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Traditional design/optimization of metal-organic frameworks (MOFs) is time-consuming and labor-
intensive. In this study, we utilize machine learning (ML) to accelerate the synthesis of MOFs. We have
built a library of over 900 MOFs with different metal salts, solvent ratios, reaction durations and
temperatures, and utilize zeta potentials as target variables for ML training. A total of four ML models
have been used to train the collected dataset and assess their convergence performances, where
Random Forest Regression (RFR) and Gradient Boosting Regression (GBR) models show strong
correlation and accurate predictions. We then predicted two kinds of MOFs from RFR and GBR models.
Remarkably, the experimentally data of the synthesized MOFs closely matched the predicted results, and
these MOFs exhibited excellent electrocatalytic performances for oxygen evolution. This study would
have general implications in the utilization of machine learning for accelerating the synthesis of MOFs for
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Introduction

In recent years, metal-organic frameworks (MOFs) have gained
significant attention in research due to their unique composi-
tion, combining organic ligands and inorganic metal nodes,
which enables them to exhibit properties of both metals and
organic compounds.’ This intriguing combination has made
MOFs a hot topic of investigation. One of the key advantages of
MOFs is their ability to possess predictable and well-defined
atomic structures. The properties of MOFs are closely linked
to the selection of the constituent metals and structured
modules. This implies that by carefully choosing these
components, it is possible to customize MOF materials with
desired physical and chemical properties. The customization
potential of MOFs has led to the synthesis and characterization
of tens of thousands of different MOFs to date.*® The versatility
of MOFs stems from the ability to manipulate the reaction
conditions and combine various organic ligands and inorganic
metal nodes.” This flexibility allows for the proposal of an
almost infinite number of MOFs with different compositions
and structures. By adjusting these conditions, researchers can
explore an extensive range of MOFs with diverse properties.
However, due to the vast number of possible compositions,
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structures, and resulting properties, relying solely on chemical
intuition'® and traditional trial-and-error experiments becomes
impractical and inefficient. Conventional approaches not only
consume significant resources and manpower but also hinder
the discovery of the most optimal MOFs for specific applica-
tions. To overcome these challenges, machine learning and
computational modelling techniques have been employed to
accelerate the discovery and design of MOFs with desired
properties. These methods utilize large datasets and algorithms
to predict and identify promising MOF candidates based on
established trends and patterns. By using machine learning,
researchers can narrow down the search space and guide
experimental efforts toward the most promising MOFs, saving
time and resources. In summary, the field of MOFs has seen
tremendous growth in recent years, driven by their unique
composition and customizable properties. The finite resources
available for experimentation, combined with the vast possi-
bilities of MOF compositions, make machine learning and
computational modelling essential tools for efficiently discov-
ering the most suitable MOFs for specific applications.

The application of ML in materials science, particularly in
catalytic science, is rapidly advancing, because ML has
successfully enabled predictions related to elemental compo-
sition, crystal structure, microstructure images, surface reaction
networks, and surface phase diagrams of catalysts.*™* One key
aspect of applying ML in material development lies in the
representation of input descriptors. Selecting appropriate
descriptors plays a crucial role in enhancing the accuracy of ML
model training. By harnessing data-driven technologies, not
only can ML serve as a powerful tool for discovering new
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electrocatalysts, it also provides a deeper understanding of the
relationship between inherent characteristics of MOF materials
and their electrocatalytic performance. Recent advance-
ments*»* in this field have led to the development of Machine
Learning (ML) models*® that can further enhance and expedite
the design and discovery process of MOFs. ML-assisted
screening research has proven successful in various applica-
tions, particularly in the areas of H, storage,"”** CO, separation/
capture,”** and other gas storage and separation fields. These
ML models leverage high-throughput density functional theory
(DFT) workflows*™* to construct large-scale electronic struc-
ture*® performance databases encompassing materials ranging
from inorganic solids to molecular systems. The combination of
high-throughput DFT databases®** with ML has facilitated the
discovery of materials with desirable properties across different
domains.?**** For example, this approach has led to the identi-
fication of materials for high-efficiency organic light-emitting
diodes,** super-hard inorganic materials,* thermal conductive
polymers,* and more. To unlock the full potential of network
chemistry®” and accelerate material discovery, it is crucial to
develop a similar database that encompasses MOF material
properties calculated using DFT. Establishing a comprehensive
MOF property database, coupled with ML techniques, will
contribute to advancing network chemistry and expediting
material discovery processes.*®**° Overall, the integration of ML
models in MOF research has revolutionized the screening and
discovery process. By leveraging the power of ML algorithms
and the wealth of computational data, researchers can effi-
ciently explore the vast space of MOF structures, leading to the
identification of promising candidates for various applications.

