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To the Editor:

Short-dysfunctional telomeres are detected prior to clinical
progression in chronic lymphocytic leukaemia (CLL) and
result in chromosomal fusions that propagate genome

instability, driving disease progression. To investigate the
impact of telomere dysfunction on the CLL genome, we
performed a large-scale molecular characterisation of telo-
mere fusion events in CLL B-cells. A cohort of 276 CLL
patient samples was selected for analysis based on short
telomere length (TL) profiles, with the majority (97%, n=
269) having mean TL within the previously-defined fuso-
genic range in CLL [1]. Patient samples were screened for
the presence of telomere fusions using a single-molecule
telomere fusion assay [2] modified to include the 5p telo-
mere (Supplementary Figure 1). Telomere fusions were
detected in 72% (198/276) of the samples, which were
subsequently arbitrarily stratified by fusion frequency
(Supplementary Table 1). Fusions were detected for all
telomeres assayed, including the 5p telomere, for which
fusions were present in 23% (40/177) of patient samples
(Supplementary Figure 2, Supplementary Table 2).

High-resolution characterisation of single-molecule
amplified telomere fusions from nine CLL patients with
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the highest fusion frequency was performed by Illumina
HiSeq4000 paired-end sequencing. Following a customised
bioinformatics analysis pipeline [3] and manual curation
(Supplementary Figure 3), 914 unique telomere fusions were
resolved (Supplementary Figure 4), of which 19% (172/914)
involved the 5p telomere (Supplementary Figure 5). Intra-
(sister-chromatid) or inter-chromosomal telomere fusion
events were identified, as well as recombinations involving
non-telomeric loci incorporated into telomere fusions
(Fig. 1; Supplementary Figure 4, Supplementary Table 3).

These captured loci included; the ancestral telomere at
Chr2q13-14 (n= 11), mitochondrial DNA (n= 4) and
other non-telomeric genomic loci (n= 78). Complex inter-
chromosomal events involving multiple disparate loci were
also detected (n= 7) (Supplementary Figures 5–9).

Distinct signatures of telomere fusions across the gen-
ome could be described for each CLL patient sample
(Fig. 1). Two patients (CLL3 and CLL6) displayed sim-
ple signatures, defined by the presence solely of intra-
chromosomal and/or inter-chromosomal telomere-telomere

Fig. 1 Signature of telomere fusions for 9 CLL patient samples.
Circos plots showing the validated results obtained from the inter-
chromosomal and intra-chromosomal telomere fusion analysis from
nine CLL patient samples. Circos plot with each chromosome and
its telomeres (1p telomere, Chr1, 1q telomere) around the circle
orientated clockwise. Additional notches indicate linkages specifi-
cally aligning with subtelomeric sequence references derived from

Stong et al. [12]. Colour code: telomere-telomere inter-chromosomal
(black), telomere-telomere intra-chromosomal for 5p, 17p and XpYp
(blue), inter-chromosomal or intra-chromosomal for 16p and 21q
families (light blue), and inter-chromosomal telomere-genomic
(green), telomere-2q13 (orange) and telomere-ChrM (pink). Telo-
mere fusion events with unknown sub-telomeric sequence were not
included
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fusions. In contrast, the CLL8 sample telomere fusion
profile revealed abundant genomic linkages, including with
the ancestral telomere at 2q13 and mitochondrial DNA.
Samples CLL1, CLL2, CLL4, CLL5, CLL7 and CLL9 were
characterised by complex signatures with a combination of
most or all categories of telomere fusion events identified in
this study (Fig. 1; Supplementary Table 4).

Telomere dysfunction is associated with increased
genomic instability and disease progression in CLL [1, 4],
therefore a comprehensive analysis of all patient-derived
telomere fusions with non-telomeric genomic loci was
undertaken. Locations and junction sequences pertaining to
all 93 (10% total fusions) identified inter-chromosomal
fusions were investigated to determine commonality of
global or local sequence context as well as providing evi-
dence for the engagement of specific DNA repair processes.
These inter-chromosomal genomic fusions were less abun-
dant than pure telomeric inter-chromosomal fusions that
represented 38% of all fusions characterised.

