86.1%. 
The performance of the experiment is shown in Fig. 16.
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Fig. 14. Accuracy of the NN-FF-03 model for training and validation data in 500 epochs.
Fig. 15. Confusion matrix of model NN-FF-01. From left to right and up to down 
the number of true negatives, false positives, false negatives and, true positives.

4.3.2. Arithmetic mean of frequency bands

• NN-FF-03:

In this experiment it was used the “RMSProp” algorithm, similar to 
the gradient descent algorithm, with the difference that it restricts 
oscillations in the vertical direction of the gradient optimization, 
thus reaching faster the minimum of the function, “RMSProp” ad-

dresses and adjusts the problem of excessive accumulation of the 
gradient along the iterations, multiplying the previous accumula-

tion by a parameter 𝜌 that will make its weight to reduce along the 
iterations in an exponential way. Thus, the learning rate will not be 
so drastically reduced [46]. The configuration for this model was 
32 neurons in the first hidden layer, 64 in the second layer and 16
in the last hidden layer. These layers have the function of “ReLu” 
activation.

The results for this experiment are 74% for classification accuracy, 
other metrics can be calculated from the confusion matrix shown 
in Fig. 17.

• NN-FF-04:

As in the NN-FF-03 experiment, the use of the “ReLu” activation 
function has worked better than the Hyperbolic Tangent function. 
The setup for this experiment differs in an increase in the number 
of layer neurons. Thus, the first hidden layer had 128 neurons, the 
second layer consisted of 64 units, the third layer had 32, the fourth 
and fifth layers had 16 and 8 neurons respectively. It is observed 
that there is an improvement in the metrics and the accuracy of 
the model is highlighted as it reaches 81% when classifying the test 
data.

Such results can be better evidenced through the confusion matrix 
in Fig. 18, the increase of the values in the upper-left and lower-

right corners, since there is a count of the predicted values against 
the real values of the training data set. The increase in these corners 
indicates a marked improvement in prediction for the test data set. 
At the same time, Fig. 19 shows the loss curve for the validation 
data, which is close to 15%, an indicator that is remarkable since 
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it suggests that the model has performed well in comparison with 
other models.

In this case, an overfitting effect has been observed which ac-

cording to [22] may be associated with the little amount of data 
available to carry out the training.

4.4. Support vector machines

In order to improve the results obtained in the previous experi-

ments, this section presents experiments carried out with support vector 
machines, as a technique for classifying examinations. Support vector 
machines are linear algorithm applied in classification, regression, den-

sity estimation, etc. In the simplest case of binary classification, like 
in this paper, SVM find a hyperplane that separates the two classes of 
data with as wide a margin as possible [47]. The models made with this 
classification technique are described below.

4.4.1. Relative power of frequency bands

For this group of experiments it is used as kernel the radial base 
function as well as a pre-processing of the input data through scaling 
techniques which will be described for each experiment.

• SVM-01:

Percentile-based scaling was used for this experiment. In order 
to separate the data according to their class (epileptic and non-

epileptic), this scaler is applied, which removes the median and 
scales the data according to the quantile range (default to 𝐼𝑄𝑅: 
interquartile range). The 𝐼𝑄𝑅 is the range between the first quar-

tile (25𝑡ℎ quartile) and the 3𝑟𝑑 quartile (75𝑡ℎ quartile) [48]. Along 
with this pre-processing, the radial base function was applied as a 
kernel. This combination of scaler and kernel applications allows 
the separation of the samples. The radial base function processes 
the data generating new characteristics from the distance between 
points, and thus finding centroids. Equation (6) describes this.

𝐾(𝑥,𝑥0) = 𝑒−𝛾||𝑥−𝑥0||2 (6)

Where 𝛾 controls the influence of centroids. These centroids define 
boundaries, so the higher the value of 𝛾 , the less influence these 
centroids have on the decision boundary and therefore the decision 
boundary is less extensive [49]. The value of 𝛾 (gamma) for this 
model is given according to Equation (7).

𝛾 = 1
𝑚 × 𝑆2 (7)

Where 𝑚 is the number of characteristics, for this case 𝑚 = 5 and 𝑆2

is the variance of data, which, as mentioned above, is affected by 
the application of escalation. In this case, the value of the variance 
is 𝑆2 = 0.976, therefore the value of 𝛾 is 0.204.

