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An immune‑related microRNA 
signature prognostic model 
for pancreatic carcinoma 
and association with immune 
microenvironment
Qian Shen1,4, JunChen Li2,4, Xue Pan1, ChuanLong Zhang1, XiaoChen Jiang1, Yi Li1, 
Yan Chen3* & Bo Pang3*

To establish a prognostic model based on immune‑related microRNA (miRNA) for pancreatic 
carcinoma. Weighted correlation network analysis (WGCNA) was performed using the "WGCNA" 
package to find the key module genes involved in pancreatic carcinoma. Spearman correlation analysis 
was conducted to screen immune‑related miRNAs. Uni‑ and multi‑variate COX regression analyses 
were carried out to identify miRNAs prognostic for overall survival (OS) of pancreatic carcinoma, 
which were then combined to generate a prognostic model. Kaplan–Meier survival analysis, receiver 
operating characteristic (ROC) analysis, distribution plot of survival status in patients and regression 
analysis were collectively performed to study the accuracy of the model in prognosis. Target genes 
of the miRNAs in the model were intersected with the key module genes, and a miRNA–mRNA 
network was generated and visualized by Cytoscape3.8.0. TIMER analysis was conducted to study 
the abundance of immune infiltrates in tumor microenvironment of pancreatic carcinoma. Expression 
levels of immune checkpoint genes in subgroups stratified by the model were compared by Wilcoxon 
test. Gene Set Enrichment Analysis (GSEA) was performed to analyze the enriched signaling pathways 
between subgroups. Differential analysis revealed 1826 genes differentially up‑regulated in pancreatic 
carcinoma and 1276 genes differentially down‑regulated. A total of 700 immune‑related miRNAs were 
obtained, of which 7 miRNAs were significantly associated with OS of patients and used to establish 
a prognostic model with accurate predictive performance. There were 99 mRNAs overlapped from the 
318 target genes of the 7 miRNAs and the key modules genes analyzed by WGCNA. Patient samples 
were categorized as high or low risk according to the prognostic model, which were significantly 
associated with dendritic cell infiltration and expression of immune checkpoint genes (TNFSF9, 
TNFRSF9, KIR3DL1, HAVCR2, CD276 and CD80). GSEA showed remarkably enriched signaling 
pathways in the two subgroups. This study identified an immune‑related 7‑miRNA based prognostic 
model for pancreatic carcinoma, which could be used as a reliable tool for prognosis.

Pancreatic carcinoma (PC) is one of the most fatal malignancies associated with a 5-year survival rate of 8%1. 
First presenting symptoms typically include abdominal or back pain, obstructive jaundice and weight loss. Cur-
rently, PC is mainly diagnosed by computed tomography (CT) and treated via surgery. It is poorly sensitive to 
chemotherapeutic agents. From early asymptomatic in most cases until tumor invasion to surrounding tissues 
or distance metastasis, approximately 80–85% of the patients have an advanced, un-resectable tumor at the 
time of  diagnosis2. In this context, early diagnosis and accurate prognosis are of vital significance for effective 
management of PC.

MicroRNA (miRNA) is a class of small, non-coding RNA molecules with a size of 17–25  nucleotides3. It 
was first reported by Ambros and Ruvkun early in  19934. It is well believed that miRNA-induced silencing 
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complex (RISC) can bind to the complementary sequences on the 3′-untranslated region of target messenger 
RNA (mRNA), leading to mRNA decay, translational repression and subsequent regulation of the growth and 
development of  organisms5. Some scholars reported suppression of the overall expression of miRNA in tumor 
cells through 217 mammal  samples6. miRNAs are important in initiation and progression of tumors by serving 
as tumor suppressor genes or oncogenes according to their  functions7. Previous research found that miR-196a 
and miR-196b were barely expressed in normal tissues but exhibited increased expression in PC tissues. This 
demonstrated that miR-196a and miR-196b could be diagnostic biomarkers for  PC8. Another study revealed that 
the expression levels of miR-574-5p, miR-1244, miR-145, miR-328, miR-26b and miR-4321 were associated with 
the overall survival (OS) and disease-free survival (DFS) in patients with  PC9. Based on the wide distribution 
of miRNA in human plasma, urine, saliva and their stable, non-invasive characteristics, miRNA are promising 
diagnostic and prognostic biomarkers for tumors.

