

Received 3 October 2017 Accepted 10 October 2017

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; dinuclear Cu complex; coordinated water; coordinated perchlorate anions; Schiff base ligand complexes.

CCDC reference: 1579206

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Crystal structure of aqua(perchlorato)bis[μ -(*E*)-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato- $\kappa^4 N, N', O:O$]dicopper(II) perchlorate

Ugochukwu Okeke, Yilma Gultneh and Ray J. Butcher*

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA. *Correspondence e-mail: rbutcher99@yahoo.com

The title compound, $[Cu_2(ClO_4)(C_{14}H_{13}N_2O)_2(H_2O)]ClO_4$, crystallizes as an unsymmetrical dinuclear cation bridged by the phenoxy O atoms with one Cu^{II} atom coordinated by a water molecule and the other by a perchlorate anion, thus making both Cu^{II} atoms five-coordinate, and with a further perchlorate anion present for charge balance. A long interaction [2.9893 (5) Å] between one of the two Cu^{II} atoms and an O atom of the perchlorate counter-ion links the cations and anions into linear chains along the *a*-axis direction. In addition, the water H atoms link with the perchlorate counter-ion. These interactions, along with numerous $C-H\cdots O$ interactions between the tetrahedral perchlorate anions, link the ions into a complex three-dimensional array. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4).

1. Chemical context

Proteins containing dinuclear copper centers play important roles in biology, including dioxygen transport or activation, electron transfer, reduction of nitrogen oxides and hydrolytic chemistry (Karlin & Tyeklar, 1993; Torelli *et al.*, 2000; Poater *et al.*, 2008; Utz *et al.*, 2003). The catalytic properties of some dicopper complexes have also been observed in some recent studies (Jagoda *et al.*, 2005). The crystal engineering of selfassembled supramolecular architectures is currently of great interest, owing to their intriguing topologies and their applications in materials chemistry, in particular in optoelectronics, conductivity and superconductivity, charge-transfer and magnetism, nanoporous materials and biomimetic materials (Robson, 1996; Blake *et al.*, 1999; Sauvage, 1999).

Compounds of transition metal complexes comprising the ({[2-(pyridin-2-yl)ethyl]imino}methyl)phenol ligand have been synthesized for various processes (Egekenze et al., 2017; Sanyal et al., 2014; Chakraborty et al., 2013; Tandon et al., 1994, 2000; Latour et al., 1989). Complexes of the tridentate ligand have been used as biomimics in the catalysis of hydrolysis of phosphate esters and as catalysts for catechol oxidation (Egekenze et al., 2017). Pyrazole and pyridine are nitrogen donors that are commonly used as ligands to mimic metalloenzymes. These heterocyclic groups are widely used to form inorganic complexes because they have pK_a values similar to those present in the hystidyl functional group of many enzymes. As part of an ongoing effort to synthesize complexes to use as biomimetics, the title copper(II) complex has been synthesized. In view of the interest in these types of metal complexes, its structure has been determined.

2. Structural commentary

The title compound crystallizes in the monoclinic space group $P2_1/c$ as an unsymmetrical dinuclear cation bridged by the phenoxy O atoms with one Cu^{II} atom coordinated by a water molecule and the other by a perchlorate anion, thus making both Cu^{II} atoms five-coordinate, and with a further perchlorate anion present for charge balance (see Fig. 1). The Cu···Cu distance in the dinuclear unit is 3.0225 (5) Å. There are previously reported dinuclear structures involving the ({[2-(pyridin-2-yl)ethyl]imino)}methyl)phenolato ligand as a bridging ligand with other metals (Chakraborty *et al.*, 2013) and one instance involving copper (Yin *et al.*, 1998) where the structure is very similar apart from the fact that the bond between the Cu atom and the ClO₄⁻ counter-ion is not indicated. There is very little information available for this

Figure 1

Diagram of the Cu-containing dinuclear cation showing the atom labeling. The non-coordinated anion is omitted for clarity. Displacement parameters are at drawn the 30% probability level.

 Table 1

 Selected bond lengths (Å).

	0 ()		
Cu1-O1	1.9469 (18)	Cu2-O2	1.9375 (18)
Cu1-N2	1.959 (2)	Cu2-N4	1.940 (2)
Cu1-N1	1.996 (2)	Cu2-O1	1.9545 (17)
Cu1-O2	2.0204 (17)	Cu2-N3	1.987 (2)
Cu1 - O1W	2.248 (2)	Cu2-O21	2.6101 (18)
Cu1-Cu2	3.0225 (5)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W1 \cdots O12$	0.77 (4)	1.98 (4)	2.735 (4)	168 (4)
$O1W - H1W1 \cdots O12A$	0.77(4)	2.06 (4)	2.769 (5)	153 (4)
$O1W - H1W2 \cdots O23^{i}$	0.75 (4)	2.23 (4)	2.938 (4)	160 (4)
$C2-H2A\cdots N3$	0.95	2.61	3.142 (3)	116
$C2-H2A\cdots O24^{i}$	0.95	2.55	3.196 (3)	125
$C8-H8A\cdots O12^{ii}$	0.99	2.54	3.488 (5)	161
C9−H9A···O13	0.99	2.40	3.121 (5)	129
$C14-H14A\cdots O2$	0.95	2.54	3.073 (3)	116
$C14 - H14A \cdots O21$	0.95	2.60	3.345 (4)	135
$C16-H16A\cdots O1W$	0.95	2.61	3.154 (4)	117
C16−H16A···N1	0.95	2.66	3.294 (3)	124
$C23-H23A\cdots O24^{i}$	0.99	2.44	3.336 (3)	151
$C23 - H23B \cdot \cdot \cdot O13^{iii}$	0.99	2.55	3.293 (4)	132
$C23 - H23B \cdots O13A^{iii}$	0.99	2.54	3.261 (5)	129
$C25 - H25A \cdots O13^{iii}$	0.95	2.55	3.175 (4)	124
$C25 - H25A \cdots O12A^{iii}$	0.95	2.58	3.488 (5)	159
$C27 - H27A \cdots O14^{iv}$	0.95	2.39	3.202 (4)	143
$C27 - H27A \cdots O14A^{iv}$	0.95	2.62	3.477 (5)	151
$C28 - H28A \cdots Cl2$	0.95	2.99	3.594 (3)	123
C28-H28A···O22	0.95	2.61	3.473 (4)	151

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

structure apart from a line drawing in the Cambridge Structural Database (Groom *et al.*, 2016).

In the title structure (Fig. 1), since both Cu atoms are fivecoordinate, the τ parameter (Addison *et al.*, 1984) for Cu1 is 0.21 while that for Cu2 is 0.045, indicating that Cu1 is more distorted from a square-pyramidal geometry than Cu2. The Cu–O bond lengths (Table 1) for Cu1 and Cu2 are 1.9469 (18), 2.0204 (17) Å and 1.9375 (18), 1.9545 (17) Å, respectively, while the Cu–N_{imine} and Cu–N_{py} bond lengths are 1.959 (2), 1.940 (2) Å and 1.996 (2), 1.987 (2) Å, respectively, with the bonds involving the imine group being shorter than those to pyridine as is generally found. The Cu1–OH₂ and Cu2–OClO₃ apical bonds are longer at 2.248 (2) and 2.6101 (18) Å, respectively.

The copper atoms are displaced from their basal coordination planes, O1, O2, N1, N2 (r.m.s. deviation = 0.186 Å) for Cu1, and O1, O2, N3, N4 (r.m.s. deviation = 0.252 Å) for Cu2, towards the apical ligands by 0.218 (1) and 0.037 (1) Å, respectively. The dihedral angle between these two planes is 39.31 (5)°. Thus the whole dinuclear complex adopts a saddle shape similar to that observed in metalloporphyrin structures (Kuzuhara *et al.*, 2016) with the two phenyl rings and two pyridine rings on opposite sides of the central Cu₂O₂ bridging group. The magnitude of this distortion can be seen from the dihedral angles between the two phenyl [41.45 (7)°] and the two pyridine rings [76.75 (7)°].

3. Supramolecular features

In addition to the bonds involving the copper atom mentioned above, there is a longer interaction [2.9893 (5) Å] between Cu2 and O24 of an adjoining unit (at x + 1, y, z), which links the cations into linear chains along the *a*-axis direction (see Fig. 2). In addition, the water H atoms link with the perchlorate counter-ion. These interactions, along with numerous C-H···O interactions (Table 2) between the tetrahedral perchlorate anions link into a complex three-dimensional array.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.38; Groom *et al.*, 2016) for similar dinuclear structures of related

Packing diagram viewed along the *c* axis showing the extensive $C-H\cdots O$ and $Cu\cdots O$ interactions (dashed lines) linking the cations and anions into a complex three-dimensional array. Only the major occupancy conformations of the disordered anions are shown.

Schiff base ligands and involving both coordinated perchlorate and water molecules resulted in seven hits [COSHUO (Anbu *et al.*, 2009), EFUJAS (da Rocha *et al.*, 2014), EFUJEW (da Rocha *et al.*, 2014), JAVTOP (Mandal *et al.*, 1989), JAVTOP01 (Cheng *et al.*, 2012), WOGVAR (Cheng *et al.*, 2014), and WUKPAU (Hazra *et al.*, 2009)]. However, in all cases the ligands involved were tetradentate Schiff base macrocycles rather than tridentate Schiff base ligands. Thus there is no directly related example.

5. Synthesis and crystallization

2-(2-Pyridyl)ethylamine (0.3918 g, 3.207 mmol) was dissolved in methanol. Salicylaldehyde (0.3916 g, 3.207 mmol) was dissolved in methanol and stirred overnight. Cu(ClO₄)₂·6H₂O (4.811 g, 1.783 mmol) was dissolved in the methanol solution. The mixture was stirred at room temperature overnight. The methanol was removed by rotary evaporation. The product was crystallized by dissolving it in acetonitrile and layering the solution with diethyl ether. The green crystals formed were allowed to grow overnight before gravity filtering, air drying, and collection of the crystallized product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.95-0.99 Å and N-H = 1.00 Å and with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The hydrogen atoms attached to water were refined isotropically. One of the perchlorate anions is disordered over two conformations with occupancies of 0.586 (4) and 0.414 (4) and were constrained to have similar thermal and metrical parameters.

