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Inborn errors of immunity (IEIs) are a group of more than 450 monogenic

disorders that impair immune development and function. A subset of IEIs blend

increased susceptibility to infection, autoimmunity, and malignancy and are

known collectively as primary immune regulatory disorders (PIRDs). While

many aspects of immune function are altered in PIRDs, one key impact is on

T-cell function. By their nature, PIRDs provide unique insights into human T-

cell signaling; alterations in individual signaling molecules tune downstream

signaling pathways and effector function. Quantifying T-cell dysfunction in

PIRDs and the underlying causativemechanisms is critical to identifying existing

therapies and potential novel therapeutic targets to treat our rare patients and

gain deeper insight into the basic mechanisms of T-cell function. Though there

are many types of T-cell dysfunction, here we will focus on T-cell exhaustion, a

key pathophysiological state. Exhaustion has been described in both human

and mouse models of disease, where the chronic presence of antigen and

inflammation (e.g., chronic infection or malignancy) induces a state of altered

immune profile, transcriptional and epigenetic states, as well as impaired T-cell

function. Since a subset of PIRDs amplify T-cell receptor (TCR) signaling and/or

inflammatory cytokine signaling cascades, it is possible that they could induce

T-cell exhaustion by genetically mimicking chronic infection. Here, we review

the fundamentals of T-cell exhaustion and its possible role in IEIs in which

genetic mutations mimic prolonged or amplified T-cell receptor and/or

cytokine signaling. Given the potential insight from the many forms of PIRDs

in understanding T-cell function and the challenges in obtaining primary cells

from these rare disorders, we also discuss advances in CRISPR-Cas9 genome-

editing technologies and potential applications to edit healthy donor T cells

that could facilitate further study of mechanisms of immune dysfunctions in

PIRDs. Editing T cells to match PIRD patient genetic variants will allow

investigations into the mechanisms underpinning states of dysregulated T-

cell function, including T-cell exhaustion.

KEYWORDS

inborn error of immunity (IEI), human immunology, CRISPR (clustered regularly
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Introduction

Inborn errors of immunity (IEIs) are a group of heterogeneous

monogenic diseases that disrupt immune function (1–3). The

clinical features of IEIs are diverse and include recurrent infections

and immune dysregulat ion, which can present as

autoinflammation, autoimmunity, lymphoproliferation, cancer,

and/or atopy (1, 4, 5). Flow cytometry and clinical genetic

testing (e.g., single gene sequencing, gene panels, whole exome,

and genome sequencing) have emerged as powerful tools that aid

in the identification and diagnosis of monogenic IEIs (6–9).

However, there is significant complexity in the diagnosis of IEIs

via clinical genetic testing. While genetic testing may yield known

pathogenic variants in genes known to cause IEIs, many more

patients may have negative results, or testingmay uncover variants

of unknown significance (VUS), requiring further evaluation for

interpretation. In the latter case, complexity comes from the fact

that many variants in any given gene may not have any direct

impact on protein function, and those that do impact protein

function can amplify or reduce a protein’s presence and/or

function (referred to as a gain of function (GOF) or loss of

function (LOF), respectively) (2, 3, 10). The clinical phenotypes
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(in GOF vs. LOF) may be more similar than one would expect, so

clinical phenotype may not be sufficient for a determination. To

understand whether a novel genetic variant in a patient is

causative, pathogenic variant requires a context of deeper study

of key, interconnected signaling pathways at baseline in healthy

controls and comparison to alterations in IEI patients. This

context allows clarity when focusing on the impact of a specific

genetic variant in an individual patient, from a clinical perspective.

More broadly for the field, by studying samples from IEI patients

with pathogenic variants in key signaling molecules, we can learn

both about those rare resulting IEIs (and help us diagnose novel

IEIs) and about how the fundamental pathways of the immune

system can be mistuned, either overly amplified or inappropriately

muted. Therefore, from the perspective of human immunology

research, the opportunity to study these rare patients allows us to

work toward both optimizing diagnosis and targeted therapeutics

and gaining a deeper understanding of how the impacted immune

pathways interact.

T cells are a key component of the cellular adaptive immune

system and contribute to responses against pathogens and

tumors (11). How T cells become activated, differentiate, and

ultimately exert their effector functions is governed by various
FIGURE 1

Canonical three-signal activation model for T cells. Activation is dependent on integration of three signals: 1) recognition by the T-cell receptor
(TCR) of an antigen presented as a peptide by the major histocompatibility complex (pMHC) on antigen-presenting cells (APCs); 2)
costimulation, which lowers the stimulation threshold of naïve T cells, prevents anergy, and enhances cytokine production; and 3) cytokine
signaling along the JAK-STAT pathway, which amplifies the clonal expansion, survival, and differentiation of T cells. These converging cellular
signaling cascades influence the activation and differentiation status of T lymphocytes, in this case, CD8+ T cells. Adapted from “Three Signals
Required for T cell Activation”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates/t-
5f7c7b883b9a9000abcf98e4-three-signals-required-for-t-cell-activation.
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signaling pathways. These pathways include activation via the T-

cell receptor (TCR; signal 1; Figure 1) binding of cell surface

costimulatory receptors to their ligands, providing additional

signals required to enhance the magnitude of T-cell activation

and prevent anergy (signal 2; Figure 1), and soluble mediators,

including cytokines (signal 3; Figure 1), which impact the

differentiation, efficacy, and durability of the T-cell response

(Figure 1) (12–15). Regulated T-cell responses ensure effective

immunity while preserving immune tolerance (16–18). Altered

TCR signaling may impact primary responses to infection and

malignancy or foster autoimmunity by hyperactivating

autoreactive T cells and impairing mechanisms of tolerance

[e.g., central tolerance, anergy, activation-induced cell death,

and regulatory T cells (Tregs)] (13, 19–23). Therefore, changes

in signaling can lead to altered states of activity and cellular fates

and even impact the survival of the host.