For this model, a percentage of 64% was obtained for accuracy. The 
precision was 80%, but the recall metric does not give a suitable 
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Fig. 16. Accuracy and loss of NN-FF-04 model for training and validation data in 700 epochs.
Fig. 17. Confusion matrix of model NN-FF-03. From left to right and up to down 
the number of true negatives, false positives, false negatives, and true positives.

Fig. 18. Confusion matrix of model NN-FF-04. From left to right and up to down 
the number of true negatives, false positives, false negatives, and true positives.

result, as it is only 39%. Fig. 20 shows the results of the confusion 
matrix for this experiment.

• SVM-02:

In this new model, a standard scaler for input data normalization 
was implemented, which allows the data variance to be equal to 1. 
This data pre-processing has an outstanding behavior when applied 
together with the radial-based kernel, as mentioned in [50]. As 
seen, the radial-based kernel separates the data according to cen-

troids. Therefore, it is even easier for the kernel to generate these 
centroids. The input data is now within the same range. Equations

(6) and (7) describe the behavior of the kernel for this experiment.

Compared to the previous model, quite similar results were ob-

tained, for example, the recall gave a result of 39%, in addition, 
the accuracy and precision values were 64% and 79% respectively. 
These results are reflected in the low numbers of samples in the 
upper right and lower right corners, in the confusion matrix in 21, 
whose values are lower than their peers in the left column. This 
indicates a low success rate in predicting epileptic patients.
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4.4.2. Arithmetic mean of frequency bands

• SVM-03:

In this experiment a new kernel is applied, in this case a polynomial 
one, which adds new features from polynomial combinations of all 
existing features. Equation (8) defines the behavior of this kernel.

𝐾(𝑥,𝑥′) = ⟨𝑥,𝑥′⟩𝑑 (8)

where 𝑥 and 𝑥′ represent input features for the model, in this case, 
frequency band values, and 𝑑 is the polynomial degree.

For this model, the same scaling applied in the SVM-01 model was 
used. On the other hand, for this model the Equation (9) defines 
gamma value.

𝛾 = 1
𝑚

(9)

In this case, this kernel was applied to observe how it behaves with 
respect to the radial-based kernel. Since, as suggested in [51], this 
kernel allows to generate non-linear borders, that allows to sepa-

rate samples with similar features that are spatially close, but are 
of different kind.

For this model, the kernel with a grade 5 polynomial was imple-

mented. To reach this degree of polynomial, experiments were 
conducted with higher and lower values where the kernel with the 
best performance was grade 5. As can be seen in Fig. 22, the con-

fusion matrix, from which the metrics are calculated, which in this 
case were 70% for accuracy, 68% for precision and 72% for recall.

• SVM-04:

As said so far, the models described here are the result of testing 
various configurations. Based on the results obtained, in this model 
was applied preprocessing of the data applying scaling by absolute 
maximum, which scales and translates each characteristic so that 
the maximum absolute value of each is 1 [52].

As seen, the radial basis kernel works remarkably when the data 
have been pre-processed. That is why this kernel was applied in this 
model. In this case, the value of the parameter 𝐶 is 10000. It should 
be remembered that this value is the inverse of the regularization 
value, so even though the regularization is small, applying this 
value represented an improvement in metrics compared to mod-

els made using support vector machines.

This setup allows to get an accuracy of 77%, precision of 78% and 
recall of 74%. Fig. 23 shows that this model has obtained so far the 
best results of the experiments made with support vector machines, 
given the amount of samples in the upper-left and lower-right cor-

ners of the confusion matrix.

4.5. Convolutional neural networks

Since deep learning throughout has been widely applied in differ-

ent areas (like in medical applications) [53], an implementation was 
performed applying a convolutional neural network model with the 
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Fig. 19. Loss curve of the NN-FF-04 model for training and validation data in 1000 epochs.

Fig. 20. Confusion matrix of model SVM-01. From left to right and from top to 
bottom the number of true negatives, false positives, false negatives, and true 
positives.

Fig. 21. Confusion matrix of model SVM-02. From left to right and from top to 
bottom the number of true negatives, false positives, false negatives, and true 
positives.

Fig. 22. Confusion matrix of model SVM-03. From left to right and from top to 
bottom the number of true negatives, false positives, false negatives, and true 
positives.