Funding information

RJB is grateful for the NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research as well as the Howard University Nanoscience Facility access to liquid nitrogen. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

- Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V. & Varghese, B. (2009). J. Inorg. Biochem. 103, 401–410.
- Blake, A. J., Champness, N. R., Hubberstey, P., Li, W., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chakraborty, P., Guha, A., Das, S., Zangrando, E. & Das, D. (2013). *Polyhedron*, **49**, 12–18.
- Cheng, Q. R., Zhou, H., Pan, Z.-Q. & Chen, J.-Z. (2012). *Transition Met. Chem.* **37**, 407–414.
- Cheng, Q. R., Zhou, H., Pan, Z.-Q., Liao, G.-Y. & Xu, Z.-G. (2014). J. Mol. Struct. 1074, 255–262.

Table 3Experimental details.

Crystal data	
Chemical formula	$[Cu_{2}(ClO_{4})(C_{14}H_{13}N_{2}O)_{2}(H_{2}O)]-ClO_{4}$
М.,	794.52
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	7.4829 (4), 16.8867 (8), 24.2649 (13)
β (°)	98.180 (3)
$V(\dot{A}^3)$	3035.0 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.65
Crystal size (mm)	$0.33 \times 0.27 \times 0.09$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.616, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21194, 6730, 5328
R _{int}	0.048
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.642
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.084, 1.02
No. of reflections	6730
No. of parameters	470
No. of restraints	30
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.63, -0.52

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017). Acta Cryst. E73, 1113–1116.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

research communications

Hazra, S., Majumder, S., Fleck, M., Aliaga-Alcalde, N. & Mohanta, S.
(2009). Polyhedron, 28 , 3707–3714.
Jagoda, M., Warzeska, S., Pritzkow, H., Wadepohl, H., Imhof, P.,
Smith, J. C. & Krämer, R. (2005). J. Am. Chem. Soc. 127, 15061-
15070.
Karlin, K. D. & Z. Tyeklar, Z. (1993). Bioinorganic Chemistry of
Copper. New York: Chapman and Hill.
Kuzuhara, D., Furukawa, Ŵ., Kitashiro, A., Aratani, N. & Yamada, H.
(2016). Chem. Eur. J. 22, 10671–10678.
Latour, JM., Tandon, S. S. & Povey, D. C. (1989). Acta Cryst. C45, 7-
11.
Mandal, S. K., Thompson, L. K., Newlands, M. J. & Gabe, E. J. (1989).
Inorg. Chem. 28, 3707–3713.
Poater, A., Ribas, X., Llobet, A., Cavallo, L. & Solà, M. (2008). J. Am.
Chem. Soc. 130, 17710–17717.
Robson, R. (1996). Comprehensive Supramolecular Chemistry, Vol. 6,
edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle
and R. B. Toda, p. 733. Oxford: Pergamon.
Rocha, J. C. da, Zambiazi, P. J., Hörner, M., Poneti, G., Ribeiro, R. R.
& Nunes, F. S. (2014). J. Mol. Struct. 1072, 69-76.
Sanyal, R., Guha, A., Ghosh, T., Mondal, T. K., Zangrando, E. & Das,
D. (2014). Inorg. Chem. 53, 85–96.
Sauvage, JP. (1999). Transition Metals in Supramolecular Chemistry.
In Perspectives in Supramolecular Chemistry, Vol. 5. London:
Wiley.
Sheldrick, G. M. (1996). SADABS. University of Göttingen,
Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Tandon, S. S., Chander, S. & Thompson, L. K. (2000). Inorg. Chim.
Acta, 300–302 , 683–692.
Tandon, S. S., Chander, S., Thompson, L. K., Bridson, J. N. & McKeec,
V. (1994). Inorg. Chim. Acta, 219, 55-65.

Torelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Le Pape, L. & Luneau, D. (2000). *Inorg. Chem.* 39, 3526–3536.

Utz, D., Heinemann, F. W., Hampel, F., Richens, D. T. & Schindler, S. (2003). *Inorg. Chem.* **42**, 1430–1436.

Yin, Y.-G., Cheung, C.-K. & Wong, W.-T. (1998). Gaodeng Xuexiao Huaxue Xuebao 19, 1546–1550.

supporting information

Acta Cryst. (2017). E73, 1708-1711 [https://doi.org/10.1107/S2056989017014694]

Crystal structure of aqua(perchlorato)bis[μ -(*E*)-2-({[2-(pyridin-2-yl)ethyl]imino}methyl)phenolato- $\kappa^4 N$, N', O:O]dicopper(II) perchlorate

Ugochukwu Okeke, Yilma Gultneh and Ray J. Butcher

Computing details

Data collection: *APEX3* (Bruker, 2015); cell refinement: *APEX3* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $\label{eq:chorato} Aqua(perchlorato)bis[\mu-(E)-2-(\{[2-(pyridin-2-yl)ethyl]imino\}methyl)phenolato-\kappa^4N, N', O:O]dicopper(II) perchlorate$

Crystal data

```
[Cu_{2}(ClO_{4})(C_{14}H_{13}N_{2}O)_{2}(H_{2}O)]ClO_{4}

M_{r} = 794.52

Monoclinic, P2_{1}/c

a = 7.4829 (4) Å

b = 16.8867 (8) Å

c = 24.2649 (13) Å

\beta = 98.180 (3)°

V = 3035.0 (3) Å<sup>3</sup>

Z = 4
```

Data collection

Bruker APEXII CCD diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.616, T_{\max} = 0.746$ 21194 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.084$ S = 1.026730 reflections 470 parameters 30 restraints F(000) = 1616 $D_x = 1.739 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4638 reflections $\theta = 2.4-25.9^{\circ}$ $\mu = 1.65 \text{ mm}^{-1}$ T = 100 KPlate, green $0.33 \times 0.27 \times 0.09 \text{ mm}$

