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Abstract 

Valuable polysaccharides are usually produced using wild-type or metabolically-engineered host microbial strains 
through fermentation. These hosts act as cell factories that convert carbohydrates, such as monosaccharides or starch, 
into bioactive polysaccharides. It is desirable to develop effective in vivo high-throughput approaches to screen 
cells that display high-level synthesis of the desired polysaccharides. Uses of single or dual fluorophore labeling, 
fluorescence quenching, or biosensors are effective strategies for cell sorting of a library that can be applied during 
the domestication of industrial engineered strains and metabolic pathway optimization of polysaccharide synthesis 
in engineered cells. Meanwhile, high-throughput screening strategies using each individual whole cell as a sorting 
section are playing growing roles in the discovery and directed evolution of enzymes involved in polysaccharide 
biosynthesis, such as glycosyltransferases. These enzymes and their mutants are in high demand as tool catalysts for 
synthesis of saccharides in vitro and in vivo. This review provides an introduction to the methodologies of using cell-
based high-throughput screening for desired polysaccharide-biosynthesizing cells, followed by a brief discussion of 
potential applications of these approaches in glycoengineering.
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Background
Bacterial polysaccharides are cell-protective macromo-
lecular polymers, polymerized from various monosac-
charides through specific glyosidic bonds [1–6]. Because 
of their unique physical, chemical and rheological prop-
erties and good biosafety, natural bacterial polysaccha-
rides have extensive applications in many fields, including 
as drugs, pharmaceutical materials, bioengineering mate-
rials, food additives, and microbial flocculants [7–16]. In 
addition, natural capsular polysaccharides of some bac-
teria that are consistent with the backbone structure of 
mammalian polysaccharides have the potential to be used 

as synthetic precursors to realize large-scale preparation 
of active human polysaccharides, whose efficient and safe 
preparation has become a research hotspot. Glycosa-
minoglycan (GAG) drugs have become a typical repre-
sentative of this research direction [17–24]. For example, 
bacterial polysaccharides consistent with the unsulfated 
modified polysaccharide skeletons of chondroitin sulfate 
and heparin were efficiently prepared by fermentation-
based preparation of Escherichia coli-derived K4 and 
K5, following which the polysaccharides were sulfated 
in vitro to form non-animal GAGs [25, 26]. However, the 
molecular weight of polysaccharides is high, their struc-
tures are complex, and the synthesis of these biomacro-
molecules in cells involves multiple enzymatic reactions. 
Moreover, the study of bacterial polysaccharide produc-
tion in engineered microbial strains faces a common 
problem—the balance between cell growth and product 
synthesis [27, 28]. In addition, although many studies 
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have been carried out on the synthesis pathways and car-
bohydrate chain structures of Gram-positive and Gram-
negative bacterial polysaccharides, understanding of the 
mechanisms of regulation of bacterial carbohydrate chain 
synthesis still lags behind that of proteins and nucleic 
acids [29]. Therefore, as a tool for the domestication of 
polysaccharide-producing strains or to support genetic 
engineering, high-throughput screening methods for 
whole cells that have the ability to synthesize high levels 
of polysaccharides have significant research value.

Bacterial cells can also be used as effective carri-
ers to realize the directed evolution of enzymes related 
to bacterial polysaccharide synthesis. With the rapid 
development of glycobiology and glycoengineering, car-
bohydrates have become an important source of leading 
compounds for drug discovery, and research and devel-
opment of carbohydrate drugs shows increasing appli-
cation potential and value [30, 31]. In  vitro enzymatic 
synthesis of structurally defined oligosaccharides and gly-
coconjugates has leapt forward in recent years [32, 33]. 
Whether artificial carbohydrate-based drugs are chemo-
enzymatically synthesized in vitro, or produced by engi-
neered cells in  vivo, efficient biocatalysts are in high 
demand. The cost of recombinant expression of bacterial 
proteins is usually lower than of animal proteins, making 
bacterial enzymes more suitable for synthetic approaches 
in vitro [34, 35]. Recently, a series of microbial enzymes, 
especially glycosyltransferases (GTs), that catalyze syn-
thesis of saccharides with the same structures as human 
saccharides have been identified and their catalytic mech-
anism is being studied in depth [36–38]. Using protein 
engineering to modify wild-type GTs to obtain mutants 
with higher catalytic efficiency or novel substrate speci-
ficity is an effective means to improve productivity and 
expand the available structures of polysaccharide prod-
ucts [39–44]. An efficient directed-evolution platform for 
GTs would be of great significance for obtaining excel-
lent enzymes with reduced effort [45]. High-throughput 
screening methods play a pivotal role in these platforms.