Within IEIs, primary immune regulatory disorders (PIRDs)

alter immune signaling pathways and result in immune

dysregulation (5, 24). Given the role that T cells play in

establishing and maintaining immune responses, homeostasis,

and memory, it is important to study the factors and changes

that impair T-cell function. There are many impacts on both

CD4+ and CD8+ T cells in PIRDs, but we are fascinated by the

shared manifestation in many PIRDs of increased respiratory

viral infections and herpes family viral infections. Therefore,

here, we will focus on CD8+ T-cell dysfunction, specifically T-

cell exhaustion, which could contribute to susceptibility to these

types of infections in IEIs (25–28). We will review the

fundamentals of T-cell exhaustion, evidence of exhaustion in

IEIs, and strategies that will allow a more complete evaluation of

the role of T-cell exhaustion in IEIs.
Frontiers in Immunology 03
Relationship between inborn errors
of immunity and T-cell exhaustion

What is T-cell exhaustion?

Upon encountering antigen presented by antigen-presenting

cells and inflammatory cues (e.g., cytokines), naïve CD8+ T cells

are rewired to activate, rapidly proliferate, and become effectors

(Figure 2A) (29). When the pathogen or antigen is cleared, a

minority of these effector cells survive and become memory cells,

while the vast majority die via apoptosis (29). However, when

antigen and inflammation persist, as in the setting of chronic

viral infection or malignancy, T cells can become exhausted

(Figure 2) (25–27). The amount or the length of exposure to

these signals has been shown to connect to the extent of T-cell

exhaustion (30). Indeed, in some settings, cessation of signaling

enables cells to reverse/reduce the extent of exhaustion and

regain some aspects of functionality (30, 31). Though antigen

stimulation is widely recognized as a driver of exhaustion,

inflammatory signals (e.g., cytokines) and non-immune

signals, such as hypoxia, also can contribute to the

development of exhaustion (32, 33). Among its many

characteristics, T-cell exhaustion involves an altered immune

phenotype, including increased and sustained expression of

multiple inhibitory receptors, which can include increased

levels of PD-1, CTLA-4, LAG-3, and TIM-3 (27, 34). While

alterations in immune phenotype can imply a functional impact,

these changes are not sufficient to define T-cell exhaustion, as

some of these makers are also expressed during the course of

normal T-cell activation; therefore, functional changes must also

be evaluated. Functional assays are central to testing suspected
A B

FIGURE 2

Differential T-cell responses to short-term (acute) and long-term (chronic) infections. (A) In acute infections (solid black line), T-cell response spikes
are marked by acquisition of effector function (e.g., cytokine production) and upregulation of activation markers and clonal expansion. When an
infection or antigen is cleared, a small subset of effector T cells differentiate into memory cells, poised to reactivate upon re-infection, while most
cells die. However, if the antigen level or inflammation persists as in the case during chronic infections, T cells develop into a distinct subset, termed
“exhausted” T cells (solid red line). (B) Among the characteristics that define exhausted T cells are 1) coordinate expression of multiple
immunoregulatory receptors, 2) decreased effector function, 3) altered metabolic function, and 4) altered transcriptional and epigenetic status.
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T-cell exhaustion, including the loss of effector cytokines such as

IL-2, TNF-a, and IFN-g; impaired cytotoxicity; and decreased

proliferation (35, 36). Additionally, T-cell exhaustion is

characterized by dysregulated transcriptional and epigenetic

circuitry (e.g., increased expression of TOX) and alterations in

metabolic state, including decreased mitochondrial function and

defects in glycolysis (Figure 2B) (32, 37–45).

However, T-cell exhaustion is by no means the only state of

T-cell dysfunction. T-cell senescence, often mentioned as a

comparator to T-cell exhaustion, is an entirely separate

process. The definitions of senescence and exhaustion can

seem unclear in the literature, because both states share several

phenotypic and functional characteristics, though they are

fundamentally different (46). Hallmarks of senescent T cells

include changes in phenotype (e.g., upregulation of CD45RA,

CD57, and KLRG1 and absence of CD28), shortened telomeres,

and cell cycle arrest (46–50). While exhausted and senescent

CD8+ T cells have defects in proliferative potential, senescent

CD8+ T cells still retain some effector functions, including the

ability to produce high levels of both pro- and anti-inflammatory

cytokines compared to hypofunctional exhausted CD8+ T cells

(46, 51, 52). In addition, senescence is not currently understood

to be recoverable. Senescence has been observed in various IEIs,

including activated phosphoinositide 3-kinase d syndrome

(APDS), chronic granulomatous disease (CGD), and

tr ipept idyl pept idase II deficiency (53–57) . While

understanding the underlying mechanisms that lead to the

development of dysfunctional T-cell states such as exhaustion

and senescence are important, here we will focus on T-cell

exhaustion, in part due to the potential for recovering some

effector functions in this cell state.
Aberrant signaling networks in primary
immune regulatory disorders