6730 independent reflections 5328 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 27.2^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -21 \rightarrow 21$ $l = -26 \rightarrow 31$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0319P)^2 + 1.7524P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.63$ e Å⁻³ $\Delta\rho_{min} = -0.52$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.53169 (4)	0.71966 (2)	0.40451 (2)	0.01326 (9)	
Cu2	0.64416 (4)	0.80469 (2)	0.51354 (2)	0.01310 (9)	
O1	0.6427 (2)	0.69899 (10)	0.48067 (7)	0.0151 (4)	
O2	0.6100 (2)	0.82773 (10)	0.43452 (7)	0.0135 (4)	
O1W	0.7788 (3)	0.71972 (15)	0.36159 (12)	0.0325 (6)	
H1W1	0.817 (5)	0.681 (2)	0.3507 (16)	0.039 (12)*	
H1W2	0.853 (6)	0.737 (2)	0.3817 (18)	0.052 (15)*	
N1	0.3377 (3)	0.75810 (14)	0.34554 (9)	0.0193 (5)	
N2	0.4813 (3)	0.60696 (13)	0.39084 (9)	0.0171 (5)	
N3	0.5957 (3)	0.76882 (12)	0.58799 (9)	0.0156 (5)	
N4	0.7050 (3)	0.91277 (12)	0.53591 (9)	0.0138 (5)	
C1	0.7146 (3)	0.63049 (15)	0.50207 (11)	0.0134 (5)	
C2	0.8316 (4)	0.62923 (16)	0.55200 (11)	0.0167 (6)	
H2A	0.863612	0.677602	0.570836	0.020*	
C3	0.9025 (4)	0.55874 (16)	0.57481 (12)	0.0205 (6)	
H3A	0.981089	0.559415	0.609192	0.025*	
C4	0.8600 (4)	0.48728 (16)	0.54803 (12)	0.0200 (6)	
H4A	0.907928	0.438987	0.563871	0.024*	
C5	0.7471 (4)	0.48759 (15)	0.49813 (12)	0.0193 (6)	
H5A	0.718640	0.438848	0.479376	0.023*	
C6	0.6727 (3)	0.55813 (15)	0.47409 (11)	0.0142 (5)	
C7	0.5537 (4)	0.55121 (16)	0.42186 (12)	0.0176 (6)	
H7A	0.526014	0.498850	0.409090	0.021*	
C8	0.3594 (4)	0.58258 (17)	0.34059 (12)	0.0244 (7)	
H8A	0.233446	0.582239	0.348750	0.029*	
H8B	0.390221	0.528104	0.330182	0.029*	
C9	0.3735 (4)	0.63824 (19)	0.29198 (12)	0.0289 (7)	
H9A	0.502428	0.647341	0.288949	0.035*	
H9B	0.316666	0.612975	0.257015	0.035*	
C10	0.2835 (4)	0.71639 (18)	0.29886 (12)	0.0249 (7)	
C11	0.1474 (5)	0.7452 (2)	0.25888 (14)	0.0369 (9)	
H11A	0.111041	0.715564	0.225904	0.044*	
C12	0.0651 (4)	0.8162 (2)	0.26675 (14)	0.0385 (9)	
H12A	-0.027315	0.836166	0.239380	0.046*	
C13	0.1191 (4)	0.8579 (2)	0.31509 (14)	0.0330 (8)	
H13A	0.063703	0.906905	0.321819	0.040*	
C14	0.2548 (4)	0.82716 (17)	0.35349 (12)	0.0227 (6)	
H14A	0.291391	0.855812	0.386882	0.027*	
C15	0.6555 (3)	0.89443 (15)	0.40998 (11)	0.0127 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C16	0.6481 (3)	0.89741 (16)	0.35177 (11)	0.0169 (6)	
H16A	0.613296	0.851503	0.330261	0.020*	
C17	0.6905 (4)	0.96585 (17)	0.32535 (12)	0.0213 (6)	
H17A	0.681549	0.967031	0.285911	0.026*	
C18	0.7463 (4)	1.03317 (17)	0.35622 (12)	0.0235 (6)	
H18A	0.776552	1.080168	0.338116	0.028*	
C19	0.7570 (4)	1.03079 (16)	0.41308 (12)	0.0205 (6)	
H19A	0.796181	1.076646	0.434061	0.025*	
C20	0.7118 (3)	0.96260 (15)	0.44124 (11)	0.0144 (5)	
C21	0.7319 (4)	0.96765 (15)	0.50133 (11)	0.0157 (6)	
H21A	0.769487	1.017465	0.517097	0.019*	
C22	0.7358 (4)	0.93284 (15)	0.59553 (11)	0.0175 (6)	
H22A	0.619579	0.947958	0.607637	0.021*	
H22B	0.817965	0.978951	0.601421	0.021*	
C23	0.8174 (4)	0.86374 (16)	0.63077 (11)	0.0171 (6)	
H23A	0.920277	0.842113	0.614010	0.020*	
H23B	0.864904	0.883347	0.668470	0.020*	
C24	0.6844 (4)	0.79844 (15)	0.63580 (11)	0.0165 (6)	
C25	0.6525 (4)	0.76883 (16)	0.68695 (11)	0.0215 (6)	
H25A	0.716010	0.789744	0.720479	0.026*	
C26	0.5278 (4)	0.70870 (16)	0.68878 (12)	0.0246 (7)	
H26A	0.506907	0.687092	0.723446	0.030*	
C27	0.4339 (4)	0.68053 (17)	0.63949 (12)	0.0246 (7)	
H27A	0.344882	0.640472	0.639727	0.030*	
C28	0.4720 (4)	0.71164 (16)	0.59010 (12)	0.0199 (6)	
H28A	0.408509	0.691964	0.556180	0.024*	
Cl1	0.84605 (9)	0.52555 (4)	0.28292 (3)	0.02048 (15)	
O11	1.0053 (5)	0.5149 (3)	0.25905 (18)	0.0327 (13)	0.586 (4)
O12	0.8916 (5)	0.57231 (19)	0.33492 (12)	0.0341 (11)	0.586 (4)
O13	0.7085 (5)	0.5647 (3)	0.24778 (15)	0.0414 (13)	0.586 (4)
O14	0.7827 (5)	0.45020 (19)	0.30101 (17)	0.0399 (12)	0.586 (4)
O11A	1.0101 (6)	0.4844 (3)	0.2771 (2)	0.0227 (15)	0.414 (4)
O12A	0.8864 (6)	0.60924 (18)	0.28866 (18)	0.0245 (14)	0.414 (4)
O13A	0.7265 (6)	0.5176 (3)	0.22912 (15)	0.0247 (13)	0.414 (4)
O14A	0.7602 (6)	0.4962 (3)	0.32548 (17)	0.0297 (15)	0.414 (4)
Cl2	0.12635 (9)	0.78538 (4)	0.48455 (3)	0.02373 (16)	
O21	0.2961 (2)	0.82746 (11)	0.49259 (8)	0.0234 (4)	
O22	0.1576 (3)	0.70495 (11)	0.47020 (10)	0.0387 (6)	
O23	0.0085 (3)	0.82239 (14)	0.43977 (10)	0.0504 (7)	
O24	0.0460 (3)	0.78881 (13)	0.53443 (10)	0.0478 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01441 (17)	0.01313 (16)	0.01154 (16)	-0.00321 (12)	-0.00060 (12)	-0.00125 (13)
Cu2	0.01958 (18)	0.00892 (15)	0.01046 (16)	-0.00099 (13)	0.00097 (12)	-0.00080 (12)
01	0.0207 (10)	0.0102 (9)	0.0131 (9)	0.0009 (7)	-0.0016 (8)	-0.0004 (7)
02	0.0150 (9)	0.0123 (9)	0.0130 (9)	-0.0024 (7)	0.0014 (7)	-0.0006 (7)