PC can escape by inhibiting immune checkpoints such as programmed death ligand-1 (PD-L1) and cytotoxic 
T-lymphocyte-associated protein-4(CTLA-4), which makes immunotherapy become one of the important treat-
ment  methods10. For PC, immune therapeutic schemes mainly are immune checkpoint inhibitors (ICI), cancer 
vaccines, adoptive cell transfer (ACT) and combinations with immunotherapeutic  agents11. It was reported that 
miRNA could have cancer immunotherapeutic effect by inhibiting immune checkpoints, such as PD-L112. The 
mechanism of anti-tumor action of miRNA via immunotherapeutic pathways remains to be further explored.

In the current study, transcriptome data of PC were downloaded from The Cancer Genome Atlas (TCGA). 
Weighted correlation network analysis (WGCNA) was performed using "WGCNA" package to screen key mod-
ule genes. Immune-related miRNAs were screened out by Spearman correlation analysis and then analyzed by 
uni- and multi-variate COX regression to obtain immune-related miRNAs prognosis for OS of PC. A prognostic 
model was constructed based on the identified miRNAs and the performance of the model was validated by 
Kaplan–Meier (KM) curve, receiver operating characteristic (ROC) curve, uni- and multi-variate COX regression 
analyses. A miRNA–mRNA interaction network was generated based on the target genes of the model miRNAs 
and the key module genes. Moreover, gene set enrichment analysis (GSEA), immune cell infiltration in tumor 
microenvironment (TME) and expression of immune checkpoints were performed and analyzed in subgroups 
stratified by the model-based risk scoring system. This study aims at providing evidence for further immune 
therapy and prognosis in patients with PC.

Methods
Data collection and processing. Expression data of miRNA and mRNA of PC, together with corre-
sponding clinical information, were downloaded from TCGA-PAAD dataset (https:// portal. gdc. cancer. gov)13 
(Fig. 1). According to survival data, 178 tumor samples (mRNA, miRNA) and 4 normal samples (mRNA) were 
eventually obtained.

WGCNA analysis for mRNA. R package "WGCNA" was used to construct a co-expression network to find 
the gene module highly associated with  PC14. In short, the soft-thresholding power (β) that fitted the criterion of 
the approximate scale-free topology of the network  (R2 = 0.9) was determined as 2. Minimum module size was 
set to 50. An adjacency matrix was generated and then converted to a topological overlap matrix (TOM). Aver-

Figure 1.  The flow chart.

https://portal.gdc.cancer.gov
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age linkage hierarchical clustering was performed based on the differential TOM measures to classify genes of 
similar expression patterns into a gene module. P value in t test was calculated and visualized.

Screening of immune‑related miRNAs prognosis for PC. Single-sample gene set enrichment analysis 
(ssGSEA) was performed in samples of the TCGA-PAAD dataset to obtain immune scores of M13664 (immune 
system process) and M19817 (immune response) gene sets based on the MSigDB database (http:// softw are. 
broad insti tute. org/ gsea/ index. jsp)15–17. Spearman correlation coefficient was calculated to screen immune score-
related miRNA (|R|> 0.3, P < 0.05), which were then intersected with the prognostic miRNAs analyzed by uni-
variate analysis to obtain prognostic immune-related miRNAs.