This review focuses on high-throughput screening 
methods based on single cells or single clones with dif-
ferent genotypes. Similar to the protein directed-evo-
lution strategy that simulates Darwinian evolution in a 
test tube, the cell-based high-throughput screening of 
polysaccharide biosynthesis hosts is generally divided 
into two steps: (i) a large number of mutations are engi-
neered, either as random mutations in the entire genetic 
material of a cell, or as changes in the sequence of a gene 
that encodes a particular enzyme; (ii) cells with changed 
levels of polysaccharide synthesis are sorted to realize the 
evolution at the cellular level. The differences in polysac-
charide synthesis ability of individual cells can be iden-
tified quickly by means of fluorescence signals, growth 

differences, and other methods that do not require a lot 
of labor. This review focuses on part ii of the process.

Screening based on fluorescently‑labeled 
substrates
In this approach, derivatives of natural substrates that 
are labeled with fluorescent groups are introduced into 
the culture medium of bacterial cells. They are substrates 
for desired polymerases involved in polysaccharide bio-
synthesis, and can enter and leave the cell freely through 
the cell membrane or pass through a transmembrane 
sugar transport protein. However, after transglycosyla-
tion occurs in the cytoplasm, the fluorescent groups are 
trapped in, and label, product polysaccharide molecules; 
these large fluorescently-labeled saccharides cannot pass 
through the cell membrane and are thus trapped in the 
cell. Meanwhile, any fluorescently-labeling substrate 
that did not participate in the polysaccharide synthesis 
can be removed using washing steps, so the intensity of 
the fluorescent signal in each cell is positively correlated 
with the cell’s ability to synthesize polysaccharide chains. 
Thus, the ability of individual cells within a cell library 
(domesticated or containing a specific gene mutation) 
to synthesize polysaccharide chains can be screened by 
high-throughput combined with rapid sorting techniques 
such as fluorescence activated cell sorting (FACS) (Fig. 1).

Single‑color labeling strategy
Based on this strategy, the directed evolution of a series 
of GTs related to bacterial polysaccharide synthesis was 
realized. In 2006, the strategy of fluorophore labeling 
was applied to the high-throughput screening of high-
catalytic-efficiency mutants of bacterial sialyltransferase 
CstII, which was the first report of successful applica-
tion of a screening method based on labeled substrate 
in the directed evolution of GTs [46]. CstII can catalyze 
the transfer of a negatively-charged N-acetylneuraminic 
acid (Neu5Ac)  to a fluorescently-labeled neutral glycan 
to form a negatively-charged fluorescently-labeled prod-
uct [47]. This product was retained inside bacterial cells. 
Based on this principle, single cells with strong intra-
cellular fluorescence signals could be sorted by FACS, 
and these cells theoretically contained high-catalytic-
efficiency CstII mutants. Finally, a mutant (in which the 
91-position phenylalanine was replaced by tyrosine) with 
400-fold higher catalytic efficiency than the wild-type 
was screened from a library of > 106 CstII mutants.

