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From Bayes-optimal to heuristic
decision-making in a
two-alternative forced choice
task with an
information-theoretic bounded
rationality model

Cecilia Lindig-León*†, Nehchal Kaur† and Daniel A. Braun

Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information

Processing, Ulm University, Ulm, Germany

Bayes optimal and heuristic decision-making schemes are often considered

fundamentally opposed to each other as a framework for studying human

choice behavior, although recently it has been proposed that bounded

rationality may provide a natural bridge between the two when varying

information-processing resources. Here, we investigate a two-alternative

forced choice task with varying time constraints, where subjects have to

assign multi-component symbolic patterns to one of two stimulus classes. As

expected, we find that subjects’ response behavior becomes more imprecise

with more time pressure. However, we also see that their response behavior

changes qualitatively. By regressing subjects’ decision weights, we find that

decisions allowing for plenty of decision time rely on weighing multiple

stimulus features, whereas decisions under high time pressure are made

mostly based on a single feature. While the first response pattern is in line

with a Bayes-optimal decision strategy, the latter could be considered as an

instantiation of heuristic decision-making with cue discounting. When fitting

a bounded rational decision model with multiple feature channels and varying

information-processing capacity to subjects’ responses, we find that themodel

is able to capture subjects’ behavioral change. The model successfully reflects

the simplicity of heuristics as well as the e�ciency of optimal decision making,

thus acting as a bridge between the two approaches.

KEYWORDS

Bayes-optimality, heuristics, bounded rationality, decision-making, information

theory

1. Introduction

In the cognitive and neural sciences, Bayes-optimal decision-making models have

advanced over the last few decades to one of the dominant formal approaches to

understand reasoning and acting in humans, animals, and machines (Doya et al., 2007).

These models have strong theoretical appeal due to their axiomatic simplicity and

elegance that allow for a normative interpretation of how decisions should be taken
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optimally by rational actors (von Neumann and Morgenstern,

1944; Savage, 1954). Bayes-optimal models typically consist of

two distinct components: first a model of beliefs that represent

the states of unobserved variables taking into account the

subjective uncertainty which is updated with new incoming

data, and second an optimal decision-making scheme that

selects actions in a way that maximizes the expected utility

of the decision-maker given the current beliefs. Although it

has been noted early on in the economic sciences that human

decision-makers can substantially deviate fromBayes-optimality

(Allais, 1953; Ellsberg, 1961), there is an extensive body of

literature that has applied Bayesian modeling successfully not

only to describe economic decision-making, but also to capture

basic sensorimotor behavior like cue integration, perceptual

categorization, visuomotor adaptation, and movement control

in both humans and animals (van Beers et al., 1999; Ernst and

Banks, 2002; Knill and Pouget, 2004; Körding and Wolpert,

2004; Körding and Wolpert, 2006; Braun et al., 2009).

Nevertheless, Bayesian models have been criticized on

several grounds, foremost for their computational intractability,

in particular in complex environments, their assumption of

perfect rationality, their disregard for model mis-specification as

well as their explanatory flexibility when allowing for arbitrary

prior beliefs, likelihood models, or cost functions (Jones and

Love, 2011). An alternative view to Bayes-optimal decision-

making that does not assume an overarching optimization

process or principle is sometimes called the Adaptive Toolbox

approach to the mind based on many different specialized

decision heuristics that are adapted to various environmental

contexts (Gigerenzer and Gaissmaier, 2011; Gigerenzer et al.,

2011). A key feature of heuristic strategies is that they are fast

to apply and that they ignore a large part of the information at

hand. Well-known heuristic strategies include the recognition

heuristic (Goldstein and Gigerenzer, 2002)—assuming a higher

value for an option whose name is recognized—, the take-the-

best-heuristic (Gigerenzer and Goldstein, 1996a)—compare two

options by their most important criterion and ignore other

criteria—and elimination by aspects (Tversky, 1972) that gets rid

of alternatives that do not meet the criteria of a certain aspect.

Over the years a considerable body of evidence has built up in the

literature showing how human decision-makers rely on heuristic

decision-making in many real-world scenarios, for example in

the financial and medical professions (Julian and Gerd, 2012;

Forbes et al., 2015).

Usually, Bayes-optimal decision strategies that integrate all

the available information into an optimal decision are regarded

as incompatible with the idea of having multiple heuristics that

ignore large amounts of information and that are not optimal

in any particular sense, even though such heuristic strategies

have been shown to work well in practical scenarios where exact

models are unavailable or misspecified. Recently, however, there

have been several proposals that suggest that heuristics can be

regarded as Bayes-optimal strategies under certain constraints.

Parpart et al. (2018), for example, have proposed that ignoring

certain aspects of data in a heuristic decision-making scheme

could be enforced within a Bayesian linear regression framework

by putting a high weight on the corresponding prior over

regression parameters. In another study (Belousov et al., 2016),

Belousov and colleagues have suggested that different reactive

and predictive strategies of catching a ball that were previously

suggested as heuristic strategies can arise from an optimal

stochastic controller when varying the level of observation noise

and reaction time. While such adaptive changes in strategy

selection depending on task constraints are well-known in

the psychological literature (Svenson and Edland, 1987; Payne

et al., 1988; Rieskamp and Hoffrage, 2008; Pachur and Bröder,

2013), a general mathematical formalization in terms of a

single framework that explains both heuristic and Bayes-optimal

decision-making poses an ongoing research problem. Such a

frameworkmight not only elucidate the mathematical principles

underlying heuristic decision-making, but also shed further light

on the question of how heuristics may be learned.

Here, we test an information-theoretic bounded rationality

model (Braun et al., 2011; Ortega and Braun, 2011, 2013)

for its ability to capture both Bayes-optimal and heuristic

decision strategies in human subjects when varying the available

information-processing resources in a binary classification task.

In this model, limited information-processing capabilities are

formalized abstractly by information constraints that quantify

how much decision-makers can deviate from a given prior

strategy when they face a decision task that is represented

abstractly by a utility function. Decision-makers with more

resources will be able to deviate more from their priors and

adapt to the utility function, whereas decision-makers with

limited resources will have to stick more to their prior strategy.