While each IEI is a unique genetic disease, variants in

different genes can converge in multiple IEIs with similar

impacts on shared signaling pathways. This could potentially

yield shared dysfunctional states and similar clinical phenotypes

(58). For example, within IEIs, this could be anticipated to take

place in PIRDs that amplify TCR signaling and/or inflammatory

cytokine signaling. As previously stated, multiple coordinated

signals are required to activate a T cell and control its function

(Figure 1) (12). Therefore, certain PIRDs that amplify signaling

downstream of the TCR can thus cause T-cell hyperactivation.

We, as well as others, have found that this can lead to

exhaustion-like phenotypes (49, 53, 59, 60). For example,

assessment of a cohort of common variable immunodeficiency

(CVID) patients, including some with monogenic PIRDs,

through flow and mass cytometry has revealed hallmarks of

CD8+ T-cell exhaustion including co-expression of inhibitory

receptors, loss of markers such as CD127 and CD28, and
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expression of transcriptional and epigenetic regulators such as

TOX (61).

Now, we will focus on how T-cell hyperactivation in PIRDs

could theoretically happen in two broad ways—blocking

negative signals or amplifying positive signals.

First, there could be a decrease in inhibitory signaling; here

we will review some examples. The first three examples are

closely related: autosomal dominant loss of function mutations

in CTLA4 (also known as CTLA-4 haploinsufficiency;

CTLA-4+/−), LRBA deficiency, and DEF6 deficiency (62–65).

CTLA-4 is expressed by T cells (e.g., Tregs and activated cells)

and competes with CD28 for ligands, CD80/CD86, which are

expressed on antigen-presenting cells (APCs) (66–69). In

addition, CTLA-4 can remove and degrade CD80/CD86 from

the surface of APCs through a process called trans-endocytosis,

blocking costimulation to T cells (70). The balance of positive

and negative signals exerted by CD28 and CTLA-4 is crucial for

regulating T-cell responses (66, 67, 71). Immunologic features of

CTLA-4+/− include, but are not limited to, a reduction in the

number of CD4+ T cells, alterations in the expression of

inhibitory receptors and activation markers on CD8+ T cells

(e.g., upregulated expression of PD-1 and HLA-DR), alterations

in the B-cell compartment (e.g., decreased counts of total B cells

and switched memory B cells and increased frequency of

CD21low B cells), as well as increased apoptosis of both T and

B cells in vitro (60, 72, 73). LRBA plays a role in the recycling of

CTLA-4 and LRBA deficiency results in a reduction of CTLA-4

levels. DEF6 deficiency affects CTLA-4 cycling dynamics and

uptake of CD80, clinically and functionally resembling CTLA-4

haploinsufficiency and LRBA deficiency (62, 64). Similarly

related, as PD-1 can act as a negative regulator of T-cell

function, loss of PD-1 could result in hyperactive cells. A

patient with homozygous LOF in PDCD1 was recently

reported with autoimmune manifestations and tuberculosis

(TB) (74). Interestingly, while this patient expressed hallmarks

consistent with hyperactivation, such as HLA-DR and CD38, the

patient’s cells did not produce IFN-g upon stimulation,

including within the CD8+ T-cell population (74). Finally,

another example of a monogenic disorder that results in the

loss of a negative regulator of T-cell receptor signaling involves

the ubiquitination of T-cell receptors and proximal signaling

molecules such as TCRz and MEKK1 (75–77). Mutations in

ITCH, which encodes itchy E3 ubiquitin protein ligase, have

been described; these patients present with immune

dysregulation including multisystem autoimmune disease and

immune deficiency (4, 78–81). Thus, each of these IEIs that

reduce inhibitory signaling could theoretically cause chronic

antigen-like signaling and could thus potentially cause T-

cell exhaustion.

Second, there can be increased overall activating signals; here

we will review a few examples. Clinically, APDS often presents as

a monogenic form of CVID, with a variable phenotype that

includes recurrent infections, autoimmunity, lymphadenopathy,
frontiersin.org
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and chronic viral infections (e.g., Epstein–Barr virus (EBV) and

cytomegalovirus (CMV)) (82–84). APDS is caused by

heterozygous mutations in PIK3CD (GOF) or PIK3R1 (LOF);

in both cases, there is an amplification of PI3K signaling (49, 53,

85). While PIK3R1 encodes regulatory subunits of PI3K and is

more ubiquitously expressed, PIK3CD encodes p110d and is

more restricted to the hematopoietic lineage (86, 87). Signal

transduction along the PI3K pathway regulates various

aspects of immune cell homeostasis and activity, including the

ability of a cell to initiate changes in its metabolism, grow

and differentiate, and function. Conversion of the

molecule phosphatidylinositol 4,5-biphosphate (PIP2) to

phosphatidylinositol 3,4,5-triphosphate (PIP3) through

phosphorylation by PI3Kd leads to AKT recruitment and

mTOR pathway activation (82, 88). This pathway is negatively

regulated by PTEN, which converts PIP3 to PIP2; APDS-like

immune dysregulation has been observed in patients with PTEN

LOF variants (83, 88–90). Thus, mutations in PIK3CD, PIK3R1,

and PTEN result in hyperactivation of the PI3K/AKT/mTOR

pathway, causing amplification of downstream members of the

TCR signaling cascade.