In this work, we employed a hydrothermal method to
synthesize a significant number of MOF materials in batches.
Although the dataset may be relatively small compared to most
machine learning (ML) studies, it is considered substantial
within the field of experimental ML integration. When the
dataset is small, complex models are prone to overfitting, so it is
necessary to simplify the model or use regularization tech-
niques to improve generalization ability. And when the dataset
is small, it is prone to underfitting, and feature selection
becomes more important because too many features may also
lead to overfitting. In big datasets, there may be a large number
of features, which increases the complexity of feature selection
and feature engineering; of course, when the dataset is large,
more complex models can be trained because having more data
helps reduce the risk of overfitting. The size of the dataset
directly affects the generalization ability of the model. A larger
dataset can provide more training samples, enabling the model
to better understand the distribution and patterns of data,
thereby improving generalization ability. Smaller datasets may
not provide sufficient training samples, resulting in poor
performance of the model on new, unseen data. Therefore, for
large datasets, more complex algorithms and models can be
used, such as deep learning models or ensemble learning
algorithms. For small datasets, simpler algorithms or ensemble
methods may be needed to improve the model's generalization
ability. In summary, the size of the dataset has a significant
impact on the generalized ability of machine learning models.
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In order to achieve good generalization ability, it is necessary to
comprehensively consider factors such as feature selection,
model complexity, regularization, and algorithm selection
based on the size of the dataset.

The zeta potential of MOF material dispersion was selected
as the output descriptor, which has a correlation with the
material size. A higher absolute value of the zeta potential
indicates better stability of the dispersion and often corre-
sponds to smaller material sizes, which can influence the
electrocatalytic performance of the MOFs. Using the zeta
potential data collected from experimental synthesis as the
dataset, you trained four ML models. Among them, the Random
Forest Regressor (RFR) and Gradient Boosting Regressor (GBR)
models showed good training effects. These two models were
then used to predict the zeta potential of five-metal MOFs, and
corresponding experimental synthesis parameters were ob-
tained. Subsequently, these two types of MOFs were synthe-
sized. The zeta potentials of their dispersions were measured,
and it was found that the results were consistent with the ML
predictions, validating the rationality of the ML model selec-
tion. Furthermore, electrocatalytic oxygen evolution reaction
(OER) tests were conducted on the two predicted MOF mate-
rials. It was observed that the predicted MOFs exhibited smaller
OER overpotentials at a current density of 10 mA cm ™. This
suggests that the ML-guided approach holds promise for
guiding material development for electrocatalytic OER. The
work provides practical ideas for researchers to conduct large-
scale material development and demonstrates the potential of
ML-guided strategies in accelerating the discovery and optimi-
zation of materials for specific applications, such as electro-
catalytic OER. By combining experimental synthesis, ML
models, and validation through characterization and testing,
this research contributes to the advancement of materials
science and the application of ML in material development.

Results and discussions

Our goal is to use advanced ML technology to predict 30 zeta
potential values of a five-element metal MOF — CuFeZnMnCd
MOF under different conditions. The predicted values are
compared with experimental values, and the rationality of the
model is verified through matching degree. The reaction
conditions corresponding to materials with larger absolute zeta
potential values are identified, and the OER performance of the
materials is measured.

We achieve this goal by adopting appropriate input feature
selection, which depends on their importance and potential
impact on the prediction results. For the input features, we
selected 8 descriptors, which are the atomic radius (R), elec-
tronegativity (E), main group number (group), outermost elec-
tron number (n), atomic number (N) of the metal in the
material, as well as the temperature (7), time (¢), and solvent
ratio (per) of the synthesis reaction. These properties can be
obtained at any time from the periodic table and experimental
conditions. From a practical perspective, it is important to
choose easily obtainable feature values as descriptors in order
to effectively bypass time-consuming DFT calculations and
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maintain good prediction accuracy. We use the Scikit Learn
package to develop our ML model. Firstly, we normalize the
data, which is an important step in mitigating potential biases
caused by differences in feature scales.