The basic rationale is that any kind of resource constraint

(e.g., time, memory, money, effort,...) will ultimately translate

into a reduced ability for uncertainty reduction (Gottwald and

Braun, 2019), which can be considered as an application of

the rate-distortion principle of information theory (Cover and

Thomas, 2006; Tishby and Polani, 2011). Previously, we have

used such information-theoretic bounded rationality models to

study effects of resource limitations in motor planning (Schach

et al., 2018), absolute identification (Lindig-León et al., 2019),

and sensorimotor interactions (Lindig-León et al., 2021).

In our study, we expose human subjects to a binary

classification task by two-alternative forced choice, where

a stimulus (here: a panel of abstract symbols) has to be

assigned to one of two classes based on three different stimulus

features (here: certain symbol arrangements)—compare

Figures 1A,B. The features have different probabilities for

the two stimulus classes and are independent, that means

given the class membership the presence of a feature has no

information about any other feature. The optimal decision-

maker in such a scenario is the Naive Bayes classifier that

provides the performance baseline irrespective of the available
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FIGURE 1

Binary classification task with three features. (A) Each feature is given by a symbol arrangement labeled f1, f2, and f3 and occurs with a certain

probability for stimuli of each stimulus class, shown in the Table 1. Examples of combined stimulus pattern belonging to class 1 or class 2 are

shown on the right. Crucially, subjects did not know the class membership, but had to infer it from the presence and absence of stimulus

features. (B) The amount of information the di�erent features carry about the stimulus class is measured by the mutual information: a value of 1

bit implies that class membership can be surely inferred, a value of 0 means that the feature provides no information and the decision-maker has

to guess. A value in between implies that the feature provides some information and the subject can engage in some educated guessing. (C)

Temporal evolution of the empirical frequencies of the di�erent stimulus features. Empirical frequencies can be reliably estimated after less than

10 trials.

information-processing resources. This is in contrast to

bounded rational decision-makers that optimize performance

under given constraints on resources. In particular, we

investigate the hypothesis that subjects behave like bounded

rational decision-makers that focus on the most informative

features under time pressure, thus, ignoring other stimulus

information, which corresponds to some kind of Take-the-Best

decision heuristic (Gigerenzer and Goldstein, 1996b). To this

end, we measure the amount of information subjects extract

from the different features and compare that to the information

reduction expected by different bounded rationality models—

compare. We find that subjects’ behavior is best captured

by an information-theoretic bounded rationality model that

optimizes performance assuming capacity constraints on three

separate information channels representing the three features,

accounting for the fact that feature information is processed in

separate chunks.

2. Methods

Participants

There were a total of 16 participants. They belonged to

the age group 20–50, 11 of them conducted the task using

remote access. The study was approved by the Ethics Committee

of Ulm University. Subjects were informed about the purpose

and method of the experiment as well as the ensuing data

handling, and that they could withdraw from the study any

time. During the initial familiarization phase of the experiment,

subjects were explicitly instructed that stimuli were composed

of three different features that could occur in isolation or in

combination with each other along with distractor symbols.

They were shown the three features which were each made up of

four abstract symbols inspired by a previous study (Orbán et al.,

2008). Subjects were told that they have to classify the stimulus
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patterns that they will observe into one of two classes and that

they can learn this classification from feedback after each trial.

Experimental design

Trial design. In each trial subjects were shown a 6×6 square

panel (ca. 15× 15 cm)made of 36 tiles full of blanks and symbols

and they were required to press the keys 1 and 2 on the keyboard

to indicate whether they believed that the presented stimulus

belonged either to class 1 or 2, respectively. The key press had to

occur within a given time window depending on the condition

(fast condition 1 s, medium condition 3 s, slow condition 5 s,

otherwise the trial was counted as a missed trial. After each

trial a dialogue box at the center of the screen would indicate

to subjects whether the trial was correct, incorrect, or missed.

Subjects could have breaks after every block of 50 consecutive

trials with the same time constraint (fast, medium, or slow).

In total, there were six blocks, that is 300 trials altogether

per session, and two sessions per subject. The first three blocks

of 50 trials in the first session were executed in the order slow,

medium, fast, in the ensuing blocks the order was randomized.

Each session lasted approximately half an hour. All evaluations

in the paper are based on data from the second session.

Stimulus classes. There were two equiprobable classes

of stimuli, where each class is defined like a bag-of-words

model based on three independent features. In a bag-of-words

model such features typically are given by characteristic words

whose frequency of occurrence distinguishes, for example,

spam from non-spam email. Similarly, in our task, the class-

specific occurrence probabilities of specified visual features,

each of which could either be present or absent, allows for

the classification of stimuli into two separate classes. Based on

the three features, we can distinguish eight different stimulus

types that can be denoted by a binary vector x and that are

associated with the two classes with different probabilities. In

our experiment we used the following feature probabilities

to generate 50 stimuli for each class and condition as a

random template:

Classes F1 F2 F3

Class 1 0.616 0.089 0.680

Class 2 0.198 0.227 0.985

When subsequently counting the occurrences of features

in this template, the empirical frequencies with which features

occur did not exactly match the aforementioned probabilities

due to the finite amount of stimulus samples. Instead, the

empirical frequencies were given by:

Classes F1 F2 F3

Class 1 0.560 0.180 0.620

Class 2 0.120 0.180 1.000

We used the same random trial sequence template for all

subjects, so we could ensure that each subject experienced

exactly the same empirical frequencies. It should also be noted

that the empirical frequencies of the trial sequence template

could not be known immediately by subjects, but had to be

learned. However, as can be seen from Figure 1C, the empirical

estimates of the feature frequencies stabilizes already after 10

trials around their final values.