Another way of altering activating signals is through

amplified inflammatory cytokine signaling through the Janus

kinase-signal transducer and activator of transcription (JAK-

STAT) pathway. The JAK-STAT pathway and inflammation

regulate various aspects of the immune system, including the

polarization and function of T cells (91–93). Genetic alterations

that lead to persistent or prolonged cytokine signaling such as

GOF mutations in STAT1 and STAT3 (STAT1 GOF and STAT3

GOF) have been described in patients with immune

dysregulation (94–97). The clinical phenotype of STAT1 GOF

is variable and includes autoimmunity, autoinflammation, and
Frontiers in Immunology 05
increased susceptibility to both chronic mucocutaneous

candidiasis (CMC) and viral infections (94, 95). Meanwhile,

STAT3 GOF leads to a complex immune dysregulatory picture

with multi-organ autoimmunity, lymphoproliferation, and

recurrent infections (94, 96–100). Whether genetically

amplified or environmentally inflammatory cytokine signaling

in human T cells is sufficient to lead to T-cell exhaustion

remains unknown.
What is the evidence for T-cell
exhaustion in inborn errors of immunity?

While exhaustion has been studied in the context of chronic

viral infection and malignancy, evidence consistent with

exhaustion has been found in various IEIs (Table 1), ranging

from those altering PI3K and NF-kB signaling to other key

molecules involved in T-cell activation and inhibition. In APDS,

there is an elevated expression of PD-1 on CD8+ T cells (59).

Because T-cell exhaustion cannot be defined by one marker

alone, expression of additional inhibitory molecules, including

CD160 and CD244, has also been interrogated; these markers

have been shown to be increased in patients (56, 59). Increased

susceptibility to apoptosis, which is associated with T-cell

exhaustion, has also been observed in APDS (57, 82, 101, 102,

107, 108). In one study, decreased cytotoxicity of EBV-specific

CD8+ T-cell lines against lymphoblastoid cell lines (LCLs) was

observed (57). In another study, functional testing of CD8+ T

cells from APDS patients demonstrated impaired function (i.e.,

reduction in IL-2 secretion and proliferation), which improved

with rapamycin treatment (53). In vitro, blocking the PD-1/PD-

L1 pathway increased the function (proliferation and cytokine
TABLE 1 Summary table of data suggesting T-cell exhaustion in various IEIs.

Condition Evaluation of exhaustion References

APDS Immune phenotype: ↑ PD-1, CD160, CD244
Function: ↓ cytotoxicity, IL-2, proliferation
Other: ↑ apoptosis
Rapamycin treatment: ↑ IL-2, proliferation
PD-L1 blockade: ↑ cytokine, proliferation

Lucas et al. (2014) (53)
Cannons et al. (2018) (56)
Edwards et al. (2019) (57)
Wentink et al. (2018) (59)
Angulo et al. (2013) (101)
Wentink et al. (2017)
(102)

Trisomy 21 Immune phenotype: ↑ PD-1, CD160, CD244 Peeters et al. (2022) (103)

CARD11 GOF Function: ↓ proliferation Snow et al. (2012) (104)

DOCK8
deficiency

Immune phenotype: ↑ PD-1, CD244
Function: ↓ proliferation, cytokine (IL-2, TNF-a, and IFN-g), cytotoxic molecules (CD107a, Granzyme A, and
Granzyme B)

Pillay et al. (2019) (105)
Randall et al. (2011) (106)

PDCD1
deficiency

Immune phenotype: ↑ TIGIT
Function: ↓ cytokine (IFN-g, TNF-a)

Ogishi et al. (2021) (74)

CVID Immune phenotype: ↑ PD-1, TIGIT, CD244, LAG-3
Transcriptional and epigenetic factors:
↑ TOX, eomes
Function: ± cytotoxic and proinflammatory molecules

Klocperk et al. (2022) (61)
APDS, activated phosphoinositide 3-kinase d syndrome; CVID, common variable immunodeficiency; IEIs, inborn errors of immunity.
Upward arrow (↑) means upregulated/increased; Downward arrow (↓) means downregulate/decreased.
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production) of EBV-specific CD8+ T cells (59). This suggests the

possibility of T-cell exhaustion in APDS, as immune checkpoint

blockade improved some aspects of function. Though not the

focus of this review, there is also evidence of B-cell

immunometabolic dysregulation, with block in progression

from transitional to follicular B-cell stage of differentiation

secondary to metabolic alterations in APDS (109). These data

raise the question of how GOF mutations affecting PI3K/AKT/

mTOR signaling might affect the various stages of T-cell

activation and differentiation and whether this may cause

CD8+ T-cell exhaustion.