Construction and validation of immune‑related miRNA prognostic model. Immune-related 
miRNAs prognosis for OS of PC were screened by uni-variate analysis. Further multi-variate COX regression 
analysis was performed to identify signature miRNAs and construct a miRNA prognostic model(R package 
"survival")18. A risk scoring system was established based on the model and defined as a sum of the product of 
expression level of each miRNA and corresponding regression coefficient. Each patient was scored and divided 
into two cohorts by taking the median risk score as the threshold. KM survival analysis was applied to study the 
prognostic significance of the risk  score19. ROC curve and distribution plot of survival status in the two cohorts 
were generated to assess the accuracy of the risk score in prognosis(R package "survivalROC")20. Independence 
of the risk score in prognosis was evaluated using uni- and multi-variate analyses, with the involvement of some 
other significant clinical features.

Establishment of immune‑related miRNA–mRNA interaction network. Target genes for the 
model miRNAs were predicted using the miRDB, miRTarBase and Target Scan databases  respectively21–23. The 
predicted genes were then intersected with the genes in the key module identified by WGCNA. A miRNA–
mRNA interaction network was then generated and visualized by Cytoscape3.8.0. Different regulatory relation-
ships were distinguished by  colors24.

Immune cell infiltration and immune checkpoint. CIBERSORT is a deconvolution algorithm devel-
oped by Bindea G et al. It can estimate the cell composition and quantify the abundance of specific cell groups 
in a complex environment using standardized gene expression  data25. Here, transcriptome data derived from the 
TCGA-PAAD database were sorted and normalized. Relative abundance of infiltration of 22 immune cells in 
TME was estimated based on the normalized data using TIMER to study the relationship between the risk score 
and immune cell infiltration. Since tumor immune therapy has become more popular, expression of immune 
checkpoint genes in two groups was compared to study the sensitivity of patients to immune therapy.

GSEA. GSEA was performed using the JAVA GSEA 3.0 (http:// softw are. broad insti tute. org/ gsea/ index. jsp), 
by taking the "c2.cp.kegg.v7.4.symbols.gmt" as the reference gene set.

Statistical analysis. R 4.1.2 and Strawberry Perl fulfilled all statistical analyses of the study. R package 
"WGCNA" was used to find key module of PC. Spearman correlation analysis was conducted to screen immune-
related miRNAs. The model prognostic was established based on multivariate Cox proportional hazards regres-
sion model. Both the univariate and the multivariate Cox regression analysis were performed with the “sur-
vival” package. The ROC curves were drawn by the package of “survivalROC” in R. Cytoscape3.8.0 software was 
applied to generate miRNA–mRNA interaction network. TIMER analysis was carried out to study the abun-
dance of immune infiltrates in TME of PC. Expression levels of immune checkpoint genes in subgroups stratified 
by the model were compared by Wilcoxon test. GSEA was performed to analyze the enriched signaling pathways 
between subgroups. P < 0.05 was considered statistically significant.

Results
Key module identified by WGCNA. Following WGCNA, 13 gene modules were initially obtained. Fur-
ther splicing based on Pearson correlation analysis demonstrated 10 gene modules eventually, which were dis-
played in a Heat map (Fig. 2). The Brown module (r = 0.2, P = 0.07) and Green module (r = − 0.26, P = 4e − 04) 
were found to be highly associated with PC. Specifically, the Brown module containing 1,826 genes was posi-
tively associated with PC, while the Green module composed of 1276 genes was negatively associated with PC. 
Genes of the two modules were selected for further analysis.

Screening of immune‑related miRNAs. Spearman correlation coefficient was calculated, and a total of 
700 immune-related miRNAs were obtained.