Stimulus design. The stimulus design shown in Figure 1

was inspired by a previous study (Orbán et al., 2008). Each

stimulus was a 6 × 6 square panel, where each square could

contain a symbol or a blank. To balance stimuli in terms of

luminosity, each stimulus contained exactly 25 symbols and 11

blanks. The stimuli were characterized by three independent

visual features where each feature corresponds to a spatially

order chunk of four symbols. The chunks appeared in a fixed

part of the panel, but their exact position could vary by two

squares at most. Depending on the number of chunks present,

more or less randomly placed distractor symbols were used to

arrive at the total number of 25 symbols. There was an inventory

of 20 different symbols out of which 10 were used to define the

three chunks and all of them could be used as distractor symbols.

Models

The eight possible stimulus pattern can be described by

a binary input vector x ∈ {0, 1}3, for example for the first

stimulus pattern with all cues present it would be x =

(111). The distribution P(x) over stimulus pattern is given by

P(x) =
∑

y∈{1,2} P(x|y)π(y), where π(y) = 1
2 is the equal prior

probability of presenting a stimulus from either class, and P(x|y)

is the generative model of the stimulus pattern in each class y.

For our task, the generative model is given by

P(x|y = 1) =

3
∏

j=1

µ
xj
j (1− µj)

1−xj

P(x|y = 2) =

3
∏

j=1

ν
xj
j (1− νj)

1−xj

where µj and νj are the probabilities of the features occurring

in class 1 and class 2, respectively, as determined from the

experiment. The decision-maker’s choice can be described by a

binary output variable a ∈ {1, 2} corresponding to a selection

of class 1 and class 2, respectively. A choice strategy then

corresponds to a conditional distribution P(a|x) detailing the

probability of selection class a given the stimulus pattern x. For

example, if x = (111), the choice strategy is to assign x to class 1

with a probability p and to class 2 with probability 1− p.

Naive bayes model. The Bayes-posterior for our

task is given by the sigmoid P(y = 1|x) = σ (wTx+ w0)
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and P(y = 2|x) = 1 − P(y = 1|x) with the

weight parameters

wj = log
µj

1− µj
− log

νj

1− νj

w0 =

3
∑

j=1

log
1− µj

1− νj

Assuming a 0/1-utility of U(y, a) = δy,a with the Kronecker

delta δy,a = 1 if y = a and δy,a = 0 otherwise, we can then define

the optimal choice strategy P(a|x) = δa,a∗(x) that maximizes the

expected utility according to

a∗(x) = argmax
a

∑

y

P(y|x)U(y, a)

Bounded rational model with a single information channel

for action. Assuming the same expected utility as above given

by EU(x, a) =
∑

y∈{1,2} P(y|x)U(y, a), the bounded rational

decision-maker with a single information channel for action

seeks to find the optimal strategy P∗(a|x) that maximizes the

expected utility

P∗(a|x) = arg max
P(a|x)

∑

x

∑

a

P(x)P(a|x)EU(x, a)

subject to the information constraint

I(X;A) =
∑

x

∑

a

P(x)P(a|x) log
P(a|x)

P(a)
≤ K

where the prior is given by P(a) =
∑

x P(x)P(a|x) and K

is a positive real-valued bound. The optimization problem is

equivalent to the unconstrained optimization problem

P∗(a|x) = arg max
P(a|x)

∑

x

∑

a

P(x)P(a|x)EU(x, a)−
1

β
I(X;A)

where the precision parameter β is chosen to match the

information bound K. The optimal strategy is given by

P∗(a|x) =
1

Z(x)
P∗(a) exp

[

βEU(x, a)
]

with the optimal prior P∗(a) =
∑

x P(x)P
∗(a|x) and the

normalization constant Z(x) =
∑

a P
∗(a) exp

(

βEU(x, a)
)

.

Bounded rational model with multiple information

channels for action and perception. Assuming an internal state

s = (s1s2s3) for perceptual processing and feature-specific

information channels P(sj|xj) with j = 1, 2, 3 that learn to

specialize in processing the three different symbol arrangements

serving as features, the bounded rational decision problem with

multiple information channels for both perception and action

can be stated as a joint optimization problem, that does not only

seek to optimize the choice strategy p(a|s) given the perceptual

information s, but also learns to co-optimize the perceptual

filters P(sj|xj), yielding:

arg max
P(s1|x1)
P(s2|x2)
P(s3|x3)
P(a|s)

Ex,s,a

[

EU(x, a)
]

−
1

β

3
∑

j=1

I
(

Xj; Sj
)

−
1

βU
I (A; S)

where

I(Xj; Sj) =
∑

xj

∑

sj

P(xj)P(sj|xj) log
P(sj|xj)

P(sj)

I(A; S) = Ex,s,a

[

log
P(a|s)

P(a)

]

with the expectation

Ex,s,a[f (·)] =
∑

x1x2x3

∑

s1s2s3

∑

a

P(x)P(s1|x1)P(s2|x2)P(s3|x3)P(a|s) f (·)

The optimal information channels for perceptual processing of

the features are given by

P∗(s1|x1) =
1

Z(x1)
P∗(s1) exp

(

β
∑

x2x3

∑

s2s3

P(s2|x2)P(s3|x3)

× P(x2x3|x1)F(x, s)

)

P∗(s2|x2) =
1

Z(x2)
P∗(s2) exp

(

β
∑

x1x3

∑

s1s3

P(s1|x1)P(s3|x3)

× P(x1x3|x2)F(x, s)

)

P∗(s3|x3) =
1

Z(x3)
P∗(s3) exp

(

β
∑

x1x2

∑

s1s2

P(s1|x1)P(s2|x2)

× P(x1x2|x3)F(x, s)

)

with

F(x, s) =
∑

a

P∗(a|s)EU(x, a)−
1

βU

∑

a

P∗(a|s) log
P∗(a|s)

P∗(a)

and the optimal action channel

P∗(a|s) =
1

Z(s)
P∗(a) exp

(

βU

∑

x

P(x|s)EU(x, a)

)

where

P(x|s) =
P(x)P∗(s1|x1)P

∗(s2|x2)P
∗(s3|x3)

∑

x1x2x3
P(x)P∗(s1|x1)P∗(s2|x2)P∗(s3|x3)

The overall strategy of the decision-maker is given by

P(a|x) =
∑

s1s2s3

P∗(s1|x1)P
∗(s2|x2)P

∗(s3|x3)P
∗(a|s)
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Bounded rational model by Parpart et al. (2018). As an

alternative model we consider the bounded rational model by

Parpart et al. (2018), that is designed for binary comparisons,

where in our case the input x ∈ {−1, 0,+1}3 indicates whether

each cue xj with j ∈ {1, 2, 3} is in favor of class 1 (xj = +1), in

favor of class 2 (xj = −1) or neither (xj = 0) and where the

output y ∈ {−1,+1} indicates whether the stimulus x should

be assigned to class 1 (y = +1) or class 2 (y = −1). Due to

the feature frequencies in our stimulus set, the presence of the

first feature favors class 1, the presence of the second feature is

irrelevant, and the presence of the third feature favors class 2.