In other IEIs, there may be evidence of exhaustion, though

this remains to be fully tested, and exact mechanisms have yet to

be elucidated. In trisomy 21, while a surface immune phenotype

consistent with exhaustion has been identified (e.g., increased

PD-1, CD244, and CD160), a functional impact remains to be

measured (103). Another pathway in which dysregulation could

potentially lead to an exhausted-like picture is the NF-kB family

of transcription factors, which regulates various processes,

including immune function and inflammatory responses, cell

growth, and apoptosis (110). Heterozygous GOF variants in

CARD11 result in BENTA (B-cell expansion with NF-kB and T-

cell anergy), which increases activity in NF-kB and yields

impaired T-cell proliferative responses following CD3/CD28

stimulation, perhaps reflective of an exhausted-like state,

though parameters that define exhaustion, such as increased

expression of inhibitory receptors, remain to be tested (104,

111). Exhausted-like phenotypes have been observed in

DOCK8-deficient patients, including decreased proliferation

and cytokine secretion, and increased expression of the

molecules PD-1 and 2B4 (105, 106). Decreased IFN-g
production (and trending decrease in TNF-a) has been

described in a patient with PDCD1 deficiency; in CD8+ T cells,

there was a slight elevation in TIGIT expression within the CD8+

TEM and TEMRA populations (74). Therefore, with possible

evidence of an exhausted-like phenotype in various IEIs

(Table 1), we must move forward mechanistically to test

whether exhaustion-like outcomes are caused by the genetic

variant itself in a cell-intrinsic fashion or the result of cell-

extrinsic physiological insults including recurrent infections

and/or autoimmunity or if both scenarios contribute to

this phenotype.
Using CRISPR-Cas9 editing to
facilitate further studies of
T-cell exhaustion in inborn
errors of immunity

With all that remains to be learned, it is necessary to devise

strategies to allow the deep study of IEIs caused by these

signaling pathways in human cells and test key hypotheses.
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Given the challenges in obtaining sufficient primary T cells from

these rare IEI patients to deeply delve into mechanistic

questions, especially from untreated patients, can we develop

tools that will result in stable genetic modification of primary

cells, or do we need to rely on cell lines and model organisms?

We will next consider how gene editing technologies can be

leveraged to edit healthy donor T cells to match patient genetic

variants to provide the opportunity to study the impact of acute

and chronic alterations in these immune pathways, as well as the

impacts of modulating those pathways on cell function in vitro.

Gene therapy is a precision approach to treating IEIs. In a

subset of IEI disorders including adenosine deaminase

deficiency severe combined immune deficiency (ADA-SCID),

X-linked SCID (X-SCID), CGD, and Wiskott–Aldrich

syndrome, autologous hematopoietic stem cell transplantation

(HSCT) in combination with gene therapy has been evaluated in

clinical trials and found to be an effective therapeutic strategy

(112–119) Historically, gene therapy involved the introduction

of a corrected gene into affected cells, but integration happened

randomly and not necessarily at its native site. However, gene

editing tools that allow for site-specific editing have recently and

rapidly emerged and been developed to overcome the limitations

and risks of conventional gene therapy, such as integration at

random sites in the genome, which could result in malignancy

(120, 121).

Of the various genome editing tools, CRISPR-Cas9 is one of

the most versatile gene editing platforms with the best currently

available precision and efficiency (121–123). The CRISPR-Cas9

system involves two main components that make up a

ribonucleoprotein (RNP) complex that allows for gene editing:

the Cas9 endonuclease and a single-guide RNA (sgRNA)

(Figure 3) (124). Within the sgRNA are the CRISPR RNA

(crRNA) and trans-activating RNA (tracrRNA) (125–127).

The tracrRNA allows Cas9 to bind and form the RNP, while

the crRNA targets the endonuclease to a specific location in the

genome (Figure 3) (124). Additional specificity is provided by

the protospacer adjacent motif (also called the PAM sequence),

which needs to be present in order for the Cas nuclease to cut

(124). The Cas endonuclease introduces a double-strand break

(DSB) at the target site; this DSB then activates DNA repair

pathways (126, 128, 129). The DSB can be repaired by one of two

mechanisms: non-homologous end joining (NHEJ) or

homology-directed repair (HDR). NHEJ is imprecise, leading

to the insertion or deletion of nucleotides (i.e., INDELs), which

disrupt the gene of interest, while HDR results in nucleotide

changes at precise locations in the genome (129–132). For HDR

to occur, a donor template containing the new, modified DNA

sequence needs to be provided; the sequences around this site on

the donor template must be homologous to the target DNA

sequence (129–132). While NHEJ can occur during any phase of

the cell cycle, HDR only happens during the G2/S cell cycle

phases (Figure 3) (128). The HDR pathway allows a wide range

of editing: from single nucleotides to the insertion of whole
frontiersin.org

https://doi.org/10.3389/fimmu.2022.932715
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Campos and Henrickson 10.3389/fimmu.2022.932715
cDNAs of varied lengths (122, 133). Although here we have

focused on DNA cleavage-induced editing, alternative

techniques using CRISPR-Cas technology exist such as base

editing (directly alters the chemical sequence of the DNA

without DSBs), prime editing (generates RNA template for

gene alteration), and CRISPR interference and activation (for

transcriptional control) (134–138). However, many limitations

have impeded the full deployment and use of CRISPR-Cas9,

especially when aiming to utilize the HDR pathway; we will next

discuss some of these limitations.