Inter-chromosomal fusions with non-telomeric genomic
loci were identified in all nine CLL patient samples. Indi-
vidual events were validated by manual sequence analysis,
revealing 68% (63/93) had fusion junctions covered by
junction-spanning sequence read pairs (mFJ) and 32%
(30/93) had unmapped junctions (uFJ). Each fusion junction
location was depicted on the ideogram in Fig. 2a. Notably,
the loci disrupted by telomere fusions (summarised in
Supplementary Table 5) were not randomly distributed
throughout the genome since there was no simple correla-
tion with chromosome length (r2= 0.44) or coding gene
density of the respective chromosomes (r2= 0.32) (Fig. 2b,
Supplementary Figure 10). However, loci with previously-
reported copy number aberrations in CLL [5] were found to
be incorporated into telomere fusions, including 2p15,
2p11.2 (2 events), 2q13 (11 events), 6q22.31, 11q22.2 and
18q21.32 (single events). In addition, a complex telomere
fusion was detected involving four distinct loci including
13q14.2 that is frequently deleted in CLL (Supplementary
Figure 4B).

Inter-chromosomal telomere fusions occurred within cod-
ing DNA more frequently than expected by chance. Over half
(57%) of mFJ were within introns and exons of protein-
coding genes (Supplementary Table 5), significantly higher
(Chi-squared analysis p= 0.0024) than the average 42% gene
content of the human genome (based on the hg19 RefGene).
We also observed 15% and 9% mFJ fused with Common
Fragile Sites (CFSs) and Alu elements, respectively; however,
these were similar to the proportion of CFSs (15%) and Alu
sequences (11%) identified across the human genome [6].

All 31 protein-coding genes disrupted by telomere
fusions with mFJ were further investigated for potential
association with CLL pathogenesis (Supplementary Table 6).
An enrichment in genes overexpressed in CD38+ patient

CLL B-cells was revealed using GSEA Gene Set Enrichment
Analysis (GSEA, v5.2) Molecular Signatures Database
(MSigDB) [7]. This gene set included HTR7, KIF26B and
LPHN1 (p-value 1.5e−6; FDR q-value 2.7e−2) —genes pre-
viously found to be upregulated in CD5+/CD19+/CD38+

CLL cells associated with worse patient prognosis, compared
with patient-matched CD5−/CD19−/CD38− CLL cells in a
panel of six patient samples [8]. Strikingly, 36% (11/31) of
all genes disrupted by a telomere fusion event for which the
junction could be validated were classified as expressed or
associated with B lymphocytes or CLL B-cells. These genes
included CD8A, RORA, TESPA1, DMD, NOX5, NTF3, EVI5
and FTO (Supplementary Table 7) with documented patho-
logical relevance. A significant enrichment in genes posses-
sing binding motifs matching the B-cell-expressed homeobox
transcription factor, HNF1α (TCF1) [9], within their pro-
moters was also identified (DMD, RORA, NTF3 and HTR7;
p-value 2.51e−5; FDR q-value 1.31e−2; Supplementary
Table 8). Furthermore, a noteworthy association of fusion-
disrupted genes with gene sets over-expressed in other types
of cancer including breast and liver was also revealed by
these analyses.

We have previously shown that intra-chromosomal telo-
mere fusion is accompanied by extensive resection that results
in asymmetric deletion of the participating sister-chromatids
[3]. To assess whether this was true for CLL B-cells, the extent
of DNA end-processing at each sister-chromatid was exam-
ined for intra-chromosomal fusions with mFJ. The distance
from the start of the telomere repeat sequences to the fusion
junction for each of the chromatids involved in the fusion
event was determined and the difference calculated to obtain a
measure of asymmetry (Fig. 2c, d; Supplementary Tables 9-
10). The uneven distribution of fusion junctions across the 5p
sub-telomere (n= 14) is consistent with the location of a CpG
island and suggests that the GC-rich sequence may hamper the
detection of 5p fusion events (Supplementary Figure 11).
Thus, 5p telomere fusions may be under-represented in the
data and may have an even greater impact on CLL disease
than presently recognised. In contrast, telomere fusion junc-
tions were effectively captured across the 17p (n= 30) and
XpYp (n= 20) telomeres (Fig. 2c). Asymmetry of sister-
chromatids was observed for 5p, 17p and XpYp with a mean
of 1408 bp, 1240 bp and 695 bp, respectively (Fig. 2d). The
degree of asymmetry was significantly greater than the theo-
retical value 0 (one sample t-test, p < 0.001). This indicates
that fusion occurs between sister-chromatids of different
lengths in CLL B-cells, consistent with our observations in
other models [2, 3, 10]. No significant differences were found
in the extent of asymmetry between the 5p, 17p and XpYp
chromosome ends (Kruskal-Wallis, p= 0.1661).