The first stimulus pattern with all cues present would then be

expressed as x = (+1, 0,−1).

For each feature dimension j, the model assumes a different

linear mapping between feature vector and outputs

y = Wjx+W
j
0

where each of the three different weight vectors Wj represents

a different linear mapping and W
j
0 is an offset that we added

to the model to improve classification performance. The weight

vectors are determined by subjects’ responses yi toward stimulus

xi in trial i through ridge regression

Ŵj =
(

3j + XTX
)−1

XTy

W
j
0 = µy − Ŵjµx

where y =
(

y1 − µy, ..., yN − µy
)

is the response vector over

all trials N and XT = (x1 − µx, . . . , xN − µx) is a matrix

comprising all stimulus vectors with µx = 1
N

∑

i xi and

µy =
1
N

∑

i yi, and

31 =









0 0 0

0 σ 2

η2
0

0 0 σ 2

η2









32 =









σ 2

η2
0 0

0 0 0

0 0 σ 2

η2









33 =









σ 2

η2
0 0

0 σ 2

η2
0

0 0 0









express the weight that is put on the prior. For η → ∞ the

prior is ignored and all three regression weights are identical.

For η → 0 each regressor ignores all cue dimensions but

one. Each regressor can be seen as a decision hyperplane

where sign
(

Ŵjx+W
j
0

)

determines the class membership ±1.

To bring the three regressors together for a single action

choice, the decision hyperplane is determined which induces the

maximum distance

j∗ = argmax
j

∣

∣

∣
Ŵjx+W

j
0

∣

∣

∣

from the stimulus x. The class selection is then determined by

a = sign
(

Ŵj∗x+W
j∗

0

)

For η → ∞ this corresponds to a standard regression of the

decision hyperplane. For η → 0 each stimulus is classified by

the regressor with maximum distance to one of the hyperplanes

that ignore all cue dimensions but one, reminiscent of the

Take-the-best heuristic.

3. Results

In the familiarization phase of the experiment, human

subjects were first acquainted with the possible symbol inventory

that was used to compose stimuli (Orbán et al., 2008).

In particular, subjects were shown three different stimulus

combinations—shown in Scene 1, Scene 2, and Scene 3 in

Figure 2A—that would serve as three independent binary

features that could each be present or absent in a stimulus

buried among a set of meaningless distractor symbols, as

shown examplarily in Scene 5 of Figure 2A. Thus, based

on all combinations of binary features, there were eight

different kinds of stimuli (disregarding distractors), which

we encode in the following by a triplet like 110, meaning

feature 1 and 2 are present in the stimulus, while the third

feature is absent. A stimulus class is defined by a distribution

over the three features. Setting the three features to be

independent, this distribution can be defined by three values,

e.g., (0.616, 0.089, 0.680) meaning that for stimuli in class 1

the first feature is present in 61.6% of stimuli, the second

feature with 8.9%, and so on—compare Figure S1. This way,

we can define two different stimulus classes with two different

sets of probabilities regarding the presence or absence of the

three features and we can determine for each possible kind

of stimulus the probability of belonging to class 1 or class 2,

respectively—(see Figure 2B). Subjects were then trained on

these probabilities by providing themwith binary feedback when

letting them categorize randomly composed stimuli into the

two classes the optimal categorization can be represented by a

decision tree - (see Figure 2C). Finally, subjects’ performance

was tested with the same paradigm after training with three

different reaction time conditions ranging from fast, to medium,

to slow.

Behavioral analysis

To assess subjects’ performance under the three time

conditions, we investigated the overall hit rate in each condition

averaged across all subjects, reflecting how often subjects

experienced positive feedback for their choices. As the stimulus

features are only stochastically associated with each class, a

perfect hit rate is impossible with a theoretical maximum

expectation of 0.80. As shown in Figure 3, the hit rate

increased when subjects were given more deliberation time.

The performance as measured by the hit rate was 0.64 ± 0.09

in the slow condition, 0.62 ± 0.08 in the medium condition

and 0.52 ± 0.07 in the fast condition. Paired t-tests revealed
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FIGURE 2

Experimental paradigm and design. (A) Inventory of stimulus symbols used. Scenes 1–3 show the three di�erent stimulus features that could be

each present or absent in each stimulus. The other symbols were used as distractors. The trial phase was used to familiarize subjects with the

stimuli. Example stimuli used in the test phase for learning and testing. (B) Eight possible stimulus types indexed by binary triplets to indicate the

presence of stimulus features and the associated expected utility given by the probability that the stimulus belongs to Class 1. (C) A decision tree

that represents the optimal response for the utility function in (B). Under time pressure the decision tree is simplified by replacing the analysis of

the third feature by the decision for Class 2.

FIGURE 3

For every condition the hit-rate on the y-axis is averaged across

all participants (n = 16), indicating how often subjects received

positive feedback about their selected stimulus class.

significant differences between the mean hit rate of the fast

condition compared to the slow (p < 0.001, t = 4.08, df =

15) as well as the medium condition (p < 0.001, t = 4.08,

df = 15). The difference in hit rate between the medium

and slow condition was not significant (p = 0.2, t = 1.26,

df = 15). To investigate whether the hit-rate was particularly

increased or decreased for specific stimulus types, we display

the stimulus-specific hit rates in Figure 4 overlaid onto the

frequency of the different stimuli. The top of the figure shows the

corresponding average deliberation time taken by subjects when

making their decisions. In the slow condition the deliberation

time saturated at around 2.3 s. In the fast andmedium condition,

the average deliberation time is reduced to around 1.8 and

0.8 s, respectively.