To repair an IEI-causing gene variant, various variables need

to be considered and optimized. These include a selection of the

proper editing system, timing of when editing reagents are

introduced, and the quantity of reagents to yield a high degree

of editing in cells of interest, while ideally having negligible

cytotoxicity and off-target effects. To address this, different

strategies have been tested to circumvent some limitations of

HDR-based genome-editing strategies, such as its low editing

efficiency. For example, as NHEJ is the dominant repair

mechanism in cells, small molecules (e.g., those that

synchronize cells at the S/G2 stage) or fusion proteins that
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promote HDR and/or inhibit NHEJ have been developed and

used to promote HDR (139–148). Recently, CRISPR-Cas9

editing was used in human hematopoietic stem and progenitor

cells (HSPCs) to correct Wiskott–Aldrich syndrome via the

HDR pathway (149). These data suggest that targeted gene

editing is achievable and can be leveraged in the study and

correction of IEIs.

Nevertheless, while gene editing has been used to correct

alterations in genes to directly treat IEIs, here we propose

introducing relevant patient mutations into healthy donor

primary cells of interest to perturb immune signaling

pathways to match IEI patient cells (138, 150). This strategy

would allow researchers to investigate how these variants

dysregulate immune cells and their functions, especially prior

to immune-relevant therapy, and increase the number of cells

available for mechanistic studies and investigations into the

impact of perturbations, especially for rare patients or patients

with lymphocytopenia.

As previously discussed, persistent antigen and/or

inflammatory signals have been implicated in T-cell

exhaustion. However, whether the presence of genetic mimics
FIGURE 3

CRISPR-Cas9 gene editing to model IEIs/PIRDs. The CRISPR-Cas9 system consists of the Cas9 protein in complex with a targeting gRNA,
forming a ribonucleoprotein (RNP). Specificity is conferred through various mechanisms including the sgRNA and presence of the PAM
sequence. The Cas9 opens and cuts the targeted sequence on both strands to generate double-strand breaks (DSBs). This activates DNA repair
pathways (NHEJ and HDR) in cells and results in modifications at a target locus. The NHEJ pathway can be used for scenarios in which genetic
variants result in the loss of expression of an encoded protein, while HDR can be employed for introduction of missense mutations. IEIs, inborn
errors of immunity; PIRDs, primary immune regulatory disorders; sgRNA, single-guide RNA; PAM, protospacer adjacent motif; NHEJ, non-
homologous end joining; HDR, homology-directed repair. Adapted from “CRISPR/Cas9 Gene Editing”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates/t-5f873df466346900a43c6db1-crisprcas9-gene-editing.
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of chronic activation in T-cell signaling pathways is sufficient to

yield T-cell exhaustion has not been proven—IEIs provide novel

strategies for assessing the mechanisms of altered cell signaling

that can yield this T-cell state. Specifically, missense variants that

activate T-cell signaling pathways could be introduced into

primary CD8+ T cells using CRISPR-Cas9 mechanisms

coupled with repair templates (e.g., double-stranded DNAs

(dsDNA) or single-stranded donor oligonucleotides (ssODNs))

(85, 122, 151). However, a balance between increasing the

frequency of HDR while only modifying a single allele (as a

multitude of IEI are heterozygous) must be achieved. Changing

the distance between the cut site and desired mutation location

(referred to as “cut-to-mutation distance”) has been shown to

affect zygosity (152). In practice, to confirm the successful

introduction of a variant (e.g., GOF as an example),

sequencing plus an appropriate readout (e.g., phospho-flow

cytometry) can be employed. Once the cells are shown to

match patient cells genetically, altered immune profile

receptors (e.g., upregulated PD-1) and any alterations in T-cell

function, including loss of effector function (cytokine

production and proliferation), can be assessed (59). For a

genetic variant leading to the loss of an encoded protein (and

thus absent or decreased expression), the gene of interest can be

knocked out to reveal its function in cells of interest such as

primary CD8+ T cells and confirmed by flow cytometry or

Western blotting and differences in phenotype and function

assessed (73). However, it is worth noting that acute changes in

signaling may not be sufficient to fully recapitulate the

alterations observed in primary patient cells. Therefore, the

use of prolonged in vitro cultures, restimulations, and

comparison to unedited cells (e.g., cells that received a non-
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targeting control guide) may be needed to fully dissect the

impact of these variants on immune cell phenotype

and function.