supporting information

O1W	0.0282 (14)	0.0264 (13)	0.0465 (16)	-0.0081 (11)	0.0175 (12)	-0.0170 (12)
N1	0.0192 (12)	0.0215 (12)	0.0161 (12)	-0.0064 (10)	-0.0012 (9)	0.0054 (10)
N2	0.0167 (12)	0.0193 (12)	0.0151 (12)	-0.0051 (9)	0.0015 (9)	-0.0066 (10)
N3	0.0208 (12)	0.0122 (11)	0.0140 (11)	0.0003 (9)	0.0036 (9)	-0.0008 (9)
N4	0.0155 (11)	0.0125 (11)	0.0128 (11)	0.0012 (9)	0.0004 (9)	-0.0025 (9)
C1	0.0126 (13)	0.0127 (13)	0.0150 (13)	-0.0008 (10)	0.0026 (10)	0.0014 (10)
C2	0.0183 (14)	0.0144 (13)	0.0172 (14)	-0.0016 (11)	0.0025 (11)	-0.0009 (11)
C3	0.0171 (14)	0.0192 (14)	0.0253 (16)	0.0008 (11)	0.0036 (12)	0.0076 (12)
C4	0.0169 (14)	0.0158 (14)	0.0289 (16)	0.0038 (11)	0.0086 (12)	0.0090 (12)
C5	0.0209 (15)	0.0095 (13)	0.0297 (16)	-0.0001 (11)	0.0108 (12)	-0.0006 (12)
C6	0.0121 (13)	0.0127 (13)	0.0184 (14)	-0.0019 (10)	0.0046 (10)	0.0012 (11)
C7	0.0177 (14)	0.0120 (13)	0.0240 (15)	-0.0045 (11)	0.0055 (12)	-0.0053 (11)
C8	0.0286 (17)	0.0223 (15)	0.0200 (15)	-0.0095 (13)	-0.0041 (12)	-0.0071 (12)
C9	0.0353 (18)	0.0369 (18)	0.0140 (14)	-0.0166 (15)	0.0017 (13)	-0.0082 (13)
C10	0.0237 (16)	0.0347 (17)	0.0146 (14)	-0.0182 (13)	-0.0026 (12)	0.0063 (13)
C11	0.036 (2)	0.048 (2)	0.0235 (17)	-0.0229 (17)	-0.0080 (14)	0.0092 (16)
C12	0.0251 (18)	0.053 (2)	0.0311 (19)	-0.0159 (16)	-0.0167 (14)	0.0215 (17)
C13	0.0207 (16)	0.0354 (18)	0.040 (2)	-0.0048 (14)	-0.0069 (14)	0.0178 (16)
C14	0.0196 (15)	0.0235 (15)	0.0240 (16)	-0.0066 (12)	-0.0010 (12)	0.0044 (13)
C15	0.0088 (12)	0.0137 (13)	0.0148 (13)	-0.0003 (10)	-0.0006 (10)	0.0031 (10)
C16	0.0153 (14)	0.0177 (14)	0.0169 (14)	-0.0034 (11)	-0.0004 (11)	0.0005 (11)
C17	0.0211 (15)	0.0279 (16)	0.0143 (14)	-0.0051 (12)	0.0003 (11)	0.0057 (12)
C18	0.0248 (16)	0.0210 (15)	0.0232 (16)	-0.0083 (12)	-0.0012 (12)	0.0104 (13)
C19	0.0232 (15)	0.0136 (13)	0.0238 (15)	-0.0038 (11)	0.0002 (12)	0.0015 (12)
C20	0.0135 (13)	0.0133 (13)	0.0160 (14)	0.0015 (10)	0.0005 (10)	0.0011 (11)
C21	0.0173 (14)	0.0083 (12)	0.0206 (14)	-0.0005 (10)	-0.0009 (11)	-0.0032 (11)
C22	0.0230 (15)	0.0138 (13)	0.0154 (14)	-0.0024 (11)	0.0019 (11)	-0.0031 (11)
C23	0.0194 (14)	0.0191 (14)	0.0124 (13)	-0.0025 (11)	0.0009 (11)	-0.0024 (11)
C24	0.0167 (14)	0.0158 (13)	0.0175 (14)	0.0051 (11)	0.0040 (11)	-0.0011 (11)
C25	0.0299 (16)	0.0223 (15)	0.0126 (13)	0.0070 (12)	0.0044 (12)	-0.0011 (12)
C26	0.0381 (18)	0.0204 (15)	0.0181 (15)	0.0036 (13)	0.0136 (13)	0.0034 (12)
C27	0.0319 (17)	0.0185 (15)	0.0259 (16)	-0.0025 (12)	0.0126 (13)	0.0004 (13)
C28	0.0255 (16)	0.0156 (14)	0.0188 (14)	-0.000/(11)	0.0042 (12)	-0.0018 (11)
	0.0191(3)	0.01/5(3)	0.0249 (4)	0.0010(3)	0.0035(3)	0.0016(3)
011	0.022(2)	0.044 (3)	0.035 (3)	-0.008(2)	0.014(2)	-0.016(2)
012	0.051(3)	0.027(2)	0.023(2)	0.0146(18)	0.0019(18)	-0.00/4(1/)
013	0.041(3)	0.048(3)	0.033(3)	0.021(2)	0.001(2)	0.019(2)
014	0.038(3)	0.031(2)	0.032(3)	-0.013(2)	0.013(2)	0.010(2)
0124	0.018(3)	0.023(4)	0.020(3)	-0.001(2)	0.001(2)	-0.003(3)
012A	0.030(3)	0.012(2)	0.020(3)	-0.002(2)	-0.003(2)	-0.003(2)
013A	0.023(3)	0.024(3)	0.021(3)	-0.001(2)	-0.007(2)	-0.001(2)
C12	0.031(3)	0.039(4)	0.021(3)	-0.000(3)	0.011(2)	-0.0043(3)
021	0.0191(4) 0.0161(10)	0.0171(3) 0.0262(11)	0.0371(4) 0.0285(11)	-0.0021(3)	0.0052 (8)	0.00+3(3)
021	0.0504 (16)	0.0196 (11)	0.0480 (15)	-0.0036(10)	0.0032(0)	-0.0149(11)
023	0.0166 (12)	0.0536(16)	0 077 (2)	0 0060 (11)	-0.0057(12)	0.0130(15)
024	0.0596 (17)	0.0368(14)	0.0570(17)	-0.0252(12)	0.0037(12) 0.0431(14)	-0.0218(12)
044	0.0000 (17)	0.0000 (17)	0.00/0 (1/)	0.0202 (12)	(17)	0.0210 (12)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—01	1.9469 (18)	C12—C13	1.379 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—N2	1.959 (2)	C12—H12A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—N1	1.996 (2)	C13—C14	1.378 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—O2	2.0204 (17)	C13—H13A	0.9500
$\begin{array}{c cl} Cul-Cu2 & 3.0225 (s) & C15-C16 & 1.407 (4) \\ Cu2-O2 & 1.9375 (18) & C15-C20 & 1.409 (4) \\ Cu2-O1 & 1.9545 (17) & C16-H16A & 0.9500 \\ Cu2-N3 & 1.987 (2) & C17-C18 & 1.392 (4) \\ Cu2-O21 & 2.6101 (18) & C17-H17A & 0.9500 \\ O1-C1 & 1.348 (3) & C18-C19 & 1.371 (4) \\ O2-C15 & 1.340 (3) & C18-H18A & 0.9500 \\ O1W-H1W1 & 0.77 (4) & C19-C20 & 1.405 (4) \\ O1W-H1W2 & 0.75 (4) & C19-H19A & 0.9500 \\ N1-C10 & 1.347 (4) & C20-C21 & 1.447 (4) \\ N1-C14 & 1.348 (4) & C21-H21A & 0.9500 \\ N2-C7 & 1.277 (3) & C22-C23 & 1.522 (4) \\ N2-C8 & 1.474 (3) & C22-H22A & 0.9900 \\ N3-C28 & 1.434 (3) & C23-H23A & 0.9900 \\ N3-C24 & 1.348 (3) & C23-H23A & 0.9900 \\ N4-C21 & 1.285 (3) & C23-H23A & 0.9900 \\ N4-C22 & 1.472 (3) & C23-H23B & 0.9900 \\ C1-C6 & 1.411 (4) & C25-C26 & 1.384 (4) \\ C2-C3 & 1.386 (4) & C25-H25A & 0.9500 \\ C2-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C2-C3 & 1.386 (4) & C25-H25A & 0.9500 \\ C3-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C2-C3 & 1.386 (4) & C25-H25A & 0.9500 \\ C3-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C2-C3 & 1.386 (4) & C25-H25A & 0.9500 \\ C3-H2A & 0.9500 & C27-C28 & 1.375 (4) \\ C4-H4A & 0.9500 & C27-C28 & 1.375 (4) \\ C4-H4A & 0.9500 & C1-O11 & 1.408 (3) \\ C7-H7A & 0.9500 & C1-O13 & 1.405 (3) \\ C7-H7A & 0.9500 & C1-O11 & 1.408 (3) \\ C7-H7A & 0.9500 & C1-O11 & 1.408 (3) \\ C7-H7A & 0.9500 & C1-O11 & 1.408 (3) \\ C7-H7A & 0.9500 & C1-O12A & 1.448 (3) \\ C8-H8B & 0.9900 & C1-O12A & 1.448 (3) \\ C8-H8B & 0.9900 & C1-O12A & 1.448 (3) \\ C8-H8B & 0.9900 & C1-O12A & 1.448 (3) \\ C8-H8B & 0.9900 & C1-O12A & 1.448 (3) \\ C9-H9B & 0.9900 & C12-O22 & 1.4226 (18) \\ C11-C12 & 1.373 (5) & C12-O21 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O21 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O21 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O21 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 1.4271 (19) \\ C2-H102 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 1.4271 (19) \\ C2-H102 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 0$	Cu1—O1W	2.248 (2)	C14—H14A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1—Cu2	3.0225 (5)	C15—C16	1.407 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu2—O2	1.9375 (18)	C15—C20	1.409 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu2—N4	1.940 (2)	C16—C17	1.380 (4)
$\begin{array}{c} Cu2-N3 & 1.987 (2) & C17-C18 & 1.392 (4) \\ Cu2-O21 & 2.6101 (18) & C17-H17A & 0.9500 \\ O1-C1 & 1.348 (3) & C18-C19 & 1.371 (4) \\ O2-C15 & 1.340 (3) & C18-H18A & 0.9500 \\ O1W-H1W1 & 0.77 (4) & C19-C20 & 1.405 (4) \\ O1W-H1W2 & 0.75 (4) & C19-H19A & 0.9500 \\ N1-C10 & 1.347 (4) & C20-C21 & 1.447 (4) \\ N1-C14 & 1.348 (4) & C21-H21A & 0.9500 \\ N2-C7 & 1.277 (3) & C22-H22A & 0.9900 \\ N3-C28 & 1.474 (3) & C22-H22A & 0.9900 \\ N3-C28 & 1.343 (3) & C22-H22A & 0.9900 \\ N3-C28 & 1.343 (3) & C22-H22A & 0.9900 \\ N3-C24 & 1.348 (3) & C23-L24 & 1.502 (4) \\ N4-C21 & 1.285 (3) & C23-H23A & 0.9900 \\ C1-C2 & 1.390 (4) & C24-C25 & 1.390 (4) \\ C2-C3 & 1.386 (4) & C25-L25A & 0.9500 \\ C2-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C2-C3 & 1.386 (4) & C25-H25A & 0.9500 \\ C2-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C3-C4 & 1.386 (4) & C26-H26A & 0.9500 \\ C2-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C3-C4 & 1.386 (4) & C26-H26A & 0.9500 \\ C2-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C3-C4 & 1.386 (4) & C26-H26A & 0.9500 \\ C2-H2A & 0.9500 & C27-C28 & 1.375 (4) \\ C4-C5 & 1.374 (4) & C27-H27A & 0.9500 \\ C5-C6 & 1.406 (4) & C11-O11A & 1.438 (3) \\ C7-H7A & 0.9500 & C11-O13 & 1.405 (3) \\ C6-C7 & 1.446 (4) & C11-O14A & 1.383 (3) \\ C7-H7A & 0.9500 & C11-O13 & 1.405 (3) \\ C6-C7 & 1.446 (4) & C11-O14 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8A & 0.9900 & C12-O22 & 1.4296 (18) \\ C10-C11 & 1.391 (4) & C12-O23 & 1.441 (2) \\ C11-C12 & 1.373 (5) & C12-O21 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ \end{array}$	Cu2—O1	1.9545 (17)	C16—H16A	0.9500
$\begin{array}{ccccc} Cu2-O21 & 2.6101 (18) & C17-H17A & 0.9500 \\ O1-C1 & 1.348 (3) & C18-C19 & 1.371 (4) \\ O2-C15 & 1.340 (3) & C18-H18A & 0.9500 \\ O1W-H1W1 & 0.77 (4) & C19-C20 & 1.405 (4) \\ O1W-H1W2 & 0.75 (4) & C19-H19A & 0.9500 \\ N1-C10 & 1.347 (4) & C20-C21 & 1.447 (4) \\ N1-C14 & 1.348 (4) & C21-H21A & 0.9500 \\ N2-C7 & 1.277 (3) & C22-C23 & 1.522 (4) \\ N2-C8 & 1.474 (3) & C22-H22A & 0.9900 \\ N3-C28 & 1.343 (3) & C22-H22B & 0.9900 \\ N3-C24 & 1.348 (3) & C23-H23B & 0.9900 \\ N3-C24 & 1.348 (3) & C23-H23B & 0.9900 \\ N4-C21 & 1.285 (3) & C23-H23B & 0.9900 \\ C1-C2 & 1.390 (4) & C24-C25 & 1.390 (4) \\ C1-C6 & 1.411 (4) & C25-C26 & 1.384 (4) \\ C2-C3 & 1.386 (4) & C25-H25A & 0.9500 \\ C2-H2A & 0.9500 & C26-C27 & 1.382 (4) \\ C3-C4 & 1.386 (4) & C26-H25A & 0.9500 \\ C3-H3A & 0.9500 & C27-C28 & 1.375 (4) \\ C4-C5 & 1.374 (4) & C27-H27A & 0.9500 \\ C3-H3A & 0.9500 & C28-H28A & 0.9500 \\ C5-C6 & 1.406 (4) & C11-O11A & 1.383 (3) \\ C5-H5A & 0.9500 & C18-H28A & 0.9500 \\ C5-C6 & 1.406 (4) & C11-O14A & 1.383 (3) \\ C5-H5A & 0.9500 & C11-O13 & 1.405 (3) \\ C6-C7 & 1.446 (4) & C11-O14 & 1.448 (3) \\ C8-H8B & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8B & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8B & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8B & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8B & 0.9900 & C11-O12 & 1.448 (3) \\ C8-H8B & 0.9900 & C11-O12 & 1.448 (3) \\ C9-C10 & 1.502 (4) & C11-O12 & 1.448 (3) \\ C9-H9A & 0.9500 & C2-O22 & 1.4296 (18) \\ C11-C11 & 1.391 (4) & C2-O23 & 1.441 (2) \\ C11-C12 & 1.373 (5) & C12-O21 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 1.4296 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 1.4296 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-O24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-C24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-C24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-C24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-C24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-C24 & 1.4443 (18) \\ C11-H11A & 0.9500 \\ C12-C24 & 0.9500 \\ C1$	Cu2—N3	1.987 (2)	C17—C18	1.392 (4)
O1C1 1.348 (3) C18C19 1.371 (4) O2C15 1.340 (3) C18H18A 0.9500 O1WH1W1 0.77 (4) C19C20 1.405 (4) O1WH1W2 0.75 (4) C19H19A 0.9500 N1C10 1.347 (4) C20C21 1.447 (4) N2C7 1.277 (3) C22H22A 0.9900 N3C28 1.343 (3) C22H22B 0.9900 N3C24 1.348 (4) C21H21A 0.9900 N4C21 1.285 (3) C23H22B 0.9900 N4C21 1.285 (3) C23H23A 0.9900 N4C21 1.285 (3) C23H23B 0.9900 C1C2 1.390 (4) C24C25 1.390 (4) C1C6 1.411 (4) C25C26 1.384 (4) C2C3 1.386 (4) C25H25A 0.9500 C3C4 1.386 (4) C26H26A 0.9500 C3C4 1.386 (4) C27H27A 0.9500 C3H2A 0.9500 C28-H28A	Cu2—O21	2.6101 (18)	C17—H17A	0.9500
02-C15 1.340 (3) $C18-H18A$ 0.9500 $01W-H1W1$ 0.77 (4) $C19-C20$ 1.405 (4) $01W-H1W2$ 0.75 (4) $C19-H19A$ 0.9500 $N1-C10$ 1.347 (4) $C20-C21$ 1.447 (4) $N1-C10$ 1.347 (4) $C20-C21$ 1.447 (4) $N1-C10$ 1.347 (4) $C22-C23$ 1.522 (4) $N2-C8$ 1.474 (3) $C22-H22A$ 0.9900 $N3-C28$ 1.343 (3) $C23-H23B$ 0.9900 $N3-C24$ 1.348 (3) $C23-H23B$ 0.9900 $N4-C21$ 1.285 (3) $C23-H23B$ 0.9900 $N4-C22$ 1.472 (3) $C23-H23B$ 0.9900 $C1-C6$ 1.411 (4) $C25-C26$ 1.384 (4) $C2-H2A$ 0.9500 $C26-C27$ 1.382 (4) $C2-H2A$ 0.9500 $C26-H26A$ 0.9500 $C2-H2A$ 0.9500 $C27-C28$ 1.375 (4) $C2-H2A$ 0.9500 $C27-H27A$ 0.9500 $C3-H5A$ 0.9500 $C11-O13$ 1.405 (3)	O1—C1	1.348 (3)	C18—C19	1.371 (4)
OIW—HIW1 0.77 (4) C19—C20 1.405 (4) OIW—HIW2 0.75 (4) C19—H19A 0.9500 N1—C10 1.347 (4) C20—C21 1.447 (4) N1—C14 1.348 (4) C21—H21A 0.9500 N2—C7 1.277 (3) C22—C23 1.522 (4) N2—C7 1.277 (3) C22—H22A 0.9900 N3—C28 1.343 (3) C23—H23A 0.9900 N3—C24 1.348 (3) C23—H23A 0.9900 N4—C21 1.285 (3) C23—H23B 0.9900 N4—C22 1.472 (3) C23—H23B 0.9900 C1—C6 1.411 (4) C25—C26 1.384 (4) C2—C3 1.386 (4) C25—H25A 0.9500 C2—H2A 0.9500 C26—C27 1.382 (4) C3—H3A 0.9500 C27—C28 1.375 (4) C4—C5 1.374 (4) C27—H27A 0.9500 C3—H3A 0.9500 C28—H28A 0.9500 C4—C5 1.374 (4) C11—O14A 1.383 (3)	O2—C15	1.340 (3)	C18—H18A	0.9500