To compare subjects’ performance to ideal behavior that

always selects the most probable stimulus class in line with

Figure 2B, we determined subjects’ selection accuracy in Figure 5

for each possible kind of stimulus separately. For an ideal actor
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it is therefore possible to achieve 100% accuracy (associated

with selecting the most probably correct answer all the time),

even though the hit rate is only 80% (because of randomness of

features). With the exception of the (000)- and (010)-stimulus,

all other world states show performance well above the chance

line. The median value for the selection accuracy is highest

FIGURE 4

(A,B) Average deliberation time for all stimulus types across the three conditions (fast, medium, and slow). Error bars indicate standard error of

the mean.

FIGURE 5

The selection accuracy indicates how frequently subjects chose the class that was more probable. (A) Selection accuracy averaged across

participants (n = 16) for each stimulus type. (B) Selection accuracy averaged across participants (n = 16) for each stimulus type and condition.

The gray error bars show standard error of the mean.
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FIGURE 6

Logistic regression weights. The first column shows the average weight vector values for the logistic regression performed on subjects’ selected

class in each condition. The next three columns show the distribution of the weight vector values for the 16 participants.

for the (100)-stimulus (0.75 ± 0.05), the (111)- and the (001)-

stimulus with values of 0.74±0.05 and 0.73±0.04, respectively.

As evident in Figure 5B, with more time there is generally

an increase in the mean value of selection accuracy between

the three conditions. When performing a repeated measures

ANOVA, we find that both factors stimulus (DF = 7, F =

5.5, p < 0.001) and time condition (DF = 2, F = 12.02,

p < 0.001) are significant for subjects’ selection accuracy. The

only exception to this pattern is the (111)-stimulus, despite being

associated with a high selection accuracy.

Finally, we assess the relative weight subjects give to the

three different stimulus features when making their decisions

under the three different time conditions. To this end, we carried

out a logistic regression relating subjects’ choices to the three

different feature dimensions. In Figure 6, it can be clearly seen

that there is a considerable dependence on the first feature across

all conditions. In contrast, the value of the weight coefficient

of the third feature changes significantly from the fast to the

slow condition. The presence of this feature corresponds to

a higher likelihood for class 2 and it is only with more time

resources that the subjects successfully can take this stimulus

feature into account. The histogram reveals the distribution of

weights across subjects. This shows a consistent strategy change

for most subjects with a decision strategy that concentrates on a

single feature in the fast condition, something similar to a take-

the-best heuristic, and the integration of multiple features in the

slow condition.

Bounded rational modeling

Similar to the rate-distortion curve in information theory

(Cover and Thomas, 2006), bounded rational decision-making

models with a single information constraint allow us to

quantify the maximally achievable utility by a decision-maker

that has a certain amount of information at their disposal.

Here, information measures the extra amount of bits available

to encode a posterior class selection strategy that takes

into account a particular stimulus pattern compared to a

prior class selection strategy that does not know about the

stimulus (for example a completely uninformed uniform choice

probability, or an optimal prior that is tuned to the statistics

of stimulus occurrence). Naturally, the more information-

processing capability is available, the higher the maximally

achievable utility. This optimal information-utility trade-off is

illustrated for our task in Figure 7 assuming a single information

channel with an optimally tuned prior. In order to achieve

maximum utility with perfection requires a little bit less than

one bit of information for binary selection, as the optimal prior

strategy is non-uniform due to the non-uniform occurrence

probabilities of the stimulus pattern. The non-uniformity of the

prior is also evident in the other extreme of zero information,

where the expected utility is slightly above the chance level of 0.5.

We can now assess subjects’ behavior by measuring the

average utility they achieved for each condition and by

determining their mutual information between stimulus pattern
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FIGURE 7

The information-utility trade-o�. (A) All participants perform close to the optimal information-utility curve (analogous to the rate-distortion

curve in information theory). An exemplary participant is highlighted. (B) Values of expected utility and mutual information when fitting subjects’

behavior with a single information channel model across the three di�erent conditions. (C) The precision parameter β that is fitted across the

three conditions shows a direct relationship with increasing resources.

and class selection based on their empirical choice frequencies.

As can be seen in Figure 7A, subjects’ performance data lie

below the efficiency frontier as expected, but generally close to

it. Due to statistical fluctuations a few data points are slightly

above. Subjects’ data for the fast condition clusters mainly in

the low information part of the diagram, whereas performance

data of the medium and slow condition are stretched along the

efficiency frontier for higher information values. The efficiency

frontier is parameterized by a scalar precision parameter, so that

we can fit an average precision parameter across all subjects for

each condition in a way that minimizes the distance between the

data points and the curve. In Figures 7B,C it can be seen that

the fitted precision parameter increases across conditions form

from fast to slow, and that the average utility achieved by subjects

increases together with the average precision parameter.

Depending on the available information-processing

resources, the bounded rationality model predicts that the

decision-maker’s choice strategy should become sharper and

more concentrated the higher the available precision is. The

choice strategy of the bounded optimal decision-maker more

and more optimizes the utility function shown in Figure 2B

with increasing time resources. Figure 8C shows the average

theoretical posterior of the bounded rational model across

subjects fitted by the information constraint determined by

the maximum likelihood precision parameter β for each

condition and subject. The color code indicates the probability

of choosing class 1 or class 2 for each stimulus pattern, and

therefore represents a conditional distribution over the class

selection variable. Figure 8A shows the average empirical

choice strategy formed by subjects across the three time

conditions for comparison. The corresponding best responses

by the Bayes-optimal model are depicted in Figure 8B and are

deterministic and invariant across conditions since they ignore

time constraints. We also compare to the average response

probabilities of a logistic regression of subjects’ responses in

Figure 8E where we decrease the number of free parameters

across conditions: four free parameters in the slow condition,

three free parameters in the medium condition, and two free

parameters in the fast condition. Finally, we compare to an

alternative regression-based bounded rationality model (COR,

Covariance Orthogonalizing Regularization) by Parpart et al.