Fig. 23. Confusion matrix of model SVM-04. From left to right and from top to 
bottom the number of true negatives, false positives, false negatives, and true 
positives.

objective of comparing the results among the three conventional tech-

niques previously applied.

Convolutional neural networks allow the construction of models that 
use images as inputs by applying filters to them. In this case, as in the 
previous implementations are used signals in the frequency domain. For 
these experiments, images were generated for the 21 channels for the 40 
epileptic and non-epileptic tests, completing 840 images. In this imple-

mentation proposal, in order to be comparable with the previous made, 
each image corresponds to the frequency spectrum calculated with the 
FFT. It should be noted that in this way it is not necessary to perform 
measures on specific frequency bands, therefore, more information of 
the FFT can be available for the classification process.

Initially, each image was generated with a dimension of (288, 432, 3)
generated in RGB format. However, the first experiments performed 
presented issues of time processing. After adjusting the model hyper 
parameters, images dimension was modified to (32, 32, 1). This allows 
shorter processing time since the dimensions are smaller than those pre-

viously used, however, information may be lost. Given that this CNN 
application uses the spectrum (frequency) figure calculated via FFT, the 
input image is in grayscale.

Based on the reported in [54], the architecture design consists of 
5 convolutional layers. Regarding these three layers, each one has 32 
kernels. The first one has a dimension 3 × 3, the next one 2 × 2 and 
the last one 1 × 1. Each one has a max-pooling layer of 2 × 2 associ-

ated. These first three layers are followed by two convolutional layers, 
each with 16 filters of dimension 2 × 2 and 1 × 1, which are accompa-

nied by max-pooling layers of 1 × 1. Then, the model outputs from the 
convolutional part enter to a flatten layer composed of 700-unit using 
the activation function “ReLu”. The last layer, which returns the predic-

tion of each sample, uses the activation function “Sigmoid”. Finally, for 
training process is used the “RMSProp” algorithm.

Regarding the results, Fig. 24 shows the confusion matrix for the 
best model of convolutional neural networks; in addition, Fig. 25 dis-

plays the loss curve for training and validation.
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Fig. 24. Confusion matrix for the best model of convolutional neural networks 
implementation. From left to right and from top to bottom the number of true 
negatives, false positives, false negatives, and true positives.

Table 4. Summary of metrics results for logistic regression models.

Model Precision Accuracy Recall F1-Score

LOG-REG-01 0.600 0.700 0.720 0.654

LOG-REG-02 0.739 0.733 0.680 0.708

LOG-REG-03 0.673 0.710 0.768 0.717

LOG-REG-04 0.629 0.658 0.702 0.663

5. Result analysis

Based on the results obtained in the experimental design, the best 
two models are obtained. Since each model has three different metrics, 
the F1-score will be calculated for each model for comparison. This 
value is the harmonic mean between accuracy and completeness, Equa-

tion (10) defines this value.

𝐹1 = 2 ×
precision ⋅ recall

precision + recall
(10)

Tables 4, 5, and 6 list the models made in each technique along with 
their metrics and the calculation of the F1-Score.

As seen, the accuracy of the models allows to obtain the fraction of 
predictions that the model made correctly. This metric is obtained by 
considering each of the four values contained in the confusion matrix, 
which at first sight may represent a reasonable calculation for the eval-

uation of a model. However, with that metric is not achieved a level 
of detail needed to verify how the model behaves specifically in the 
classification of epileptic and non-epileptic patients.

Therefore, those metrics are necessary to see the behavior of the 
model for each class. It is there where the precision and recall metrics 
appear. With the first one it can see the behavior of the model with 
respect to the predicted values, and the second metric reveals the be-

havior with respect to the real values.

Although this seems to solve the issue of model comparison, as seen 
in Table 5, model NN-FF-01 has better accuracy than model NN-FF-

04, which means that the former obtained more real positives within 
the samples it classified as positive. In spite of this, the model NN-FF-04 
obtained a better recall than the model NN-FF-01, that is, the model NN-

FF-04 avoids the problem of diagnosing a patient as non-epileptic when 
in reality is. This same situation can be seen in Table 4 with models 
LOG-REG-01 and LOG-REG-04. One model presents a better value in 
one metric but it is worse in another with respect to the other model.

For reasons mentioned above, the F1-score metric is used for the 
comparison between models since it gathers in itself the precision and 
recall metrics as can be seen in Equation (10). According to the data in 
Tables 4, 5 and 6, the two best models were NN-FF-01 and NN-FF-02.