Construction and validation of immune‑related miRNA prognostic model. 700 immune-related 
miRNAs were randomly divided into train and test sets. Uni-variate COX regression analysis was performed 
to obtain 20 candidate immune-related miRNAs of prognostic significance in PC (Table  1). Subsequently, 
multi-variate COX regression models were established and a 7-miRNA based prognostic model was identi-
fied (Table 2). A risk score was accordingly established and formulated as miR-550a-3-5p*-0.472400389 + miR-
3 6 1 3 - 5 p * - 0 . 5 4 1 4 2 8 1 4 5  +  m i R- 2 2 1 - 3 p * 0 . 3 6 4 2 1 1 3 5 5  +  m i R- 4 2 4 - 5 p * 0 . 4 4 6 0 2 3 0 4 7  +  m i R-
491-3p*-0.318762586 + miR-1179*-0.202029941 + miR-3614-3p*0.3625878. Patient samples were divided into 
two cohorts according to the median risk score. KM survival curves of the 7 model miRNAs were generated. It 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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Figure 2.  WGCNA identification of cancer-associated mRNA modules in PC. (A) Cluster dendrogram of the 
co-expression network modules created according to the dissimilarity of the topological overlap in the selected 
mRNAs. (B) Shear clustering module. (C) Analysis of relationships between genes in modules between PC and 
normal samples. The green and brown modules were the most tumor-specific modules.

Table 1.  Results of univariate Cox regression analysis of prognostic model.

ID HR HR.95L HR.95H P value

hsa-miR-885-5p 0.740163659 0.555590702 0.986053656 0.0397893

hsa-miR-1224-3p 0.627159098 0.399845058 0.983702376 0.042202971

hsa-miR-1185-5p 0.675064909 0.492058126 0.92613577 0.014867775

hsa-miR-550a-3-5p 0.678308672 0.477979737 0.962598661 0.02974992

hsa-miR-3613-5p 0.692910252 0.507556443 0.945953152 0.020899474

hsa-miR-577 0.818173964 0.681517027 0.982233179 0.031380084

hsa-miR-221-3p 1.269891406 1.00171102 1.609869664 0.048371667

hsa-miR-1250-5p 0.589350641 0.369257385 0.940628928 0.026653616

hsa-miR-28-3p 1.607754036 1.048731077 2.46476251 0.029388712

hsa-miR-3200-3p 0.769517653 0.61791237 0.958319409 0.019270252

hsa-miR-21-5p 1.593947758 1.130149442 2.24808274 0.007876072

hsa-miR-629-5p 1.633029566 1.090484926 2.445504287 0.017293992

hsa-miR-20b-3p 0.721522995 0.541751777 0.960948268 0.025587082

hsa-miR-424-5p 1.560064118 1.053157977 2.31095439 0.026533694

hsa-miR-203a-3p 1.200146892 1.026659208 1.402951001 0.022007612

hsa-miR-491-3p 0.713184368 0.511413376 0.994561281 0.046359567

hsa-miR-1301-3p 0.711792911 0.529813187 0.956278855 0.024025436

hsa-miR-1179 0.808755735 0.667088946 0.980507687 0.030748622

hsa-miR-7b-5p 1.655289297 1.131640038 2.421249305 0.009395923

hsa-miR-3614-3p 1.62245803 1.215638372 2.165421987 0.001017083
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was found that all these 7 miRNAs were closely associated with the OS of patients, including miR-550a-3-5p, 
miR-3613-5p, miR-491-3p and miR-1179 showing a negative correlation and miR-221-3p, miR-424-5p and 
miR-3614-3p showing a positive correlation (Fig. 3). KM survival analysis was also performed in the high- and 
low-risk cohorts of the train and test sets respectively. Significant difference in OS of the two groups in both sets 
was observed (P < 0.001) (Fig. 4). AUC values of the ROC curves for survival were 0.715, 0.754 and 0.678 respec-
tively, demonstrating high accuracy of the performance of the model (Fig. 5). Additionally, distribution plot of 
the survival status of patients in the two groups revealed an increased number of death with the increase of risk 
score (Fig. 6). Finally, the risk score was detected to be prognosis for OS of PC as detected by uni-variate analysis 
(P < 0.001). According to P < 0.2, further multi-variate analysis indicated that the risk score was independent of 
other factors in prognosis of PC (P < 0.001) (Fig. 7).