The next step is to experimentally synthesize 1-4 metal MOF
materials (900 types), test their dispersion to form a dataset of
zeta potentials, randomly shuffle and divide 900 sets of data,
with 25% as the training set and 75% as the testing set, select
appropriate machine learning models, including k-near
neighbor (KNN), support vector regression (SVR), random forest
regression (RFR), and gradient boosting regression (GBR) to
evaluate the zeta potential of the training set, To predict the zeta
potential of the test set. The model was comprehensively eval-
uated using mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R®) scores. At the
same time, we conducted a single experiment of 100 random
leave-n-out trials by repeating 100 random tests/training
segmentation, and used the average of 100 RMSE estimates as
the prediction accuracy of the ML model (Fig. 1).

In the experiment, five-metal salts (copper acetate, iron
nitrate, zinc acetate, manganese acetate, and cadmium acetate)
were chosen as organic ligands, along with pyromellitic acid.
The reaction time and solvent ratio (water vs. ethanol) were
varied, resulting in the synthesis of 900 different MOF materials
under hydrothermal conditions at a temperature of 65 °C. To
assess the dispersion stability of each material, the zeta
potential measurements were conducted. Each material's
dispersion was measured three times to reduce measurement
errors. The collected data from these measurements formed
a dataset that is represented in Fig. S1-S6,T which likely shows
the zeta potential values for the different MOF materials
synthesized under varying reaction conditions. This dataset
serves as valuable information for further analysis and can be
used as input for machine learning algorithms to predict and
understand the relationship between synthesis parameters and
the resulting properties of the MOF materials.

To evaluate the impact of individual input features on model
output, we use features from sklearn_ Importances_ Attribute is
used to obtain the importance value of each feature in the
decision tree. In decision trees, the importance of features can
be measured by observing the role of each feature in the
decision-making process of the model. Specifically, if a feature
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Fig.1 The workflow of materials machine learning.
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plays an important distinguishing role at each node of the
decision tree, then that feature is considered important.
Therefore, the decision tree is of great significance for tasks
such as feature selection and model optimization. As shown in
Fig. S9,f which shows the feature importance scores of 7
descriptors, we found that R and per have a prominent effect.

In addition, we also use Pearson correlation coefficient to
evaluate the correlation of input features. We found that the
correlation of temperature (7) is 0, so it is not input as a feature.
The highest Pearson correlation coefficient between other
features is only 0.7, which is lower than 0.8. These features have
no dependency in terms of quantity and will not bring infor-
mation redundancy, so they will not reduce generalization
ability and the model will not overfit.

In the next step of the study, preliminary fitting was carried
out on the structures of the 900 synthesized MOFs. Following
this, four ML models were selected for training and convergence
using the dataset. The chosen ML models were k-near neighbor
(KNN), gradient boosting regression (GBR), random forest
regression (RFR), and support vector regression (SVR). Fig. 2
shows the convergence graphs of the dataset training for the
four models. It can be observed that the training results of the
RFR and GBR models are more consistent with the test results
and demonstrate better convergence compared to the other
models. This finding is further supported by Fig. S7, which
displays the training errors of the different models. Among the
four selected models, GBR and RFR have high R” values of 0.940
and 0.948, respectively. The GBR and RFR models exhibit rela-
tively small mean absolute error (MAE) values of 1.32 and 1.34,
respectively, as well as root mean squared error (RMSE) values
of 1.1 and 1.11, respectively. On the other hand, the KNN and
SVR models have slightly higher MAE values of 1.56 and 1.53,
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Fig. 2 Convergence graph of four ML models used for dataset
training. (a—d) are GBR, KNN, RFR and SVR.
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respectively, and RMSE values of 2.59 and 1.8, respectively.
Based on these evaluation metrics, it can be concluded that the
GBR and RFR models demonstrate superior performance in
accurately predicting the zeta potential of the MOF materials, as
they achieve lower errors and better convergence during
training.