Also, a Receiver Operating Characteristic (ROC) graph is used to 
compare these two models. This curve represents the true positive (TPR) 
versus false positive (FPR) rate at different classification thresholds. 
Lowering the classification threshold classifies more items as positive, 
so both false positives and true positives will increase. Equations (11)

and (12) define respectively the values of TPR and FPR.
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Table 5. Summary of metrics results for artificial neural networks models.

Model Precision Accuracy Recall F1-Score

NN-FF-01 0.781 0.765 0.820 0.800

NN-FF-02 0.810 0.861 0.840 0.824

NN-FF-03 0.759 0.742 0.677 0.715

NN-FF-04 0.772 0.805 0.842 0.777

Table 6. Summary of metrics results for SVM models.

Model Precision Accuracy Recall F1-Score

SVM-01 0.796 0.638 0.395 0.527

SVM-02 0.793 0.643 0.387 0.520

SVM-03 0.679 0.702 0.719 0.703

SVM-04 0.775 0.773 0.743 0.758

𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11)

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(12)

Where:

• 𝑇𝑃 : True positives.

• 𝐹𝑃 : False positives.

• 𝑇𝑁 : True negatives.

• 𝐹𝑁 : False negatives.

Even though in this last part strategies have been exposed to eval-

uate globally the models performance (unify results), there are two 
metrics based on the values with which the ROC curve is obtained. 
These are sensitivity and specificity.

• Sensitivity: which measures the proportion of correctly classified 
epileptic patients [55].

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦= 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(13)

• Specificity: which measures the proportion of non-epileptic pa-

tients classified correctly [55].

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦= 1 − 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(14)

These metrics illustrate the importance of the ROC curve to visu-

alize model performance for the classification of both epileptic and 
non-epileptic patients. Therefore, the ideal model will be one in which 
the FPR is 0 and the TPR is 1. In Fig. 26, it is possible to see how the 
values on the ROC curve are quite close to these values, different from 
the graphs of the other two classification techniques [55].

One advantage of comparing the techniques using the AUC graph 
is that it allows the visualization of the behavior in the classification. 
As can be seen in Figs. 26, 27, 28, and 29 the classification in logistic 
regression models, support vector machines, and convolutional neural 
networks, is much lower than in the case of artificial neural networks.

Analyzing the results of the models for LR, ANN, and SVM tech-

niques, it is observed that those models where the data were repre-

sented through the average of the frequency bands present better met-

rics than their opposites, that is, those where the data were represented 
through the relative power. However, this situation was different for 
the artificial neural network models since the best results were found 
when representing the data in relative power. From this, it can be in-

ferred that the preprocessing of the data has a more relevant effect with 
artificial neural networks and that therefore the separation of the data 
is easier.

According to Table 7, it can be observed that CNN-01 model per-

forms better than the other models in terms of accuracy, however, the 
loss is high for this model, despite the capacity of CNN for image clas-

sification, it is noted that the best results are not obtained in this case. 
The reason why these models may have low classification metrics may 
be that images used does not preserve all the relevant information that 
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Fig. 25. Loss curve of the best model of convolutional neural networks implementation for training and validation data in 100 epoch.

Fig. 26. ROC Curve for NN-FF-02 model. This area of 0.95 can be interpreted 
as the probability that the test classifies correctly when faced with a pair of 
individuals, one unhealthy and the other healthy.

Fig. 27. ROC Curve for LOG-REG-03 model.

Fig. 28. ROC Curve for SVM-04 model.

Table 7. Summary of metrics results for CNN models.

Model Precision Accuracy Recall F1-Score

CNN-01 0.622 0.615 0.587 0.604

CNN-02 0.620 0.611 0.571 0.594

CNN-03 0.606 0.587 0.500 0.547

CNN-04 0.575 0.583 0.635 0.603

Fig. 29. ROC Curve for the best model in convolutional neural networks imple-

mentation. This area of 0.60 can be interpreted as the probability that the test 
classifies correctly when faced with a pair of individuals, one sick and the other 
healthy.

distinguishes epileptic patients from non-epileptic patients in the char-

acteristics of the EEG signal. This shows the possibility of carrying out 
the implementation with another encoding of the figures that are en-

tered to CNN, and other resolution size of the images. In this regard, 
Fig. 29 shows the ROC curve obtained using CNN.