(2018) in Figure 8F. The parameter fits for all models were

obtained by maximum likelihood. Table 1 shows the grand

average across subjects for each model, the corresponding values

for each subject and model for the different time conditions can

be found in the Supplementary material in Tables S1–S3.

In the slow condition, the predicted choice probabilities

of all models match subjects’ data quite well. Compared to

the deterministic Bayes-optimal model and the COR model,

the bounded rationality model also captures the stochasticity

in the choice, including the increase in stochasticity in the

medium condition. In the fast condition, the predicted choice
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FIGURE 8

Averaged selection strategies recorded experimentally (A) and compared to averaged theoretical selection strategies predicted by a naive

Bayes-optimal model (B), a single information channel model (C) and a bounded rational model with multiple feature-specific information

channels (D), a logistic regression (E), and the bounded rational regression model (F) by Parpart et al. (2018).

probabilities do not match subjects’ data so well anymore.

As can be seen in the rightmost panel of Figure 8A, subjects’

responses tend to fall into two blocks, where one half of the

stimulus space is classified predominantly as class 1, and the

other half of the stimuli is classified as class 2, mostly. This can

be interpreted as a footprint of a decision heuristic that coincides

with the simplified decision tree in Figure 2C. However, this

bipartite response profile is not reproduced by the naive Bayes

model, the COR model or the bounded rational model with

a single information constraint, although it is clearly reflected

in the logistic regression fit depicted in the rightmost panel of

Figure 8E. As suggested by the weights of the logistic regression

shown in Figure 6, this change in response profile is due to a

change in feature selection.

To compare how much weight the different models put

on the different feature dimensions of the stimulus with

different levels of available information processing capability,

we determine in Figure 9 the mutual information between

each stimulus feature and the choices subjects made. In line

with the logistic regression analysis, we see in Figure 9A that

subjects put most weight on the first stimulus feature, largely

ignore the second feature, and modulate the importance of

the third feature down to the level of the second feature in

case of the fast condition with little information resources.
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TABLE 1 Mean model parameters averaged across subjects for the

three conditions slow, medium, and fast.

Model Slow Medium Fast

sCh β 1.8823 ± 1.3872 1.7623 ± 1.3214 0.7840 ± 0.7357

mCh
βu 3.3158 ± 1.5922 3.3026 ± 1.5403 2.7500 ± 1.5655

β 45.4135 ± 40.2344 45.0724 ± 36.6945 19.2679 ± 16.3503

logReg

b0 −1.3514 ± 22.3324 −2.9647 ± 21.5730 −1.0700 ± 1.7163

x0 7.3524 ± 19.0123 13.3082 ± 37.3361 1.4091 ± 1.7384

x1 1.9988 ± 8.5445 2.6053 ± 10.6771 0.1400 ± 0.6096

x2 −4.5859 ± 10.2636 −7.4739 ± 18.4158 0.2378 ± 0.9275

COR η2 0.0017 ± 0.0062 0.0046 ± 0.0085 0.0019 ± 0.0060

Qualitatively, none of the models is able to reproduce this

modulation. The naive Bayes model in Figure 9B gives the

highest weight to the first feature and a medium weight to the

third feature, but the absolute value of the mutual information

is too high due to the lack of stochasticity in the response,

and more importantly, this profile does not change across

conditions, because the model is blind to resource constraints.

The COR model in Figure 9F shows a similar response profile

that also does not modulate across conditions, because in our

experiment there are no correlations between features that

the model could downweight. The bounded rational model

with information constraint in Figure 9C downregulates the

mutual information between actions and features when the task

becomes more demanding, however, it does so for all features

equally, without showing the observed concentration on the first

stimulus features.

The finding that the simple bounded rationality model in

Figure 9C fails to capture the transition in the fast condition

that is dominated by a single feature may not be too surprising,

as the model only allows for a single information channel that

cannot distinguish between the different feature dimensions,

and therefore lacks internal structure (Luce, 2003). Hence,

we also study an extension of the bounded rationality model

where we introduce three independent perceptual channels

corresponding to the three feature dimensions that are then

integrated by the information channel that corresponds to

the decision-making process—see section Methods for details.

The assumption of a structured internal sensory state with its

own precision values allows the model to prioritize between

different perceptual states based on their feature grouping

and their impact on choice utility, even though a priori all

feature channels have the same precision. In Figure 8D it can

be seen, that, unlike the other models, this extended bounded

rational model with feature groupings is able to capture the

transition to a bipartite response profile. Moreover, Figure 9D

shows that the extended bounded rational model achieves this

response profile by downregulating its mutual information

between actions and stimulus features the same way that

subjects do, namely by focusing almost exclusively on the first

stimulus feature.

Model comparison

To compare the different model fits quantitatively, we take

a three-pronged approach: (i) we compare the likelihood of

subjects’ choices under the probability distributions induced by

the various models, (ii) we compare the similarity of the model

posteriors to the experimental posterior, (iii) we compare the

similarity of the models’ mutual information profiles to the

experimental profile. The comparison of themutual information

profile is particularly relevant to reveal the models’ ability in

adapting the feature selectivity across conditions. As a similarity

measure we use the Euclidean norm.

To compare the likelihood of subjects’ behavior under the

different models, we perform a 1, 000-fold cross validation,

where in each fold we use a random partition corresponding to

half the data for fitting and the other half for evaluation of the

likelihood from the predicted probabilities of subjects’ choices.

The cross-validated likelihoods for each subject and condition

are shown in Tables S4–S6. The predicted likelihood of subjects’

behavior under the multi-channel model achieves the highest

average likelihood of all models. When performing a pairwise

comparison, the multi-channel model predicts subjects’ choices

significantly better than the naive Bayes model (paired t-test,

p < 0.001), the COR model (paired t-test, p < 0.001), the

logistic regression model (paired t-test, p < 0.001), and the

single-channel model (paired t-test, p = 0.028).