OIW—H1W2 0.75 (4) C19—H19A 0.9500 N1—C10 1.347 (4) C20—C21 1.447 (4) N1—C14 1.348 (4) C21—H21A 0.9500 N2—C7 1.277 (3) C22—C23 1.522 (4) N2—C8 1.474 (3) C22—H22A 0.9900 N3—C24 1.343 (3) C23—H23A 0.9900 N4—C21 1.285 (3) C23—H23A 0.9900 N4—C22 1.472 (3) C23—H23B 0.9900 C1—C6 1.411 (4) C24—C25 1.390 (4) C2—C73 1.386 (4) C25—H25A 0.9500 C2—H2A 0.9500 C26—C27 1.382 (4) C3—C4 1.386 (4) C26—H26A 0.9500 C3—H3A 0.9500 C27—C28 1.375 (4) C4—C5 1.374 (4) C27—H27A 0.9500 C4—C5 1.374 (4) C27—H27A 0.9500 C4—C5 1.374 (4) C27—H27A 0.9500 C4—C5 1.374 (4) C1—O11A 1.438 (3) C5—H5A 0.9500 C1I—O11A 1.435 (3) <td< td=""><td>O1W—H1W1</td><td>0.77 (4)</td><td>C19—C20</td><td>1.405 (4)</td></td<>	O1W—H1W1	0.77 (4)	C19—C20	1.405 (4)
N1C10 $1.347(4)$ C20C21 $1.447(4)$ N1C14 $1.348(4)$ C21H21A 0.9500 N2C7 $1.277(3)$ C22C23 $1.522(4)$ N2C8 $1.474(3)$ C22H22A 0.9900 N3C28 $1.343(3)$ C23H22A 0.9900 N3C24 $1.348(3)$ C23H23A 0.9900 N4C21 $1.285(3)$ C23H23A 0.9900 C1C2 $1.390(4)$ C24C25 $1.390(4)$ C1C6 $1.411(4)$ C25C26 $1.384(4)$ C2H2A 0.9500 C26H25A 0.9500 C3C4 $1.386(4)$ C26H26A 0.9500 C3C4 $1.386(4)$ C27C28 $1.375(4)$ C4C5 $1.374(4)$ C27H27A 0.9500 C3C4 $1.380(3)$ C5 C5 C5C56 $1.446(4)$ C11O11A $1.338(3)$ C5C6 $1.446(4)$ C11O11A $1.448(3)$ C8H28A 0.9900 <td>O1W—H1W2</td> <td>0.75 (4)</td> <td>C19—H19A</td> <td>0.9500</td>	O1W—H1W2	0.75 (4)	C19—H19A	0.9500
N1C14 1.348 (4) C21H21A 0.9500 N2C7 1.277 (3) C22C23 1.522 (4) N2C8 1.474 (3) C22H22A 0.9900 N3C28 1.343 (3) C22H22B 0.9900 N3C24 1.348 (3) C23C24 1.502 (4) N4C21 1.285 (3) C23H23A 0.9900 N4C22 1.472 (3) C23H23B 0.9900 C1C2 1.390 (4) C24C25 1.390 (4) C2C3 1.386 (4) C25C26 1.384 (4) C2C4 1.386 (4) C26H25A 0.9500 C2H2A 0.9500 C27C28 1.375 (4) C3C4 1.386 (4) C26H26A 0.9500 C3H3A 0.9500 C27C28 1.375 (4) C4C5 1.374 (4) C27H27A 0.9500 C5C6 1.406 (4) C11014 1.488 (3) C6+-C7 1.446 (4) C11011 1.408 (3) C7H7A 0.9500 C11011A 1.435 (3) C8C9 1.524 (4) C11012A 1.4	N1—C10	1.347 (4)	C20—C21	1.447 (4)
N2-C7 1.277 (3) C22-C23 1.522 (4) N2-C8 1.474 (3) C22-H22A 0.9900 N3-C28 1.343 (3) C22-H22B 0.9900 N3-C24 1.348 (3) C23-C24 1.502 (4) N4-C21 1.285 (3) C23-H23A 0.9900 N4-C22 1.472 (3) C23-H23B 0.9900 C1-C2 1.390 (4) C24-C25 1.390 (4) C2-C3 1.386 (4) C25-H25A 0.9500 C2-H2A 0.9500 C26-C27 1.382 (4) C3-C4 1.386 (4) C26-H26A 0.9500 C3-H3A 0.9500 C27-C28 1.375 (4) C4-H4A 0.9500 C28-H28A 0.9500 C4-H4A 0.9500 C1-O14A 1.383 (3) C5-C6 1.406 (4) C11-O11A 1.405 (3) C6-C7 1.446 (4) C1-O14 1.448 (3) C8-C9 1.524 (4) C11-O13 1.445 (3) C8-H8A 0.9900 C11-O13A 1.448 (3) C8-H8B 0.9900 C12-O24 1.4286 (3)	N1—C14	1.348 (4)	C21—H21A	0.9500
N2-C8 1.474 (3) $C22-H22A$ 0.9900 N3-C28 1.343 (3) $C22-H22B$ 0.9900 N3-C24 1.348 (3) $C23-C24$ 1.502 (4)N4-C21 1.285 (3) $C23-H23A$ 0.9900 N4-C22 1.472 (3) $C23-H23B$ 0.9900 C1-C2 1.390 (4) $C24-C25$ 1.390 (4)C2-C3 1.386 (4) $C25-C26$ 1.384 (4)C2-C3 1.386 (4) $C25-H25A$ 0.9500 C2-H2A 0.9500 $C26-C27$ 1.382 (4)C3-C4 1.386 (4) $C27-C28$ 1.375 (4)C4-C5 1.374 (4) $C27-H27A$ 0.9500 C3-H3A 0.9500 $C28-H28A$ 0.9500 C4-H4A 0.9500 $C28-H28A$ 0.9500 C5-C6 1.406 (4) $C11-O14A$ 1.383 (3)C5-H5A 0.9500 $C11-O11$ 1.408 (3)C7-H7A 0.9500 $C11-O11A$ 1.435 (3)C8-C9 1.524 (4) $C11-O14A$ 1.448 (3)C8-H8B 0.9900 $C11-O12A$ 1.448 (3)C8-H8B 0.9900 $C12-O24$ 1.4271 (19)C9-H9A 0.9900 $C12-O24$ 1.4271 (19)C9-H9B 0.9900 $C12-O23$ 1.441 (2)C11-C12 1.373 (5) $C12-O21$ 1.4443 (18)C1-C1-N2 91.85 (8) $H9A-C9-H9B$ 107.9	N2—C7	1.277 (3)	C22—C23	1.522 (4)
N3-C28 1.343 (3)C22-H22B 0.9900 N3-C24 1.348 (3)C23-C24 1.502 (4)N4-C21 1.285 (3)C23-H23A 0.9900 N4-C22 1.472 (3)C23-H23B 0.9900 C1-C2 1.390 (4)C24-C25 1.390 (4)C2-C3 1.386 (4)C25-C26 1.384 (4)C2-C3 1.386 (4)C25-H25A 0.9500 C2-H2A 0.9500 C26-C27 1.382 (4)C3-C4 1.386 (4)C27-H27A 0.9500 C3-H3A 0.9500 C27-C28 1.375 (4)C4-C5 1.374 (4)C27-H27A 0.9500 C4-H4A 0.9500 C28-H28A 0.9500 C5-C6 1.406 (4)C11-O14 1.438 (3)C5-H5A 0.9500 C1-O11 1.408 (3)C7-H7A 0.9500 C11-O11 1.408 (3)C7-H7A 0.9500 C11-O11A 1.435 (3)C8-C9 1.524 (4)C11-O14 1.448 (3)C8-H8A 0.9900 C11-O12A 1.448 (3)C8-H8B 0.9900 C12-O24 1.4271 (19)C9-H9A 0.9900 C12-O24 1.4271 (19)C9-H9B 0.9900 C12-O23 1.441 (2)C11-C12 1.373 (5)C12-O21 1.4443 (18)C1-C11-N2 91.85 (8)H9A-C9-H9B 107.9	N2—C8	1.474 (3)	C22—H22A	0.9900
N3-C241.348 (3)C23-C241.502 (4)N4-C211.285 (3)C23-H23A0.9900N4-C221.472 (3)C23-H23B0.9900C1-C21.390 (4)C24-C251.390 (4)C2-C31.386 (4)C25-C261.384 (4)C2-C40.9500C26-C271.382 (4)C2-C41.386 (4)C26-H26A0.9500C3-C41.386 (4)C26-H26A0.9500C3-C41.374 (4)C27-C281.375 (4)C4-C51.374 (4)C27-H27A0.9500C5-C61.406 (4)C11-O141.383 (3)C5-H5A0.9500C1-O131.405 (3)C6-C71.446 (4)C11-O111.408 (3)C7-H7A0.9500C11-O11A1.435 (3)C8-C91.524 (4)C11-O141.448 (3)C8-H8A0.9900C11-O12A1.448 (3)C8-H8B0.9900C11-O12A1.448 (3)C9-C101.502 (4)C11-O121.486 (3)C9-H9A0.9900C12-O241.4271 (19)C9-H9A0.9900C12-O221.4296 (18)C10-C111.391 (4)C12-O231.441 (2)C11-C121.373 (5)C12-O211.4443 (18)C11-C11-N291.85 (8)H9A-C9-H9B107.9	N3—C28	1.343 (3)	C22—H22B	0.9900
N4C211.285 (3)C23H23A0.9900N4C221.472 (3)C23H23B0.9900C1C21.390 (4)C24C251.390 (4)C1C61.411 (4)C25C261.384 (4)C2C31.386 (4)C25H25A0.9500C2H2A0.9500C26C271.382 (4)C3C41.386 (4)C27C281.375 (4)C4C51.374 (4)C27H27A0.9500C5C61.4406 (4)C11O14A1.383 (3)C5H5A0.9500C11O131.405 (3)C6C71.446 (4)C11O111.408 (3)C7H7A0.9500C11O141.435 (3)C8C91.524 (4)C11O141.448 (3)C8-H8A0.9900C11O12A1.448 (3)C8-H8B0.9900C11O12A1.448 (3)C9C101.502 (4)C11O121.486 (3)C9H9A0.9900C12O241.4271 (19)C9H9A0.9900C12O221.4296 (18)C10C111.391 (4)C12O231.441 (2)C11C121.373 (5)C12O211.4443 (18)C11C11N291.85 (8)H9AC9H9B107.9	N3—C24	1.348 (3)	C23—C24	1.502 (4)
N4—C22 $1.472 (3)$ C23—H23B 0.9900 C1—C2 $1.390 (4)$ C24—C25 $1.390 (4)$ C1—C6 $1.411 (4)$ C25—C26 $1.384 (4)$ C2—C3 $1.386 (4)$ C25—H25A 0.9500 C2—H2A 0.9500 C26—C27 $1.382 (4)$ C3—C4 $1.386 (4)$ C26—H26A 0.9500 C3—H3A 0.9500 C27—C28 $1.375 (4)$ C4—C5 $1.374 (4)$ C27—H27A 0.9500 C4—H4A 0.9500 C28—H28A 0.9500 C5—C6 $1.406 (4)$ C11—O14A $1.383 (3)$ C5—H5A 0.9500 C11—O13 $1.405 (3)$ C6—C7 $1.446 (4)$ C11—O11 $1.408 (3)$ C7—H7A 0.9500 C11—O11A $1.435 (3)$ C8—C9 $1.524 (4)$ C11—O14 $1.448 (3)$ C8—H8A 0.9900 C11—O12A $1.448 (3)$ C8—H8B 0.9900 C11—O12A $1.448 (3)$ C9—C10 $1.502 (4)$ C11—O12 $1.426 (18)$ C10—C11 $1.391 (4)$ C12—O23 $1.441 (2)$ C11—C12 $1.373 (5)$ C12—O21 $1.4443 (18)$ C11—H11A 0.9500 C12—O21 $1.4443 (18)$	N4—C21	1.285 (3)	С23—Н23А	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C22	1.472 (3)	C23—H23B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.390 (4)	C24—C25	1.390 (4)
C2—C31.386 (4)C25—H25A0.9500C2—H2A0.9500C26—C271.382 (4)C3—C41.386 (4)C26—H26A0.9500C3—H3A0.9500C27—C281.375 (4)C4—C51.374 (4)C27—H27A0.9500C4—H4A0.9500C28—H28A0.9500C5—C61.406 (4)C11—O14A1.383 (3)C5—H5A0.9500C11—O131.405 (3)C6—C71.446 (4)C11—O111.408 (3)C7—H7A0.9500C11—O11A1.435 (3)C8—C91.524 (4)C11—O12A1.448 (3)C8—H8A0.9900C11—O13A1.448 (3)C8—H8B0.9900C11—O12A1.448 (3)C9—C101.502 (4)C11—O121.486 (3)C9—H9A0.9900C12—O241.4271 (19)C9—H9B0.9900C12—O231.441 (2)C11—C121.373 (5)C12—O211.4443 (18)C11—H11A0.9500107.9	C1—C6	1.411 (4)	C25—C26	1.384 (4)
C2—H2A0.9500C26—C271.382 (4)C3—C41.386 (4)C26—H26A0.9500C3—H3A0.9500C27—C281.375 (4)C4—C51.374 (4)C27—H27A0.9500C4—H4A0.9500C28—H28A0.9500C5—C61.406 (4)C11—O14A1.383 (3)C5—H5A0.9500C11—O131.405 (3)C6—C71.446 (4)C11—O111.408 (3)C7—H7A0.9500C11—O11A1.435 (3)C8—C91.524 (4)C11—O14A1.448 (3)C8—H8A0.9900C11—O12A1.448 (3)C8—H8B0.9900C11—O12A1.486 (3)C9—H9A0.9900C12—O241.4271 (19)C9—H9A0.9900C12—O231.441 (2)C10—C111.391 (4)C12—O231.441 (2)C11—H11A0.9500C12—O211.4443 (18)C11—H11A0.9500C12—O211.4443 (18)	C2—C3	1.386 (4)	C25—H25A	0.9500
C3-C41.386 (4)C26-H26A0.9500C3-H3A0.9500C27-C281.375 (4)C4-C51.374 (4)C27-H27A0.9500C4-H4A0.9500C28-H28A0.9500C5-C61.406 (4)Cl1-O14A1.383 (3)C5-H5A0.9500Cl1-O131.405 (3)C6-C71.446 (4)Cl1-O111.408 (3)C7-H7A0.9500Cl1-O11A1.435 (3)C8-C91.524 (4)Cl1-O141.448 (3)C8-H8A0.9900Cl1-O12A1.448 (3)C8-H8B0.9900Cl1-O12A1.486 (3)C9-C101.502 (4)Cl1-O121.486 (3)C9-H9A0.9900Cl2-O241.4271 (19)C9-H9B0.9900Cl2-O231.441 (2)C11-C121.373 (5)Cl2-O211.4443 (18)C11-H11A0.95001.07.9	C2—H2A	0.9500	C26—C27	1.382 (4)
C3—H3A 0.9500 C27—C28 1.375 (4) C4—C5 1.374 (4) C27—H27A 0.9500 C4—H4A 0.9500 C28—H28A 0.9500 C5—C6 1.406 (4) C11—O14A 1.383 (3) C5—H5A 0.9500 C11—O13 1.405 (3) C6—C7 1.446 (4) C11—O11 1.408 (3) C7—H7A 0.9500 C11—O14A 1.435 (3) C8—C9 1.524 (4) C11—O14 1.448 (3) C8—H8A 0.9900 C11—O12A 1.448 (3) C8—H8B 0.9900 C11—O12A 1.448 (3) C9—C10 1.502 (4) C11—O12 1.486 (3) C9—H9A 0.9900 C12—O24 1.4271 (19) C9—H9B 0.9900 C12—O22 1.4296 (18) C10—C11 1.391 (4) C12—O23 1.441 (2) C11—H1A 0.9500 C12—O21 1.4443 (18) C11—H1A 0.9500 C12—O21 1.4443 (18)	C3—C4	1.386 (4)	C26—H26A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—НЗА	0.9500	C27—C28	1.375 (4)
C4—H4A 0.9500 $C28$ —H28A 0.9500 C5—C6 1.406 (4) $C11$ —O14A 1.383 (3)C5—H5A 0.9500 $C11$ —O13 1.405 (3)C6—C7 1.446 (4) $C11$ —O11 1.408 (3)C7—H7A 0.9500 $C11$ —O14A 1.435 (3)C8—C9 1.524 (4) $C11$ —O14 1.448 (3)C8—H8A 0.9900 $C11$ —O12A 1.448 (3)C8—H8B 0.9900 $C11$ —O12A 1.486 (3)C9—C10 1.502 (4) $C11$ —O12 1.486 (3)C9—H9A 0.9900 $C12$ —O24 1.4271 (19)C9—H9B 0.9900 $C12$ —O23 1.441 (2)C10—C11 1.391 (4) $C12$ —O23 1.441 (2)C11—H11A 0.9500 $C12$ —O21 1.4443 (18)C11—H11A 0.9500 $C12$ —O24 1.79	C4—C5	1.374 (4)	C27—H27A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4A	0.9500	C28—H28A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.406 (4)	Cl1—O14A	1.383 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5А	0.9500	Cl1—O13	1.405 (3)
C7—H7A 0.9500 Cl1—O11A 1.435 (3) C8—C9 1.524 (4) Cl1—O14 1.448 (3) C8—H8A 0.9900 Cl1—O12A 1.448 (3) C8—H8B 0.9900 Cl1—O13A 1.480 (3) C9—C10 1.502 (4) Cl1—O12 1.486 (3) C9—H9A 0.9900 Cl2—O24 1.4271 (19) C9—H9B 0.9900 Cl2—O22 1.4296 (18) C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500 V V V	C6—C7	1.446 (4)	Cl1—O11	1.408 (3)
C8—C9 1.524 (4) Cl1—O14 1.448 (3) C8—H8A 0.9900 Cl1—O12A 1.448 (3) C8—H8B 0.9900 Cl1—O13A 1.480 (3) C9—C10 1.502 (4) Cl1—O12 1.486 (3) C9—H9A 0.9900 Cl2—O24 1.4271 (19) C9—H9B 0.9900 Cl2—O22 1.4296 (18) C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500 V V O1—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	С7—Н7А	0.9500	Cl1—O11A	1.435 (3)
C8—H8A 0.9900 Cl1—O12A 1.448 (3) C8—H8B 0.9900 Cl1—O13A 1.480 (3) C9—C10 1.502 (4) Cl1—O12 1.486 (3) C9—H9A 0.9900 Cl2—O24 1.4271 (19) C9—H9B 0.9900 Cl2—O22 1.4296 (18) C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500 V V O1—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	C8—C9	1.524 (4)	Cl1—O14	1.448 (3)
C8—H8B 0.9900 Cl1—O13A 1.480 (3) C9—C10 1.502 (4) Cl1—O12 1.486 (3) C9—H9A 0.9900 Cl2—O24 1.4271 (19) C9—H9B 0.9900 Cl2—O22 1.4296 (18) C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500 U U O1—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	C8—H8A	0.9900	Cl1—O12A	1.448 (3)
C9—C10 1.502 (4) C11—O12 1.486 (3) C9—H9A 0.9900 C12—O24 1.4271 (19) C9—H9B 0.9900 C12—O22 1.4296 (18) C10—C11 1.391 (4) C12—O23 1.441 (2) C11—C12 1.373 (5) C12—O21 1.4443 (18) C11—H11A 0.9500 01—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	C8—H8B	0.9900	Cl1—O13A	1.480 (3)
C9—H9A 0.9900 Cl2—O24 1.4271 (19) C9—H9B 0.9900 Cl2—O22 1.4296 (18) C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500	C9—C10	1.502 (4)	Cl1—O12	1.486 (3)
C9—H9B 0.9900 Cl2—O22 1.4296 (18) C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500 01—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	С9—Н9А	0.9900	Cl2—O24	1.4271 (19)
C10—C11 1.391 (4) Cl2—O23 1.441 (2) C11—C12 1.373 (5) Cl2—O21 1.4443 (18) C11—H11A 0.9500 01—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	С9—Н9В	0.9900	Cl2—O22	1.4296 (18)
C11—C12 1.373 (5) C12—O21 1.4443 (18) C11—H11A 0.9500 107.9	C10—C11	1.391 (4)	Cl2—O23	1.441 (2)
C11—H11A 0.9500 O1—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	C11—C12	1.373 (5)	Cl2—O21	1.4443 (18)
O1—Cu1—N2 91.85 (8) H9A—C9—H9B 107.9	C11—H11A	0.9500		
	O1—Cu1—N2	91.85 (8)	Н9А—С9—Н9В	107.9