High-resolution analysis of each CLL mFJ was per-
formed to investigate candidate DNA repair mechanisms
that may underlie distinct types of telomere fusion events.
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Insertions of templated, untemplated and/or potential telo-
mere variant repeat sequences were observed at 6%
(50/796) of mFJ: 23/50 for Telomere-Sub-telomere, 4/50
for intra-chromosomal, 2/50 for intra/inter, 19/50 for telo-
meric inter-chromosomal, 1/50 for telomere-Chr2q13 and
1/50 for telomere-ChrM fusions. Insertions ranged from

1-21 nucleotides with a mean of 4.5 nucleotides. In contrast,
no insertions were identified at fusions with non-telomeric
loci. Statistically-significant differences in the extent of
microhomology usage at fusion junctions were determined
for the different types of telomere fusion events (Kruskal-
Wallis p < 0.001 and Dunn’s Multiple Comparison Test)

Fig. 2 Characterisation of telomere fusions detected across the gen-
ome. a Validated inter-chromosomal telomere fusion events (n= 93)
on a karyotype map generated in Ensembl. Telomere fusions with
genomic, ancestral telomere 2q13 and mitochondria DNA/Chr. Each
colour represents a different patient sample. Continuous arrow-heads
indicate mapped fusion junctions (mFJ) and discontinuous arrow-
heads represent unmapped fusion junctions (uFJ, location of the read
represented). b Number of validated inter-chromosomal telomere-
genomic fusion junctions per Mb of DNA for each chromosome
ordered by length (size obtained from Ensembl). c Sister-chromatid
deletion and d asymmetry for the 5p, 17p and Xp chromosome ends of
intra-chromosomal fusion events. Green box highlights the CpG island

on the 5p sub-telomere. Location of the fusion primer indicated,
determines the limit of the assay from the telomere. d Level of
asymmetry was determined by calculating the deletion difference
between each chromatid of the same fusion event. e Microhomology
(bp) at the fusion junction was compared for the distinct type of
events: TTAGGG-CCCTAA (00), Sub-telomere-TTAGGG (0), intra-
chromosomal (1), intra-chromosoma or inter-chromosomal of 16p-16p
and 21q-21q families (1/2), inter-chromosomal telomeric fusion events
(2T), inter-chromosomal fusions with the ancestral telomere at 2q13
(2A) and inter-chromosomal fusions with genomic loci (2G). Mean,
SD and SE are indicated below
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(Fig. 2e; Supplementary Table 11). Inter-chromosomal
fusions with non-telomeric loci (mean= 9.1 bp; n= 43),
together with intra-chromosomal sister-chromatid events
(mean= 4.1 bp; n= 32), displayed the greatest amounts of
junction microhomology. In contrast, very low or an
absence of microhomology at the fusion point was observed
for inter-chromosomal telomeric fusions (mean= 1.5 bp;
n= 315), Telomere-Telomere (TTAGGG-CCCTAA;
mean= 0.8 bp; n= 12) and Telomere-Sub-telomere
(mean= 1.6 bp; n= 303) subgroups. Long tracts of
microhomology of up to 23 bp, were observed at inter-
chromosomal fusion junctions with non-telomeric loci
(Fig. 2e). When the usage of microhomology was >10 bp,
the sequence was enriched for the repeat unit of (AC)n
(Supplementary Figure 5); 40% (6/15) of events that con-
tained at least (AC)5 (motif ACACACACAC), consistent
with repair utilizing single-stranded annealing [11].

Taken together, our data reveal the impact of short-
dysfunctional telomeres on the evolving CLL genome,
generating tumour heterogeneity that may affect patient
prognosis. We have revealed that dysfunctional telomeres
predominantly fuse with protein-coding DNA including
genes expressed in CLL B-cells and other tumours. We
have also identified complex telomere fusions involving
multiple non-telomeric loci across the CLL genome,
including those with known copy number aberrations in
CLL. Our data implicate diverse DNA repair mechanisms at
play in CLL tumour initiation and progression, including
C-NHEJ, A-NHEJ and SSA. These repair pathways provide
potential therapeutic targets and combinations of ther-
apeutic agents targeting these specific pathway components
may effectively sensitise CLL B-cell clones with ongoing
telomere dysfunction to improve patient outcomes.
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