To compare the similarity between themodels’ posterior and

subjects’ empirical distribution, we compute the Euclidean norm

between the corresponding conditional probability tables and

the normalized histograms—compare Tables S7–S9. We find

that the multi-channel model has the lowest norm on average.

When performing a pairwise comparison, we find that themulti-

channel model predicts subjects’ conditional choice distribution

significantly better than the naive Bayes model (paired t-test,

p < 0.001), the COR model (paired t-test, p < 0.001), the

logistic regression model (paired t-test, p < 0.001), and the

single-channel model (paired t-test, p = 0.0207).

Finally, we compare how well the models can reproduce

the mutual information profile in each condition exhibited by

subjects in Figure 9A, by computing the Euclidean distance

between the mutual information estimated from empirical

choice frequencies and the mutual information profiles

computed from model distributions—compare Tables S10–S12.

We find that the multi-channel model predicts the best fitting

information profile across all conditions compared to any

other model (paired t-test, pairwise comparison to naive

Bayes p < 0.001), the COR model (paired t-test, p < 0.001),

the logistic regression model (paired t-test, p < 0.001), and

the single-channel model (paired t-test, p = 0.0308). More
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FIGURE 9

Mutual information between the three stimulus features and the decision-maker’s choice as recorded experimentally (A) and compared to

model fits of a naive Bayes-optimal model (B), a single information channel model (C) and a bounded rational model with multiple

feature-specific information channels (D), a logistic regression (E) and the bounded rational regression model (F) by Parpart et al. (2018).
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importantly, we find in a separate simulation that merely tries

to reproduce the mutual information profile, that the single

channel model is unable to generate a profile that focuses on

the first stimulus feature in the fast condition, as both the first

and the third feature always receive similar weights—compare

Figure S2. This suggests that the single-channel bounded

rationality model lacks the necessary internal structure to

reproduce the adaptive concentration on a single stimulus

feature (Luce, 2003), and that a bounded rationality model

where perceptual states are grouped according to the presented

features provides overall the best explanation of our data.

4. Discussion

In this study, we set out to investigate in how far

bounded rationality models based on information constraints

may provide a bridge between heuristic and Bayes-optimal

approaches to decision making in a binary classification task.

We collected behavioral data in order to explore the change

in strategy that human decision-makers exhibit when taking

decisions under varying time pressure. Logistic regression

performed on subjects’ responses across trials depending on the

presented stimulus features reveals a clear pattern for the weight

allocated by subjects to each of the features. The dominant

weight given to the first feature in the fast condition indicates

a focus on a single criterion reminiscent of the take-the-best

heuristic (Brusovansky et al., 2018). The broadening of the

weights with respect to the other two features, as decision time

increases in the medium and slow conditions, suggests that with

the introduction of more resources, subjects start to integrate

also less informative features to improve decision quality, in line

with Bayes-optimal models of information integration (Ernst

and Banks, 2002; Körding andWolpert, 2004). Decision-makers

were, thus, not only able to extract and integrate different

stimulus features, but were also able to do so in an adaptive

manner across conditions (Payne et al., 1988).

The bounded rationality model that we investigate captures

the change in strategy for different resource conditions with

different information constraints that quantify how much a

decision-maker can deviate from their prior choice strategy

and how much sensory information they can process from the

different stimulus features (Ortega and Braun, 2013). Depending

on the information constraints, the model therefore provides

a normative standard with which we can compare subjects’

performances under different resource conditions (Schach

et al., 2018; Lindig-León et al., 2019), as shown in Figure 7.

When removing the information processing constraints, the

model predictions converge to the deterministic Bayes-optimal

decision rule maximizing the expected utility shown in

Figure 2B. As predicted by the bounded rational model, over

the three time conditions from fast to slow the information

divergence measures of subjects’ strategy distributions with

respect to their prior strategies increase. Furthermore, subjects’

average strategies resemble those exhibited by the model under

different information constraints in that they become more

deterministic in the slow condition, with higher information

divergence from the prior, higher utility (lower error rate) and

broader weight integration compared to the fast condition. Such

a strategy change can of course not be captured by a Bayes-

optimal model, like the Naive Bayes model that we evaluated,

that does not take into account the available resources.

In the psychology literature, strategy changes under resource

limitations have been studied extensively (Payne et al., 1988,

1993), in particular speed accuracy trade-offs that quantify

the relationship between task-related error-rates and the time

available to perform the task (Heitz, 2014). For example,

Rieskamp and Hoffrage (2008) have found in a multi-attribute

inference task that increasing time pressure led subjects to

a strategy shift from linear additive attribute weighting to a

lexicographic heuristic, irrespective of whether time pressure is

induced by limiting response times or increasing opportunity

costs. A recent study (Oh et al., 2016), very similar to ours,

has investigated the strategic shift in a multi-cue classification

task with abstract symbol features under varying conditions

of time pressure. The task was to choose from a set of two

stimuli, the stimulus with maximal winning probability under

varying time constraints ranging between 2 s and 700 ms. The

winning probability could be determined by integrating over

the different symbol features, each of which was associated with

a probability of being a winning stimulus. In conditions with

little time pressure, the study found that subjects integrated

information from multiple features, and that with more time

pressure some of the features were ignored, suggesting some

kind of cue discounting. The study also found that the observed

behavior was not consistent with the take-the-best heuristic,

but rather some kind of drop-the-worst heuristic. Such a

discounting of less informative cues under time pressure has also

been reported recently in a binary classification task modeled

with reinforcement learning (Wang and Rehder, 2017) and a

recent fMRI study (Oh-Descher et al., 2017) that investigated

a shift from cortical to sub-cortical activity with increasing

time pressure.