O1 Cu1 N1	155 14 (0)	N1 C10 C11	120.5(3)
N2 - Cu1 - N1	95 26 (10)	N1-C10-C9	120.3(3) 117.8(3)
$\Omega_1 = C_{11} = \Omega_1$	75.05 (7)	$C_{11} = C_{10} = C_{9}$	117.0(3)
$V_1 = C_{u1} = O_2$	15.95(7)	$C_{11} = C_{10} = C_{20}$	121.7(3)
$N_2 = Cu1 = O_2$	107.70(0)	C_{12} C_{11} C_{10} C_{12} C_{11} C_{11} C_{11} C_{11} C_{12} C_{11} C_{11} C_{12} C_{11} C_{12} C_{12} C_{11} C_{12} C_{12} C_{13} C	120.4 (5)
NI = CuI = O2	90.25 (8)		119.8
VI-CuI-OIW	99.89 (9)	CIU-CII-HIIA	119.8
N2—Cul—Olw	94.19 (9)		118.8 (3)
NI-Cul-OIW	103.30 (10)	CII—CI2—HI2A	120.6
O2—Cul—OIW	87.20 (9)	C13—C12—H12A	120.6
O1—Cu1—Cu2	39.31 (5)	C14—C13—C12	118.8 (3)
N2—Cu1—Cu2	129.24 (7)	C14—C13—H13A	120.6
N1—Cu1—Cu2	123.81 (7)	C12—C13—H13A	120.6
O2—Cu1—Cu2	39.21 (5)	N1-C14-C13	122.6 (3)
O1W—Cu1—Cu2	105.09 (8)	N1-C14-H14A	118.7
O2—Cu2—N4	94.63 (8)	C13—C14—H14A	118.7
O2—Cu2—O1	77.71 (7)	O2-C15-C16	120.0 (2)
N4—Cu2—O1	163.92 (8)	O2—C15—C20	121.5 (2)
O2—Cu2—N3	161.00 (9)	C16—C15—C20	118.5 (2)
N4—Cu2—N3	95.65 (9)	C17—C16—C15	121.2 (3)
01—Cu2—N3	95.83 (8)	C17—C16—H16A	119.4
$02-Cu^2-021$	77.88 (7)	C15—C16—H16A	119.4
$N4-Cu^2-O^21$	95 97 (8)	C16-C17-C18	120.3(3)
$01 - Cu^2 - 021$	96.18 (7)	$C_{16} - C_{17} - H_{17A}$	119.8
$N_3 C_{11} 2 O_{21}$	90.10 (7) 85 18 (8)	C_{18} C_{17} H_{17A}	119.0
$\Omega_2 = \Omega_2 = \Omega_2 \Gamma$	41.24(5)	$C_{10} = C_{17} = M_{17} \times C_{17}$	119.0 110.2(3)
$N_{4} = C_{12} = C_{11}$	41.24(3) 135.80(7)	C19 - C18 - C17	119.2 (3)
N4 - Cu2 - Cu1	133.00(7)	C17 C18 U18A	120.4
$V_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	59.15 (5) 125.04 (C)	$C1^{\prime}$ $C1^{\circ}$ $C1^{\circ}$ $C1^{\circ}$ $C2^{\circ}$	120.4
	125.94 (6)	C18 - C19 - C20	122.0 (3)
021—Cu2—Cu1	/5./4 (4)	C18—C19—H19A	119.0
CI-OI-Cul	12/.//(16)	C20—C19—H19A	119.0
C1—O1—Cu2	130.37 (16)	C19—C20—C15	118.8 (2)
Cu1—O1—Cu2	101.56 (8)	C19—C20—C21	116.4 (2)
C15—O2—Cu2	127.02 (16)	C15—C20—C21	124.8 (2)
C15—O2—Cu1	132.68 (16)	N4—C21—C20	127.7 (2)
Cu2—O2—Cu1	99.55 (8)	N4—C21—H21A	116.1
Cu1—O1W—H1W1	122 (3)	C20—C21—H21A	116.1
Cu1—O1W—H1W2	106 (3)	N4—C22—C23	111.7 (2)
H1W1—O1W—H1W2	106 (4)	N4—C22—H22A	109.3
C10—N1—C14	118.9 (3)	C23—C22—H22A	109.3
C10—N1—Cu1	122.3 (2)	N4—C22—H22B	109.3
C14—N1—Cu1	118.78 (19)	C23—C22—H22B	109.3
C7—N2—C8	116.3 (2)	H22A—C22—H22B	107.9
C7—N2—Cu1	124.14 (19)	C24—C23—C22	113.0 (2)
C8—N2—Cu1	119.54 (18)	C24—C23—H23A	109.0
C28—N3—C24	119.4 (2)	C22—C23—H23A	109.0
C28—N3—Cu2	118.00 (18)	C24—C23—H23B	109.0
C_24 —N3—Cu2	122.56 (18)	C22—C23—H23B	109.0
$C_{21} - N_{4} - C_{22}$	117.3 (2)	H23A—C23—H23B	107.8
	/··· (-/		