Dual‑color labeling strategy
Subsequently, by upgrading the fluorescently-labeling 
substrate from monochromatic to dichromatic, the accu-
racy of the high-throughput screening method based on 
whole cells was significantly improved. Compared with 
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Fig. 1  Schematic view of cell-based high-throughput screening strategies based on fluorescently-labeled substrates. In the original strategy, a 
single fluorescent substrate was used to screen a library of mutant sialyltransferases. First, fluorescently-labeled monosaccharides are transported 
into the cell by a transmembrane sugar transport protein (step 1). After an incubation period during which the fluorescently-labeled substrates 
may be modified enzymatically (step 2), unreacted substrates are removed using a washing step (step 3). Cells containing catalytically-active 
glycosyltransferases retain the fluorescent product inside the cell, now as part of a polysaccharide. Finally, desired cells (with high fluorescence, 
hence high-level polysaccharide production) are screened by rapid sorting techniques such as fluorescence activated cell sorting (FACS) (step 4), 
followed by sequencing (step 5)
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single-color labeling, the dual-color labeling strategy in 
which some molecules of the substrate carry one “color” 
fluorophore and other molecules of the same substrate 
carry the other “color”, thereby minimizing the prob-
ability of selecting for false-positive clones by using the 
combined  (“dual”) absorption for detection (Fig.  2a). 
This is clearly beneficial for the identification of highly 
active mutants. Yang et  al. labeled N-acetylgalactosa-
mine (GalNAc) analogues with a green fluorescent group 
(BODIPY) or a blue fluorescent group (coumarin); and 
these molecules could freely cross the cell membrane of 
bacteria, and were used together for the directed evolu-
tion of β-1, 3-galactosyltransferase CgtB [48]. Using uri-
dine diphosphate galactose (UDP-Gal) as a donor, CgtB 
can transfer galactose to a GalNAc residue of a saccha-
ride chain to form the Gal-β-1, 3-GalNAc structure. The 
transglycosyl products containing Gal residues cannot 
pass through the cell membrane, resulting in the accu-
mulation of blue and green fluorescently-labeled prod-
ucts in the cell. Cells showing simultaneous enhancement 
of both fluorescence signals were screened by FACS, 
and a N26K/L68I/K151E/L227G/E234D mutant of 
CgtB, named CgtB-S42, with wider substrate specificity 
and higher catalytic efficiency than wild-type CgtB, was 
screened from the CgtB mutant library (> 107 mutants). 
When UDP-glucose was used as the donor substrate, 
the catalytic efficiency of CgtB-S42 was at least 300-fold 
higher than that of the wild-type enzyme. In 2019, Tan 
et al. used the dichromatic-labeling FACS strategy to con-
duct high-throughput screening of a library of mutants 
of fucosyltransferase FutA (> 107 mutants) [49]. This 
enzyme can transfer fucose to the C3–OH site of the Glc-
NAc group of N-acetyllactosamine (LacNAc). After three 
rounds of screening, an excellent mutant, S45F/D127N/
R128E/H131I/Y199N/E340D/V368A, named FutA-M23, 
was identified. The catalytic efficiency of FutA-M23 in 
the synthesis of Lewis X and 3′-fucosyllactose was 6- and 
14-fold higher than that of wild-type FutA, respectively.

Fluorescence quenching strategy
In the method described above, the cell fluorescence sig-
nal is enhanced by the process of polysaccharide synthe-
sis. In another effective method, the fluorescence signal 
of a saccharide chain may be quenched after transglyco-
sylation reaction, and then mutant strains with enhanced 

polysaccharide synthesis ability can be isolated by reverse 
screening (Fig. 2b). For example, in 2007, Williams et al. 
used the fluorescence receptor quenching screening 
method to expand the receptor substrate specificity of 
the oleandomycin GT OleD through directed evolution 
[50]. Wild-type OleD only showed weak catalytic effi-
ciency toward common phenolic receptors including 
the fluorophore 4-methylumbelliferone (MU), kaemp-
ferol and daidzein [51]. Once MU is glycosylated, bond-
ing with one glucose residue, the C7–OH group of MU 
is masked and the fluorescence signal is weakened. Thus, 
the fluorescence signal of the whole cell was coupled with 
the catalytic efficiency of OleD mutants toward substrate 
MU, and high-throughput screening of an OleD mutant 
library was performed. Several mutants were screened 
and their mutation sites were analyzed; amino acids 67, 
132, and 242 were found to be the key sites affecting the 
activity. Then, the amino acid mutations were combined 
to obtain an OleD mutant (P67T/S132F/A242V) whose 
kcat toward MU was 30-fold higher than that of the wild-
type enzyme. More surprisingly, the number of recep-
tor substrates of OleD P67T/S132F/A242V observably 
expanded, which directly proves the feasibility of using 
similar strategies to expand the specificity of GT donors 
or receptor substrates. Besides increasing the catalytic 
efficiency, improving tolerance towards substrates is 
also valuable in GT research, and will directly expand 
the range of saccharide types that can be synthesized by 
enzymatic approaches.

Screening toward a highly efficient polysaccharide 
biosynthesis based on fluorescently‑labeled substrates—a 
perspective
The development of cell sorting technology makes it 
possible to screen individual clones with different fluo-
rescence signals from a large number of bacterial cells. 
The screening efficacy of advanced flow cytometry can 
reach > 25,000 cells per second. Therefore, by establishing 
a relationship between the ability of a cell to synthesize 
bacterial polysaccharides and the number of fluorescent 
molecules accumulated in the cell, scientists can achieve 
high-throughput screening of individual cells in a mutant 
library that are able to efficiently synthesize carbohydrate 
chains. This can be achieved by artificial modification of 
a specific substrate, which has been successfully applied 

Fig. 2  Schematic view of cell-based high-throughput screening strategies based on dual fluorescence labeling and fluorescence quenching. a 
In the dual fluorescence labeling method, two fluorescent substrates are employed simultaneously. The combined (“dual”) absorption of each 
fluorescent group is used for detection to minimize the probability of selecting for false-positive clones. b In the application of fluorescence 
quenching, the fluorescence signal of the carbohydrate chain is quenched once glycosyltransferases transfer the fluorescently-labeled substrate 
onto the acceptor, and then cells containing (highly) catalytically active enzymes can be sorted by their low fluorescence. Otherwise, the sorting 
process is consistent with that in Fig. 1