Establishment of immune‑related miRNA–mRNA interaction network. Target genes for the 
model miRNAs were predicted using the miRDB, miRTarBase and TargetScan databases respectively. The inter-
sected genes were selected for further analysis, including 100 mRNAs for miR-221-3p, 272 mRNAs for miR-
424-5p, 15 mRNAs for miR-491-3p, 14 mRNAs for miR-550a-3-5p, 11 mRNAs for miR-1179, 11 mRNAs for 
miR-3613-5p, and 7 mRNAs for miR-3614-3p (Fig. 8). After intersection with the key module genes in WGCNA, 
a total of 99 genes were obtained and considered significantly associated with the immunity and prognosis of PC 
(Fig. 9). A miRNA–mRNA interaction network was constructed based on the 7 model miRNAs and 99 mRNAs, 
which the red represented a positive correlation and the blue represented a negative correlation (Fig. 10).

Immune cell infiltration and immune checkpoint. Composition of immune cell subgroups in TME 
of the high- and low-risk groups was analyzed and the infiltration abundance was displayed by a Heat map 

Table 2.  Results of multivariate Cox regression analysis of prognostic model.

ID Coefficient HR HR.95L HR.95H P value

hsa-miR-550a-3-5p − 0.472400389 0.623503819 0.423264065 0.918473937 0.016836462

hsa-miR-3613-5p − 0.541428145 0.581916597 0.376964204 0.898299951 0.014520668

hsa-miR-221-3p 0.364211355 1.439378402 1.021559459 2.028085751 0.037352362

hsa-miR-424-5p 0.446023047 1.562087468 0.994572856 2.45343239 0.052826229

hsa-miR-491-3p − 0.318762586 0.72704814 0.508271886 1.039992597 0.080938806

hsa-miR-1179 − 0.202029941 0.817070464 0.625856531 1.066704763 0.137480041

hsa-miR-3614-3p 0.3625878 1.437043388 1.03999234 1.985681643 0.027975124

Figure 3.  Kaplan–Meier survival curve of 7-immune-related prognostic miRNA. According to the median 
expression of miRNAs, patients were divided into high-expression groups and low-expression groups. (A) KM 
analysis for patients with hsa-miR-221-3p; (B) KM analysi for patients with hsa-miR-424-5p; (C) KM analysis 
for patients with hsa-miR-491-3p; (D) KM analysis for patients with hsa-miR-550a-3-5p; (E) KM analysis for 
patients with hsa-miR-1179; (F) KM analysis for patients with hsa-miR-3613-5p; (G) KM analysis for patients 
with hsa-miR-3614-3p.
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(Fig. 11). Infiltration of dendritic cells was demonstrated important between the two groups. Moreover, expres-
sion of immune checkpoint genes was examined. It was found that the risk score was associated with expression 
levels of TNFSF9, TNFRSF9, KIR3DL1, HAVCR2, CD276, especially CD80 (Fig. 12).

GSEA for target genes of the model miRNAs. By GSEA, the gene set at high risk was mainly involved 
in the pathways of cell cycle, chronic myeloid leukemia, prostate cancer, small cell lung cancer,steroid hormone 
biosynthesis. In the meantime, the gene set at low risk was predominantly associated with pathways involved in 

Figure 4.  Kaplan–Meier analysis for the 7-immune-related prognostic miRNA signature in PC. (A) KM 
analysis in the the whole set; (B) testing; (C) training set.

Figure 5.  ROC analysis based on time for the 7-immune-related prognostic miRNA signature in PC. (A) ROC 
analysis in the whole set; (B) testing set; (C) the training set.

Figure 6.  Survival status based on time for the 7-immune-related prognostic miRNA signature in PC. (A) 
survival status analysis in the whole set; (B) testing set; (C) the training set.
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steroid hormone biosynthesis,calcium signaling pathway,long term potentiation,maturity onset diabetes of the 
young,neuroactive ligand receptor interaction (Fig. 13).