By harnessing the power of CRISPR-Cas9 gene editing,

scientists can directly perturb core signaling pathways in

healthy control T cells, matching the disease-causing variants

in human genes found in IEIs, to provide additional human cells

for mechanistic testing and therapeutic target testing. With the

use of this resource, these dysregulated pathways underlying

impaired function can theoretically be “retuned” in vitro by

blocking and/or amplifying the affected pathways and assessing

for improvements in baseline functional deficits (Figure 4). This

could be achieved by targeting the altered protein itself, a

component of the signaling pathway upstream or downstream,

or a related pathway that could be affected by the altered

signaling in each IEI. As discussed above in APDS, Wentink

et al. demonstrated that blocking the PD-1/PD-L1 signaling

pathway improved function in antigen-specific CD8+ T cells,

while Lucas et al. used rapamycin to reduce PI3K signaling and

improve T-cell function (53, 59). Evidence of “retuning”

signaling pathways in IEI has also been described in patients

with STAT3 LOF or STAT1 GOF mutations; both conditions

share impaired differentiation of Th17 cells, which has been

shown to be a result of upregulation of PD-L1 (153–156).

Blocking PD-L1 was shown to partially restore both the levels

of IL-17A protein and transcript in these patients (156).

Together, these data demonstrate that the (dys)functional state

of immune cells can be manipulated in PIRDs. However,

deepening these types of investigations is very challenging

given how rare these diseases are and how challenging it can

be to study cells from untreated patients. Therefore, to better
FIGURE 4

Retuning altered pathways to improve function. CRISPR-Cas9 can be used to edit healthy donor primary T cells to match the patient variant to
overcome paucity of patient cells, especially those prior to immune-relevant therapy. Testing of treatment options (both preexisting and novel)
can be exploited using high-throughput screening strategies to study the impact of blocking and/or stimulating identified dysfunctional
pathways. This will allow us to identify and target common states of dysfunction across monogenic diseases.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.932715
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Campos and Henrickson 10.3389/fimmu.2022.932715
understand these key biological and medical questions around

T-cell exhaustion in IEI, and to take an expanded approach to

test possible novel therapeutics in vitro, the strategy of creating

edited healthy control T cells that match patient variants may

be transformative.
Conclusion

Primary immune regulatory disorders provide unique

insights into the impacts of alterations in individual

signaling molecules in T cells on their function. In a subset

of PIRDs, there is evidence of T-cell exhaustion, but the

contribution of specific altered pathways to the induction or

maintenance of cellular fates, such as exhaustion, is not fully

understood. Given the challenges in obtaining primary cells

from these rare disorders, genome-editing strategies such as

CRISPR-Cas9 can be leveraged to edit healthy donor T cells to

contain patient genetic variants found in various PIRDs,

providing additional opportunities to study these rare

disorders and perform mechanistic studies. Identifying the

targetable cellular fates induced by causative gene variants in

IEI and potentially malleable, relevant pathways (e.g., PD-1

blockade) in IEI will allow us to evaluate the impact and best

strategies for retuning pathways in IEI patients in conjunction

with high-throughput screening strategies, providing potential

novel therapeutic agents. These perturbation studies aimed at

restoring function can be optimized in CRISPR-Cas9 edited

cells and then confirmed in primary cells from patients.

CRISPR-Cas9 gene editing could thus expedite our

understanding of signaling pathways and mechanisms of T-

cell dysfunction in IEIs. Defining shared dysfunctional states

across rare IEIs (or other rare diseases), using gene editing in

healthy control human cells to match patient variants, and

identifying strategies to retune dysfunctional states may lead to

improvements in patient treatment. Additionally, these

strategies may increase our understanding of basic

immunology and immune dysregulation processes in these
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rare genetic diseases and other more common diseases,

including autoimmunity, chronic infection, and chronic

inflammatory disorders.
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Cabrera-Marante O, Salmón N, et al. Primary immune regulatory disorders with an
autoimmune lymphoproliferative syndrome-like phenotype: Immunologic
evaluation, early diagnosis and management. Front Immunol (2021) 12.
doi: 10.3389/fimmu.2021.671755.

59. Wentink MWJ, Mueller YM, Dalm VASH, Driessen GJ, van Hagen PM, van
Montfrans JM, et al. Exhaustion of the CD8+ T cell compartment in patients with
mutations in phosphoinositide 3-kinase delta. Front Immunol (2018) 9. doi:
10.3389/fimmu.2018.00446

60. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al.
Immune dysregulation in human subjects with heterozygous germline mutations in
CTLA4. Science (2014) 345:1623–7. doi: 10.1126/science.1255904

61. Klocperk A, Friedmann D, Schlaak AE, Unger S, Parackova Z, Goldacker S,
et al. Distinct CD8 T cell populations with differential exhaustion profiles associate
with secondary complications in common variable immunodeficiency. J Clin
Immunol (2022). doi: 10.1007/s10875-022-01291-9

62. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al.
AUTOIMMUNE DISEASE. patients with LRBA deficiency show CTLA4 loss
and immune dysregulation responsive to abatacept therapy. Science (2015)
349:436–40. doi: 10.1126/science.aaa1663

63. Hao Y, Cook MC. Inborn errors of immunity and their phenocopies:
CTLA4 and PD-1. Front Immunol (2022) 12. doi: 10.3389/fimmu.2021.806043

64. Serwas NK, Hoeger B, Ardy RC, Stulz SV, Sui Z, Memaran N, et al. Human
DEF6 deficiency underlies an immunodeficiency syndrome with systemic
autoimmunity and aberrant CTLA-4 homeostasis. Nat Commun (2019) 10:3106.
doi: 10.1038/s41467-019-10812-x