(See figure on next page.)
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in the directed evolution of several GTs. It should be spe-
cifically pointed out that the screening method based on 
fluorescence-labeled substrate can not only be used to 
screen strains or enzyme molecules with better activity 
to synthesize polysaccharides, but can also be used to 
expand substrates pecificity of desired enzymes. The later 
strategy, usually named substrate engineering, is an effec-
tive way to enrich the diversity of carbohydrate chain 
structures that can be artificially prepared.

Screening based on biosensors in vivo
Biosensors  are one of best too s of  synthetic biology, 
both  for high-throughput screening and for direct opti-
mization of biosynthesis pathways. The synthesis of bac-
terial polysaccharides involves a number of continuous 
enzymatic reactions, and the level of synthesis can be 
characterized by the concentration of specific substances 
in cells, such as intermediates or energy substances. In 
theory, biosensors of these intermediate substrates or 
products can be used for high-throughput screening and 
identification of polysaccharide synthesis levels within a 
single cell, to enable the optimization of synthesis path-
ways and directional evolution of synthase proteins 
[52–56] (Fig. 3). Biosensors comprise a sensor part (e.g. 
riboswitches, ribozymes, transcription factors, enzymes, 
or periplasmic-binding proteins) and an actuator part 
(e.g. fluorescent reporters, regulatory switches, or selec-
tion markers) [57]. Upon binding of the effector mol-
ecule, conformational change of the sensor part controls 
the expression of the actuator part, which affects the phe-
notype of the bacteria. This phenotype can be expressed 
in different fluorescence values, different tolerance to 
antibiotics, or different growth states in a nutritionally-
deficient environment.

Biosensors for intermediates involved 
in the polysaccharide biosynthesis
For polysaccharide biosynthesis, special emphasis should 
be placed on biosensors of substances related to carbohy-
drate chain synthesis and energy metabolism. Nucleotide 
activation and energization of monosaccharide donors is 
a prerequisite for GTs to recognize and complete mon-
osaccharide transfer, making bacterial polysaccharide 
synthesis a significantly energy-consuming process. Tak-
ing hyaluronic acid as an example, for each molecule of 
disaccharide repeat unit synthesized, the cell consumes 
five molecules of ATP, two molecules of NADH, and 
one molecule of acetyl-CoA [58]. In 2014, San Martín 
et  al. constructed a Förster Resonance Energy Transfer 
(FRET) sensor to detect the concentration of pyruvate 
in cells in real time [59]. The FRET biosensor has the 
advantages of good orthogonality, high time-resolution, 
and it was easy to construct. Pyruvate is involved in the 

mutual transformation between monosaccharides, fats, 
and amino acids through the acetyl-CoA and tricarbox-
ylic acid cycles [60]. However, although the FRET sensor 
is very suitable for monitoring the metabolic kinetics of 
intracellular pyruvate, it has not yet been reported that 
the system can be used to analyze bacterial polysaccha-
ride synthesis.

Biosensors for coenzymes involved in the polysaccharide 
biosynthesis
A biosensor for detecting NADH concentration can be 
designed by coupling a promoter responsive to change 
of the reduced/oxidized coenzyme concentration ratio 
to a reporter gene system. Siedler et  al. developed an 
NADPH/NADP+ redox biosensor in Escherichia coli 
using natural redox-sensitive transcription factor (TF) 
SoxR in 2013 and applied it to sort mutants of NADPH-
dependent alcohol dehydrogenase from Lactobacillus 
brevis (LbAdh) that showed improved activity toward the 
substrate 4-methyl-2-pentanone [61]. In 2014, Knudsen 
et  al. designed a TF sensor in Saccharomyces cerevisiae 
that can respond to the NADH/NAD+ ratio [62]. Glyc-
erol-3-phosphate dehydrogenase, encoded by the gene 
GPD2, plays a central role in redox metabolism in S. cer-
evisiae. In anaerobic conditions, due to the reduction of 
dihydroxyacetone phosphate to glycerol-3-phosphate 
by NADH-coupled dihydroxyacetone phosphate, the 
expression of GPD2 increases with the increase of NADH 
oxidation demand. Therefore, the transcriptional level of 
a GFP reporter gene under the control of the promoter of 
GPD2 was related to the concentration of NADH.