Discussion
This study, for the first time, constructed a prognostic model using immune-related miRNAs and validated 
its accurate, potent performance. We firstly analyzed the key modules associated with prognosis of PC using 
WGCNA, and then adopted differential analysis to obtain 1826 up-regulated and 1276 down-regulated genes 
in PC comparing with normal tissues. Spearman correlation coefficient was calculated and 700 immune-related 
miRNAs were found. Uni- and multi-variate COX regression analyses were performed to screen immune-related 
miRNA associated with OS. Eventually, a 7-miRNA-based prognostic model for PC was generated and a model-
based risk scoring system was established with excellent performance detected by KM, ROC, distribution plot of 
survival status in subgroups, and uni- and multi-variate COX regression analyses. Furthermore, a miRNA–mRNA 
network was built using the Cytoscape3.8.0 software, according to the 99 target genes obtained from the predicted 
mRNAs of the 7 model miRNAs and key module genes. Moreover, immune cell infiltration was analyzed using 
the TIMER in the subgroups stratified by the model-based risk score, and dendritic cells were found as the most 
significantly different immune infiltrate in TME of the subgroups. Wilcoxon test also indicated correlation of 
the risk score with expression of immune checkpoint genes, including TNFSF9, TNFRSF9, KIR3DL1, HAVCR2, 
CD276, especially CD80. GSEA showed the remarkably enriched signaling pathways in the two subgroups.

There have been multiple studies devoted to constructing prognostic models for PC. For instance, Weng W 
et al.26 established a prognostic model for PC using 14 significant mRNAs; Yan et al.27 reported a 4-gene-based 

Figure 7.  Independent prognostic analysis. (A) Forest plot of univariate; (B) multivariate.Cox regression 
analysis showed the risk score was an independent risk factor compared with other clinical features.

Figure 8.  miRNA target Venn. (A) Venn diagram of target genes for hsa-miR-221-3p; (B) Venn diagram of 
target genes for hsa-miR-424-5p; (C) Venn diagram of target genes for hsa-miR-491-3p; (D) Venn diagram of 
target genes for hsa-miR-550a-3-5p; (E) Venn diagram of target genes for hsa-miR-1179; (F) Venn diagram of 
target genes for hsa-miR-3613-5p; (G) Venn diagram of target genes for hsa-miR-3614-3p.
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prognostic model for PC according to the transcriptome data; Liu et al.28 constructed a 5-mRNA prognostic 
model for PC, which was immune-associated; Chen and  Jia29,30 obtained a prognostic model based on miRNAs.

Currently, prognostic miRNAs for PC have been extensively studied. Guo et al.31 reported that high expres-
sion levels of miR-21, miR-212, miR-675, miR-142-5p, miR-204 and low expression levels of miR-148a, miR-
187, let-7g were associated with poor prognosis of PC. In that study, they also found several other miRNAs of 
prognostic significance, including miR-30a-3p, miR-105, miR-127, miR-187, miR-452, miR-518a-2, miR-155, 

Figure 9.  mRNA Venn.

Figure 10.  miRNA–mRNA network. Red denoted up-regulated; blue denoted down-regulated.
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miR-203, miR-210, miR-222, miR-200c, miR-302 and miR-15a. Tesfaye et al.32 revealed that the down-regulation 
of miR-183, miR-34a and the up-regulation of miR-1290, miR-155, miR-203, miR-222, miR-10b predicted a 
poor survival outcome of PC. Additionally, high expression levels of miR-142-5p, miR-21 led to significantly 
prolonged survival in patients with PC, and the miRNAs involved in p53, COX2 pathways were demonstrated 
to be associated with prognosis as well. Gablo et al.33 confirmed miR-21 as an oncogene in PC and revealed that 

Figure 11.  Inference of tumor-infiltrating immune cells. (A) CIBERSORT was used to calculate the levels of 
22 tumor infiltrating immune cells in PC patients; (B) association of risk score and immune cells infiltration; 
(C) differences in the proportion of 22 tumor-infiltrating immune cells between the high and low risk groups 
(*P < 0.05 **P < 0.01 ***P < 0.001).