C21—N4—Cu2	123.24 (18)	N3—C24—C25	120.6 (3)
C22—N4—Cu2	119.30 (16)	N3—C24—C23	117.0 (2)
O1—C1—C2	121.1 (2)	C25—C24—C23	122.5 (3)
01—C1—C6	120.6 (2)	C26—C25—C24	119.7 (3)
C2-C1-C6	118.4 (2)	C26—C25—H25A	120.2
$C_3 - C_2 - C_1$	121 3 (3)	C24—C25—H25A	120.2
$C_3 - C_2 - H_2 A$	119.4	$C_{27} - C_{26} - C_{25}$	1191(3)
C1 - C2 - H2A	119.4	C_{27} C_{26} H_{26A}	120.4
$C_2 - C_3 - C_4$	120.7(3)	C_{25} C_{26} H_{26A}	120.1
$C_2 = C_3 = H_3 \Delta$	119.6	$C_{23} = C_{27} = C_{26}$	120.1 118.7(3)
CA = C3 = H3A	119.6	C_{26} C_{27} C_{20}	120.7
$C_{1} = C_{2} = C_{1}$	119.0	$C_{26} = C_{27} = H_{27A}$	120.7
$C_5 = C_4 = C_5$	110.0 (3)	$C_{20} = C_{27} = H_{27} / A$	120.7
$C_3 = C_4 = H_{4A}$	120.0	$N_{3} = C_{20} = C_{27}$	122.3 (3)
$C_3 - C_4 - H_4 A$	120.0	$N_{3} = C_{28} = H_{28A}$	118.8
C4 - C5 - C6	121.8 (3)	$C_2/-C_{28}$ -H28A	118.8
C4—C5—H5A	119.1		113.6 (2)
C6—C5—H5A	119.1	Ol4A—Cl1—Ol1A	113.2 (3)
C5—C6—C1	119.1 (2)	O13—Cl1—O14	110.8 (2)
C5—C6—C7	117.0 (2)	011—Cl1—014	110.2 (2)
C1—C6—C7	123.9 (2)	014A—Cl1—012A	113.0 (3)
N2—C7—C6	127.9 (2)	011A—C11—012A	108.2 (3)
N2—C7—H7A	116.1	O14A—Cl1—O13A	109.8 (2)
С6—С7—Н7А	116.1	O11A—Cl1—O13A	106.7 (3)
N2—C8—C9	111.4 (2)	O12ACl1O13A	105.4 (2)
N2—C8—H8A	109.3	O13—Cl1—O12	108.9 (2)
С9—С8—Н8А	109.3	O11—Cl1—O12	108.2 (2)
N2—C8—H8B	109.3	O14—Cl1—O12	104.8 (2)
С9—С8—Н8В	109.3	O24—Cl2—O22	110.39 (13)
H8A—C8—H8B	108.0	O24—Cl2—O23	109.59 (15)
C10—C9—C8	112.0 (2)	O22—Cl2—O23	109.41 (14)
С10—С9—Н9А	109.2	O24—Cl2—O21	109.51 (13)
С8—С9—Н9А	109.2	O22—Cl2—O21	109.20 (12)
C10—C9—H9B	109.2	O23—Cl2—O21	108.70 (13)
C8—C9—H9B	109.2	$C_{12} = 0.21 = C_{12}$	141 99 (12)
	107.2		(1-)
Cu1 - 01 - C1 - C2	162 18 (18)	$C_{112} = O_{12} = C_{12} = C_{20}$	-10.0(3)
$Cu^2 = 01 = 01 = 02$	-103(3)	Cu1 - 02 - C15 - C20	-177.95(17)
$Cu_{1} = 0_{1} = 0_{1} = 0_{1} = 0_{1}$	-177(3)	02 - C15 - C16 - C17	178 6 (2)
$Cu^2 - 01 - C1 - C6$	169.79(17)	$C_{2}^{0} - C_{15}^{0} - C_{16}^{16} - C_{17}^{17}$	-1.5(4)
$C_{12} = C_1 = C_2 = C_3$	109.79(17) 178.5(2)	C_{15} C_{16} C_{17} C_{18}	1.5(4)
$C_{1} = C_{1} = C_{2} = C_{3}$	-1.7(4)	$C_{15} = C_{10} = C_{17} = C_{18}$	-0.6(4)
$C_0 = C_1 = C_2 = C_3$	1.7(4)	$C_{10} - C_{17} - C_{18} - C_{19}$	-0.6(4)
C1 = C2 = C3 = C4	0.7(4)	C17 - C10 - C19 - C20	-0.0(4)
$C_2 = C_3 = C_4 = C_3$	0.3(4)	C18 - C19 - C20 - C13	0.7(4)
$C_{4} = C_{5} = C_{6} = C_{1}$	-0.7(4)	10 - 17 - 120 - 121	1/9.0 (3)
$\begin{array}{c} \mathbf{C} \mathbf{A} = \mathbf{C} \mathbf{S} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$	-0.2(4)	02 - 015 - 020 - 019	-1/9.7(2)
	-1/9.1(2)	10 - 15 - 120 - 119	0.4 (4)
01-01-06-05	-1/8.7 (2)	02-015-020-021	2.1 (4)
C2-C1-C6-C5	1.4 (4)	C16-C15-C20-C21	-177.8(2)