The gradual cue discounting observed under time pressure

in previous studies is entirely compatible with our model—

compare for example Figure S3 where we apply the multi-

channel bounded rationality model to the experiment by Oh

et al. with three features (Oh et al., 2016). The model generally

predicts that decision-makers should weight the cues depending

on their predictive value and that the relative weight of the less

predictive cues decreases faster under information constraints.

This is consistent with the notion that less informative cues

are discounted when time pressure is ramped up. By varying

information constraints in a continuous fashion, the bounded

rational model is able to describe both gradual transitions in

information processing strategies and sharp phase transitions
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depending on the defined task utilities. Therefore, the prediction

of a behavior consistent with a take-the-best heuristic in our

task is not intrinsic to the model, but a consequence of applying

the model to the particular task. Also in our task, the model

does not predict that the less informative features have weight

exactly zero, only that the first feature is domineering in the low

information regime.

There have been a number of previous studies relating

heuristic decision-making rules to utility-based decision models

in the context of making choices between gambles. Olschewski

and Rieskamp (2021), for example, modeled human decision

making under time pressure both with simple heuristics and

a classical random utility model. They found that under

time pressure decision-makers were more likely to choose

risky gambles and to follow more non-compensatory decision

strategies. However, their risk model is not applicable to the

current task, which is a simple classification task and does not

involve the comparison of gambles with different degrees of

riskiness. Without risk, the random utility model with a logit

link function can be seen as a special case of a single channel

bounded rationality model with uniform prior, which does not

capture subjects’ behavior very well. In another study, Pachur

et al. (2017) varied the parameters of a prospect theory model to

emulate a number of heuristics for choosing between gambles,

including minimax, maximax, and the priority heuristic. Again,

our classification task does not involve the comparison of risky

gambles, so probability and value distortions cannot reverse the

choice between the two classes, only increase or decrease their

utility difference, which is the same as a logit model with uniform

prior and varying precision parameter. Nevertheless, in more

complex decision scenarios the information-theoretic bounded

rationality model can also implement minimax and maximax

strategies (Ortega and Braun, 2013), while the relation to more

elaborate heuristics remains to be explored. Finally, Loewenstein

et al. (2015) has investigated the implementation of heuristic

choice strategies with accumulator networks, which provides

a possible mechanistic explanation for heuristic and bounded

rational choices.

Parpart et al. (2018) have previously presented a framework

that integrates classical Bayesian rational and boundedly rational

decision-making by weighting prior and likelihood in a

regression scenario. When the prior is ignored, the resulting

logistic regression can take into account correlations between

different cues. In the other extreme, each cue dimension is

regressed separately and the single most predictive dimension

is used for classification as in heuristic decision making. While

their model can be applied to our classification task, all cue

dimensions in our task are independent, and thus, ignoring

cue correlations has no effect. Consequently, the model cannot

explain the strategy shifts that we observed under varying

time conditions. Previous applications of bounded rationality

models with information constraints in tasks with time pressure

include sensorimotor tasks like simple reachingmovements with

varying time pressure for motor planning affecting endpoint

precision (Schach et al., 2018), psychophysical tasks like absolute

identification of geometrical shapes on different levels of

granularity (Lindig-León et al., 2019), and cognitive puzzles like

checking satisfiability of conjunctive normal forms with varying

deliberation time (Ortega and Stocker, 2016). Compared to these

previous studies with information constraints, our current study

is the first to apply different information-theoretic bounded

rationality models to a multi-attribute decision-making task.

Bounded rationality models come in many different flavors

and have a long history going back at least to Herbert Simon’s

ideas (Simon, 1979) that human decision-makers cannot engage

in full cost-benefit analyses when facing complex problems

due to their limited cognitive abilities, and that accordingly

humans have to exploit heuristics adapted to the structure

of their environment in order to find satisfying solutions,

that is solutions that are good enough, but not necessarily

optimal in any sense. Particularly in psychology, this has

led to some researchers completely abandoning the notion

of optimality by focusing on process-models of decision-

making, that are heuristics used in solving complex practical

problems (Gigerenzer and Selten, 2002). While such rules-of-

thumb may be outperformed in controlled environments, it

has been repeatedly argued that heuristics can perform better

than computationally expensive algorithms based on optimality

principles, in particular when there is high model uncertainty

(Gonzalez, 2004; Buckmann and Şimşek, 2017). However,

often the question remains how these heuristics are learned,

where they come from and whether there are any underlying

mathematical principles. The heuristics-and-biases approach to

bounded rationality (Tversky and Kahneman, 1974; Taniguchi

et al., 2016; Itri and Patel, 2018), for example, that has focused on

the role of cognitive biases in human decision-making has made

attempts to formalize biased decision-making procedures using

the traditional concepts from economics, however, without

normative cogency.

Bounded rationality based on mathematical principles often

takes the shape of constrained optimization models in the

economics and artificial intelligence literature (Horvitz et al.,

1988), where the central idea is that bounded rational behavior

can be still regarded as optimal when limitations are taken

into account by the appropriate mathematical constraints. Often

such models are portrayed as fundamentally irreconcilable

with a heuristics approach to bounded rationality, as the

remaining notion of optimality apparently introduces an infinite

regress: decision-makers that are unable to solve the original

utility optimization problem have to solve instead a more

complicated optimization problem (Zilberstein, 2008). However,

this is only a problem when the bounded rational model

is interpreted as a process model, where the decision-maker

is optimizing by calculating. When the bounded rationality

model only serves as a description for an observer, the model

simply allows to compare behavior to a normative baseline.

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.906198
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lindig-León et al. 10.3389/fnins.2022.906198

For example, for the bounded rationality model we use in

this paper, we could imagine a simple satisficing agent that

probabilistically considers random samples with respect to a

certain aspiration level only dealing with utility to the best

of its abilities, but for an observer it may appear that this

decision-making system is trading off utility and information

(Ortega and Braun, 2014). Accordingly, the bounded rational

model in this paper is still somewhat descriptive and

does not provide a detailed heuristic process model, rather

it predicts a strategy distribution whose performance is

compatible with such a heuristic in our simple task. How this

generalizes to more complex tasks is an interesting area for

further study.
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