Figure 12.  Differences between high and low risk groups in immune checkpoints.
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increased expression of miR-21 and miR155 was associated with the decline in survival, liver metastasis, lymph 
node status and increased resistance to Gemcitabine.

In the current study, we successfully established a prognostic model using 7 immune-related miRNAs. Lu 
et al.34 found that expression of miR-550a in severe acute pancreatitis was down-regulated in patients combining 
with acute lung injury compared with patients without acute lung injury. Qin et al.35 revealed that miR-3613-5p 
was prognostic for renal clear cell carcinoma. Ma et al.36 also reported miR-3613-5p as a prognostic biomarker for 
pancreatic carcinoma and found that the target genes of miR-3613-5p might be correlated with the p53 signaling 
pathway. Research also found that miR-3613-5p was a key miRNA in cell malignancy of liver cancer induced by 
aflatoxin  B137. Wang et al.38 found that miR-221-3p was independent of the prognosis of hepatocellular carcinoma 
(HCC), while Wang et al.39 reported the key role of miR-221-3p in thyroid cancer. Moreover, Fang et al.40 estab-
lished a prognostic model for breast cancer based on 13 miRNAs including miR-221-3p. Abak et al.41 analyzed 
breast biopsy samples and found increased expression of miR-221-3p in tumor tissue compared to that in adjacent 
normal tissue. Xie et al.42 adopted high-throughput sequencing from peripheral blood mononuclear cells in small 
cell osteosarcoma and detected dysregulation of miR-221-3p. Kandhavelu et al.43 found that miR-424-5p was 
associated with 10 biomarkers of colon carcinoma, while only two of them, including microtubule-associated 
protein-2 (MAP2) and cyclin gene (CCN) D1, were experimentally validated. Liang et al.44 identified miR-424-5p 
as a potential prognostic biomarker for gastric cancer. In the meantime, Liu et al.45 experimentally validated that 
the up-regulation of miR-424-5p induced by astragaloside IV could inhibit the epithelial-mesenchymal transition 
(EMT) and angiogenesis in gastric cancer, thereby to play a role in treatment of this cancer. Wang et al.46 found 
and validated the role of miR-424-5p as a factor in prognosis of HCC. Xu et al.47 also reported miR-424-5p played 
a vital role in onset of bile duct carcinoma. Additionally, miR-424-5p might reverse the progression of thyroid 
cancer via regulating clusterin (CLU) and apolipoprotein (APO)48. Ranjha et al.49 found decreased expression of 
miR-491-3p in ulcerative colitis located in the rectal sigmoid colon region than expression in ulcerative colitis 
located in the ascending colon. circANKRD36 might interact with miR-3614-3p to participate in Type 2 Dia-
betes and inflammation, supporting their role as potential  biomarkers50. miR-1179 inhibited the in vivo growth 
of PC by down-regulating the expression of E2F transcription factor  551. Moreover, miR-1179 could suppress 
the growth and invasion of thyroid, gastric, esophageal squamous-cell carcinoma, non-small cell lung, cervical, 
breast, and nasopharyngeal carcinomas via regulating downstream target  genes52–58.

To conclude, this is the first study that constructed a prognostic model for PC using immune-related miRNAs, 
aiming to provide a new direction for clinical prognosis of PC. The current study still has some deficiencies, such 
as lack of validation by molecular biology or relevant clinical trials. Additionally, the miR-491-3p and miR-550a-
3-5p have not been fully studied in the field of tumor, requiring further in-depth research.

Data availability
TCGA-PAAD datasets is downloaded from the The Cancer Genome Atlas Program (TCGA) database (https:// 
portal. gdc. cancer. gov/ proje cts/ TCGA- PAAD). All data and R script in this study are available from the corre-
sponding author on reasonable request.
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