O1—C1—C6—C7	0.1 (4)	C22—N4—C21—C20	179.8 (2)
C2-C1-C6-C7	-179.8 (2)	Cu2—N4—C21—C20	4.4 (4)
C8—N2—C7—C6	-177.8 (3)	C19—C20—C21—N4	-177.5 (3)
Cu1—N2—C7—C6	5.1 (4)	C15-C20-C21-N4	0.8 (4)
C5—C6—C7—N2	-174.8 (3)	C21—N4—C22—C23	-143.3 (2)
C1—C6—C7—N2	6.4 (4)	Cu2—N4—C22—C23	32.2 (3)
C7—N2—C8—C9	-144.5 (3)	N4—C22—C23—C24	-73.3 (3)
Cu1—N2—C8—C9	32.8 (3)	C28—N3—C24—C25	1.8 (4)
N2-C8-C9-C10	-73.9 (3)	Cu2—N3—C24—C25	-176.81 (19)
C14—N1—C10—C11	1.7 (4)	C28—N3—C24—C23	-178.4 (2)
Cu1—N1—C10—C11	179.8 (2)	Cu2—N3—C24—C23	3.0 (3)
C14—N1—C10—C9	-177.8 (2)	C22—C23—C24—N3	53.7 (3)
Cu1—N1—C10—C9	0.3 (3)	C22—C23—C24—C25	-126.4 (3)
C8—C9—C10—N1	56.1 (3)	N3—C24—C25—C26	-0.4 (4)
C8—C9—C10—C11	-123.4 (3)	C23—C24—C25—C26	179.8 (3)
N1-C10-C11-C12	-0.7 (4)	C24—C25—C26—C27	-1.5 (4)
C9—C10—C11—C12	178.8 (3)	C25—C26—C27—C28	2.0 (4)
C10-C11-C12-C13	-0.5 (5)	C24—N3—C28—C27	-1.3 (4)
C11—C12—C13—C14	0.6 (5)	Cu2—N3—C28—C27	177.4 (2)
C10-N1-C14-C13	-1.5 (4)	C26—C27—C28—N3	-0.6 (4)
Cu1—N1—C14—C13	-179.7 (2)	O24—Cl2—O21—Cu2	100.6 (2)
C12-C13-C14-N1	0.4 (5)	O22—Cl2—O21—Cu2	-20.4 (2)
Cu2-O2-C15-C16	169.93 (18)	O23—Cl2—O21—Cu2	-139.70 (19)
Cu1—O2—C15—C16	1.9 (4)		

Hydrogen-bond geometry (Å, °)

D—H	H···A	D····A	D—H···A	
0.77 (4)	1.98 (4)	2.735 (4)	168 (4)	
0.77 (4)	2.06 (4)	2.769 (5)	153 (4)	
0.75 (4)	2.23 (4)	2.938 (4)	160 (4)	
0.95	2.61	3.142 (3)	116	
0.95	2.55	3.196 (3)	125	
0.99	2.54	3.488 (5)	161	
0.99	2.40	3.121 (5)	129	
0.95	2.54	3.073 (3)	116	
0.95	2.60	3.345 (4)	135	
0.95	2.61	3.154 (4)	117	
0.95	2.66	3.294 (3)	124	
0.99	2.44	3.336 (3)	151	
0.99	2.55	3.293 (4)	132	
0.99	2.54	3.261 (5)	129	
0.95	2.55	3.175 (4)	124	
0.95	2.58	3.488 (5)	159	
0.95	2.39	3.202 (4)	143	
0.95	2.62	3.477 (5)	151	
	$\begin{array}{c} D - H \\ 0.77 (4) \\ 0.77 (4) \\ 0.75 (4) \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.95 \\ 0.9$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D—HH···A D ···A0.77 (4)1.98 (4)2.735 (4)0.77 (4)2.06 (4)2.769 (5)0.75 (4)2.23 (4)2.938 (4)0.952.613.142 (3)0.952.553.196 (3)0.992.543.488 (5)0.992.403.121 (5)0.952.613.154 (4)0.952.663.294 (3)0.952.663.294 (3)0.992.543.261 (5)0.992.443.336 (3)0.992.553.293 (4)0.952.553.175 (4)0.952.583.488 (5)0.952.393.202 (4)0.952.623.477 (5)	

			supportin	supporting information		
C28—H28A····Cl2	0.95	2.99	3.594 (3)	123		
C28—H28A····O22	0.95	2.61	3.473 (4)	151		

Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, -y+3/2, z+1/2; (iv) -x+1, -y+1, -z+1.