Biosensors for monosaccharides
A biosensor responsive to monosaccharide molecules has 
been designed and used in the domestication of mono-
saccharide-producing strains. In 2013, Cho obtained a 
Neu5Ac aptazyme with high specificity and affinity by 
screening in  vitro. A biosensor based on the aptazyme 
can monitor the concentration of Neu5Ac in real time 
[63]. In 2017, Yang designed a directed evolution strat-
egy for Neu5Ac synthesis based on the above-mentioned 
Neu5Ac aptazyme [64]. Through fusion of the Neu5Ac 
aptazyme and gene tetA (the expression of tetA increases 
the sensitivity of bacteria to Ni2+), the concentration of 
Neu5Ac was coupled with the growth rate of a strain. 
The authors conducted directed evolution of a ribosome-
binding site library and finally increased the yield of 
Neu5Ac by 34%.

Biosensors for polysaccharide biosynthetic ability 
monitoring—a perspective
Biosensors are one of the fastest developing synthetic 
biology tools, and can be used for single cell recognition 
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to achieve ultra-high-throughput screening. Although 
there have been many reports on the application of 
biosensor systems in response to molecules related to 
polysaccharide synthetic pathways, and they have been 
successfully applied to the optimization of monosac-
charide synthesis pathways, they have not yet been used 
directly in the optimization of polysaccharide synthesis. 
However, biosensors have great application potential in 
the preparation of bacterial polysaccharides, and their 
application will expand to the construction and opti-
mization of high-yield strains and the exploration and 
directed evolution of high-catalytic-efficiency enzymes. 
In addition, with the development of quorum sensing 

technology, screening efficiency based on biosensor sys-
tems will be significantly improved by coupling detec-
tion of ability to biosynthesize polysaccharides with cell 
growth rate, thus enabling isolation of cells with high 
productivity that also contain enzyme mutants with high 
catalytic efficiency (Fig. 4).

Conclusions
Bacterial polysaccharides have extensive applications 
in many fields [7–16]. It is difficult to obtain a carbohy-
drate chain of > 12 monosaccharide residues by chemi-
cal, in  vitro enzymatic, or chemoenzymatic methods. 
Only the use of cell factories (microbial fermentation) 

Fig. 3  High-throughput screening of polysaccharide biosynthesis hosts based on biosensors in vivo. This strategy relies on linking the production 
of a fluorescent protein to the intracellular concentration of a target metabolite that is associated with the cell’s ability to synthesize polysaccharide. 
Then, high-yield strains can be enriched through FACS and sequenced
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is suitable for the preparation of long polysaccharides. 
However, polysaccharide biosynthesis strains, especially 
engineered strains in which polysaccharide biosynthesis 
pathways are artificially introduced, must balance cell 
growth and product synthesis. It is necessary to regulate 
and reform the metabolic pathways to remove the rate-
limiting factors in the process of polysaccharide syn-
thesis to increase the yield. Using whole cell factories, 
large scale genetic mutation, and ultra-high-throughput 
screening of polysaccharide synthesis ability, the rate-
limiting factors of polysaccharide synthesis can be found 
from a large number of clones with different pheno-
types, and optimization of energy distribution can be 
used to solve the key problems. Therefore, the develop-
ment of effective high-throughput approaches, based on 

biosensors for polysaccharide biosynthetic ability moni-
toring or fluorescently-labeled substrates, for cell sorting 
of a library that can be applied during the domestication 
of industrial engineered strains and metabolic pathway 
optimization of polysaccharide synthesis in engineered 
cells have important application value. Additionally, 
cell-based screening approaches are also suitable for the 
directed evolution of a single key enzyme in a polysac-
charide biosynthesis pathway. Moreover, the screening 
of cells is a direct overall analysis of the cell factory and 
can realize the discovery and optimization of the limiting 
factors of intracellular polysaccharide synthesis, which 
is not possible in single-factor research systems in vitro. 
Here, this review provides an introduction to the meth-
odologies of using cell-based high-throughput screening 

Fig. 4  Cell-based high-throughput screening based on the coupling of cell growth with in vivo polysaccharide biosynthesis. An in vivo active 
biosensor responds to the intracellular concentration of a target metabolite that is associated with the cell’s ability to synthesize polysaccharides. 
One selects a suitable actuator (e.g., antibiotic, auxotroph, or toxin) that can directly select for and enrich high-yield strains. In selection 
conditions, the polysaccharide biosynthesis level is coupled with cell growth, so one can isolate cells with high productivity that also synthesize 
polysaccharides at a high level
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for desired polysaccharide-biosynthesizing cells, followed 
by a brief discussion of potential applications of these 
approaches in glycoengineering.
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