Despite the fact that the convolutional neural networks technique 
is modern and can offer many advantages compared to the traditional 
techniques used in this study, more explorations than those employed 
here may be implemented exploring the generation of images from the 
frequency bands and spectrograms to have more samples that feed the 
CNN.

6. Discussion

The data used in this research was obtained from a public repos-

itory at Temple University. This provides a wide state of the art in 
which these data and the authors’ observations regarding the handling 
and processing of the data were used several times. Although this data 
source is extensive, it was decided to build a small data set compared to 
other works, consisting of 20 examinations of epileptic patients and 20
examinations of non-epileptic patients. The addition of more samples 
may allow better generalization and classification of particular cases.

On the other hand, the application of pre-processing of input data 
represented improvements in those techniques in which had not been 
previously applied this strategy. This allowed much more satisfactory 
results to be obtained for logistic regression, for example, where the 
classification of the data was not very suitable in the first experiments, 
17
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also for the CNN model, where modifying the shape of figures repre-

sented an improvement on performance and metrics results.

This work focused on using the analysis in frequency and frequency 
bands to establish the epilepsy that can be used for any channel of the 
EEG signal. Thus, it is possible to have a classification system with low 
complexity, giving the possibility of developing a diagnostic device easy 
to implement. To improve the classification rate, the frequency bands 
and the channels taken can be used at the same time, which would 
imply increasing the complexity of the classification system.

In the framework of this research, four of the best known classifi-

cation techniques were applied; however, this does not mean that they 
are the four with the best results for this type of problem. Other tech-

niques such as Bayesian classifiers, decision trees or random forest can 
be applied.

This work is of particular relevance in the area of electroencephalog-

raphy and machine learning, presenting an approach that allows classi-

fying an exam of a patient through four different techniques. This work 
could become a starting point for the construction of medical equip-

ment and systems that support neurologists and doctors’ work in the 
diagnosis of epilepsy. It can even be used as alternative or system that 
acts in those spaces where there is lack of specialists in the field.

7. Conclusions

The above was carried out aiming at finding the features and the 
best classification technique between logistic regression, artificial neu-

ral networks, support vector machines, and convolutional neural net-

works, given the popularity of these techniques in other investigations. 
Through practical resources and existing models in the Python program-

ming language, it was possible to implement these techniques to the 
characteristics extracted from the selected EEG exams. A model apply-

ing CNN technique was used since it is widely applied among several 
articles [22]. In this order, this technique presents an alternative to en-

ter the frequency spectrum to the neural network.

In the model training, an improvement in metrics is distinguished 
from those models in which pre-processing techniques such as scaling 
and discretization of input data (frequency bands) were applied. An ex-

plicit example of such situation is the logistic regression case, in which 
an improvement of almost 6% in the precision of experiments that did 
not have feature scaling is observed. This case is exposed given that the 
logistic regression technique was the one that had rather low metrics 
and that was not considered satisfactory. For the implementation using 
CNN, it was convenient convert the images from RGB to grayscale to 
reduce the computational complexity.

Taking into account the results and the metrics used for comparison 
in the Results Analysis section, it can be concluded that the most suit-

able technique for classification of epileptic and non-epileptic patients is 
the multilayer perceptron ANN technique; particularly, the model NN-

FF-02 which displayed the highest precision and accuracy with values 
86% and 81% respectively, standing out among all the other experi-

ments. Nevertheless, this does not represent full efficacy in diagnosing 
patients, it is an outstanding result considering conditions such as size 
of the data set and the extracted features.

This work is a contribution both in the area of extraction of charac-

teristics of biological signals such as EEG or ECG and also of classifica-

tion of these signals. These areas are broad and have applications that 
can be explored to build diagnostic systems whose precision for labeling 
patients in the Non-epileptic and epileptic classes is superior to what is 
stated here. A possible extension of the work could be the support and 
approval by a professional in neurology, who tests the best model of 
this work with patients whose clinical history and health conditions are 
varied.

For the expansion of the data set can be considered the addition of 
others databases; however, it is important the work related to clean-

ing, normalizing, and removing channels in order to obtain a clean and 
diverse data set.
18
In additional work, other classification techniques can be tried as 
well as other metrics obtained from the EEG signals and configurations 
of these signals.
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