To verify the prediction of the ML model, GBR and RFR
models were used to predict the zeta potential of five-metal
MOFs. As shown in Fig. S10,T the predicted values of GBR and
RFR models are in good agreement with the experimental
values. Generally speaking, the higher the absolute zeta
potential of the nanomaterial dispersion, the smaller the
nanomaterial, and the better the catalytic effect. Therefore, we
selected materials with higher absolute values from the pre-
dicted values of GBR and RFR models for synthesis, and tested
their electrocatalytic OER performance. The reaction conditions
predicted by the GBR model are a reaction time of 26 hours,
a solvent ratio of DIW : Et = 3 : 2, a reaction temperature of 65 °©
C, and a predicted zeta potential of —11.11 mV for the MOF
dispersion. The RFR model predicts a reaction time of 29 hours,
a solvent ratio of DIW : Et = 1: 4, a reaction temperature of 65 °
C, and a predicted zeta potential of —11.86 mV for the MOF
dispersion. Based on these predictions, two types of MOFs
composed of five metals were synthesized using a simple sol-
vothermal reaction. Fig. 3 shows the surface morphology of the
synthesized MOFs, exhibiting linear microstrip structures with
different boundaries. In addition, the energy dispersive X-ray
spectroscopy (EDS) of both MOFs confirmed the presence of
all five metals in the MOF structure. This validation experiment
emphasizes the reliability of the ML model in predicting the
zeta potential of MOF material dispersion and guiding the
synthesis process. The synthesized MOFs demonstrate the ex-
pected characteristics based on ML prediction, further sup-
porting the rationality and accuracy of ML model selection and
its application in material development.

Fig. S101 shows the zeta potential of the dispersion of five-
metal MOFs synthesized at different reaction times and
solvent ratios. It is interesting that as the proportion of ethanol
in the solvent increases, the zeta potential value does not show
a consistent trend. On the contrary, they exhibit a fluctuating

65°C-20n-1:4 | [y - |

Fig.3 SEMand EDS images of two five-metal MOFs predicted by GBR
and RFR models, where (a and b) are RFR and (c and d) are GBR.
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Fig.4 The electrocatalytic OER performance curves of MOF materials
predicted by RFR and GBR models. (a—c) Represents the CV curve, LSV
curve, and EIS curve of RFR-MOF material, while (d—f) represents the
CV curve, LSV curve, and EIS curve of GBR-MOF material, respectively.

pattern. It is worth noting that the turning points in the pre-
dicted trends of GBR and RFR models are consistent. These
findings demonstrate the complexity of the relationship
between reaction conditions, solvent ratio, and zeta potential of
the obtained dispersion. The ability of ML models to capture
and predict these complex patterns supports their usefulness in
guiding material synthesis and understanding the factors that
affect the performance of MOF materials.

In the subsequent stage, the five-metal MOF materials were
assembled into electrodes for the electrocatalytic oxygen
evolution reaction (OER), as depicted in Fig. 4. It is observed
that when the solvent ratio is DIW : Et = 1:4, the RFR model
predicts that the MOF material synthesized with a reaction time
of 29 hours demonstrates a smaller overpotential of only
388 mV. The overpotentials at different reaction times are re-
ported as 420 mV at 23 hours, 464 mV at 26 hours, 440 mV at 32
hours, and 455 mV at 35 hours. Similarly, when the solvent ratio
is DIW:Et = 3:2, the GBR model predicts that the MOF
material synthesized with a reaction time of 26 hours exhibits
a smaller overpotential of only 306 mV. The overpotentials at
different reaction times are reported as 403 mV at 23 hours,
423 mV at 29 hours, 406 mV at 32 hours, and 430 mV at 35
hours. In addition, from the electrochemical impedance spec-
troscopy (EIS) curves generated by the two models, it can be
observed that the selected materials with larger zeta potentials
predicted by the GBR and RFR models exhibit smaller imped-
ances. This suggests improved catalytic activity and more effi-
cient electron transfer at the electrode—electrolyte interface
(Fig. 4c and f). These results indicate the potential of the ML
models in predicting and optimizing the electrocatalytic
performance of MOF materials for the OER. By considering
various reaction conditions and solvent ratios, the models can
guide the synthesis process to achieve MOF materials with
enhanced electrocatalytic activity.

Conclusions

In summary, the study involved the synthesis of 900 MOFs
through a solvothermal reaction by adjusting various
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parameters such as temperature, metal species, solvent ratio,
and reaction time. The zeta potential of the MOF dispersion was
measured as an output parameter, representing dispersion
stability and having some correlation with the micro size of the
MOF material. This data formed a dataset that was used to train
and converge machine learning models. The trained ML models
were then utilized to predict the zeta potential of five specific
metal MOFs. Experimental synthesis of these MOFs confirmed
the validity of the predictions. Furthermore, the synthesized
MOFs were applied in electrocatalytic OER reactions, exhibiting
low overpotential, indicating their promising catalytic proper-
ties. The successful application of machine learning in this
study demonstrates the feasibility of using ML-assisted
approaches in materials research. It provides researchers with
a potential avenue to reduce the need for repetitive and complex
manual synthesis by utilizing predictive models. This can lead
to more efficient and targeted development of new materials
with desired properties in future research endeavours.
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