65. Fournier B, Tusseau M, Villard M, Malcus C, Chopin E, Martin E, et al.
DEF6 deficiency, a mendelian susceptibility to EBV infection, lymphoma, and
autoimmunity. J Allergy Clin Immunol (2021) 147:740–3.e9. doi: 10.1016/
j.jaci.2020.05.052

66. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Lombard LA,
et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell
proliferation. Science (1993) 262:909–11. doi: 10.1126/science.7694363

67. Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P, Hodes RJ, et al.
Identification of an alternative CTLA-4 ligand costimulatory for T cell activation.
Science (1993) 262:905–7. doi: 10.1126/science.7694361

68. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways. Am J Clin Oncol
(2016) 39:98–106. doi: 10.1097/COC.0000000000000239

69. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang N-AAS, Andrews MC, et al.
Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint
blockade. Cell (2017) 170:1120–1133.e17. doi: 10.1016/j.cell.2017.07.024

70. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM,
et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic
function of CTLA-4. Science (2011) 332:600–3. doi: 10.1126/science.1202947

71. Eagar TN, Karandikar NJ, Bluestone JA, Miller SD. The role of CTLA-4 in
induction and maintenance of peripheral T cell tolerance. Eur J Immunol (2002)
32:972–81. doi: 10.1002/1521-4141(200204)32:4<972::AID-IMMU972
>3.0.CO;2-M

72. Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D, et al.
Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-
insufficient subjects. J Allergy Clin Immunol (2018) 142:1932–46. doi: 10.1016/
j.jaci.2018.02.055

73. Abraham RS. How to evaluate for immunodeficiency in patients with
autoimmune cytopenias: laboratory evaluation for the diagnosis of inborn errors
of immunity associated with immune dysregulation. Hematology (2020) 2020:661–
72. doi: 10.1182/hematology.2020000173

74. Ogishi M, Yang R, Aytekin C, Langlais D, Bourgey M, Khan T, et al.
Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat
Med (2021) 27:1646–54. doi: 10.1038/s41591-021-01388-5

75. Venuprasad K, Elly C, Gao M, Salek-Ardakani S, Harada Y, Luo JL, et al.
Convergence of itch-induced ubiquitination with MEKK1-JNK signaling in Th2
tolerance and airway inflammation. J Clin Invest (2006) 116:1117–26. doi: 10.1172/
JCI26858

76. Enzler T, Chang X, Facchinetti V, Melino G, Karin M, Su B, et al. MEKK1
binds HECT E3 ligase itch by its amino-terminal RING motif to regulate Th2
cytokine gene expression. J Immunol (2009) 183:3831–8. doi: 10.4049/
jimmunol.0803412

77. Huang H, Jeon MS, Liao L, Yang C, Elly C, Yates JR3rd, et al. K33-linked
polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell
signaling. Immunity (2010) 33:60–70. doi: 10.1016/j.immuni.2010.07.002

78. Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA,
Squires RH, et al. Human ITCH E3 ubiquitin ligase deficiency causes syndromic
multisystem autoimmune disease. Am J Hum Genet (2010) 86:447–53. doi:
10.1016/j.ajhg.2010.01.028
Frontiers in Immunology 11
79. Kleine-Eggebrecht N, Staufner C, Kathemann S, Elgizouli M, Kopajtich R,
Prokisch H, et al. Mutation in ITCH gene can cause syndromic multisystem
autoimmune disease with acute liver failure. Pediatrics (2019) 143:e20181554. doi:
10.1542/peds.2018-1554

80. Moser EK, Oliver PM. Regulation of autoimmune disease by the E3
ubiquitin ligase itch. Cell Immunol (2019) 340:103916. doi: 10.1016/j.cellimm.
2019.04.004

81. Patel T, Henrickson SE, Moser EK, Field NS, Maurer K, Dawany N, et al.
Immune dysregulation in human ITCH deficiency successfully treated with
hematopoietic cell transplantation. J Allergy Clin Immunol: In Pract (2021)
9:2885–2893.e3. doi: 10.1016/j.jaip.2021.04.010

82. Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3Kd and
primary immunodeficiencies. Nat Rev Immunol (2016) 16:702–14. doi: 10.1038/
nri.2016.93

83. Singh A, Joshi V, Jindal AK, Mathew B, Rawat A. An updated review on
activated PI3 kinase delta syndrome (APDS). Genes Dis (2019) 7:67–74. doi:
10.1016/j.gendis.2019.09.015

84. Thouenon R, Moreno-Corona N, Poggi L, Durandy A, Kracker S. Activated
PI3Kinase delta syndrome–a multifaceted disease. Front Pediatr (2021) 9:652405.
doi: 10.3389/fped.2021.652405

85. Michalovich D, Nejentsev S. Activated PI3 kinase delta syndrome: From
genetics to therapy. Front Immunol (2018) 9:369. doi: 10.3389/fimmu.2018.00369

86. Tissue expression of PIK3CD - summary - the human protein atlas . Available
at: https://www.proteinatlas.org/ENSG00000171608-PIK3CD/tissue.

87. Tissue expression of PIK3R1 - summary - the human protein atlas . Available
at: https://www.proteinatlas.org/ENSG00000145675-PIK3R1/tissue.
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