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A B S T R A C T   

The severe acute respiratory syndrome coronavirus 2, called a SARS-CoV-2 virus, emerged from China at the end 
of 2019, has caused a disease named COVID-19, which has now evolved as a pandemic. Amongst the detected 
Covid-19 cases, several cases are also found asymptomatic. The presently available Reverse Transcription – 
Polymerase Chain Reaction (RT-PCR) system for detecting COVID-19 lacks due to limited availability of test kits 
and relatively low positive symptoms in the early stages of the disease, urging the need for alternative solutions. 

The tool based on Artificial Intelligence might help the world to develop an additional COVID-19 disease 
mitigation policy. In this paper, an automated Covid-19 detection system has been proposed, which uses in-
dications from Computer Tomography (CT) images to train the new powered deep learning model- U-Net 
architecture. 

The performance of the proposed system has been evaluated using 1000 Chest CT images. The images were 
obtained from three different sources – Two different GitHub repository sources and the Italian Society of 
Medical and Interventional Radiology’s excellent collection. Out of 1000 images, 552 images were of normal 
persons, and 448 images were obtained from COVID-19 affected people. The proposed algorithm has achieved a 
sensitivity and specificity of 94.86% and 93.47% respectively, with an overall accuracy of 94.10%. 

The U-Net architecture used for Chest CT image analysis has been found effective. The proposed method can 
be used for primary screening of COVID-19 affected persons as an additional tool available to clinicians.   

1. Introduction 

SARS-CoV-2 has given rise to COVID-19, a widespread disease 
throughout the world. The virus first emerged in Wuhan, China, in 
December 2019 and has now become the worldwide health issue [1]. 
While several cases of COVID-19 are found to be asymptomatic, the 
majority of cases are reported with typical symptoms of fever, dry cough 
and tiredness. Many people are found with common onset syndromes 
like pains and aches, runny nose, sore throat, nasal congestion and 
diarrhoea [1,2]. 

Airborne spread, duration on surfaces and respiratory transmissions 
from one person to another triggered quick expansion of the pandemic 
[3]. The COVID-19 epidemic statistics as of 20th June 2020 indicates 
that there are in total 8,804,268 affected worldwide, 463,510 deaths 

caused and 4,656,912 are recovered from it. 
Many technologically advanced countries fail to manage their med-

ical care systems, as the demand for Intensive Care Unit facilities is 
increased due to patients with the most severe symptoms of COVID-19 
disease. 

We have shown the growth statistics of the COVID-19 disease 
worldwide from 22nd January 2020 to 20th June 2020 in Fig. 1, 
including death and recovery rates. 

W.Wang et al. [4] evaluated a total of 1070 samples acquired from 
205 people affected by COVID-19; the patients involved in the study 
were having an average age of 44 years. The patients were suffering 
from dry cough, fever and weakness; 19% of the cases were suffering 
from severe syndromes. Bronchoalveolar lavage fluid samples indicated 
the maximum positive rates (14 out of 15), up next was sputum (72 out 
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of 104), followed by nasal swabs and fibro bronchoscope brush biopsy 
that is (5 out of 8) and (6 out of 13) respectively, then feces (44 out of 
153) after that was blood (3 out of 307). No patient was tested positive 
through a urine sample. The study concluded that specimen testing from 
various sites could reduce false-negative rates, thereby improving 
sensitivity. 

RT-PCR detection schemes have shown a low positive rate, i.e. the 
lower value of sensitivity for the samples tested for COVID-19, in the 
initial phases of the disease [5]. However, the indicators of CT images of 
COVID-19 have shown distinct features that are unique when compared 
with all other viral pneumonia. Considering this fact, doctors have opted 
for CT images as one of the earlier diagnostic measures for this disease. 

Diagnosing COVID-19, with the help of chest CT images, was found 
more beneficial than initial RT-PCR testing in a case study conducted in 
China with 1014 affected cases [6]. Chest CT has shown greater sensi-
tivity in the detection of the disease than RT-PCR testing. Out of 1014 
cases, 601 cases (59%) were detected as positive with RT-PCR, whereas 
888 (88%) were detected using chest CT images. 

The clinical symptoms of 41 people affected with COVID-19 were 
analyzed by Huang et al. [7]. Along with common onset syndromes like 
cough, fever and fatigue, all 41 cases were found infected with pneu-
monia, and the abnormalities were shown in their chest CT investiga-
tion. Severe respiratory afflictions, chronic heart injury and other 
secondary contaminations were observed in CT images. 

Limited availability of RT-PCR test kits, the time required to process 
the test, low positive rates in early stages and requirement of consid-
erable human expertise demands an innovative method for detection of 
COVID-19. 

In the current situation of the COVID-19 pandemic, advanced ways 
of diagnosis for treating and managing the disease are indeed in de-
mand. Exploring approaches based on Artificial Intelligence seems a 
promising solution for effective analysis of disease. In such an unprec-
edented situation, the alternative solutions explored should find cheaper 
approaches for recognizing, controlling and treating this worldwide 
pandemic. Furthermore, the suggested method should help researchers 
understand the fundamental reasons and advancement of the disease 
thoroughly. Engineering techniques such as image processing and 
innovative machine learning algorithms can facilitate identifying land-
mark features and occurred lesions, thereby enabling categorization of 
the input sample as a normal or disease affected case. 

One of the methods utilized for the diagnosis of pneumonia is CT 
images of the chest. We have proposed the use of chest CT images with 
advanced fully convolutional network architecture developed for 

biomedical image analysis-U-Net, for detection of abnormalities due to 
COVID-19. Based on the presence or absence of abnormalities, the input 
sample is classified as normal or COVID-19 affected case. The rest of the 
paper is organized as follows. In section 2 Literature survey, limitations 
identified through it and key contributions of the proposed work are 
described. In section 3, datasets used, proposed methodology and use of 
U-NET architecture for the proposed work is presented. Experimental 
results followed by the comparison of results with four other network 
architectures performances and with the state-of-the-art methods are 
presented in section 4. To conclude, the significant contributions of the 
paper in addition to possible future work approach is discussed. 

2. Related work 

In the current era of Machine learning and Artificial Intelligence, 
Convolutional Neural Network (CNN) proves to be the most beneficial 
and popular algorithm in image processing. We have taken an overview 
of various types of CNN algorithms and other methods used in recent 
years for analyzing multiple diseases using medical images such as chest 
X-ray and chest CT images. 

A novel method was proposed by Xiaowei Xu et al. [8] for the 
screening of the COVID-19 disease. The method has evaluated results 
with the help of CT images and was implemented using 3D-CNN, 
including segmentation and feature extraction. A total of 618 samples 
were from chosen hospitals, of these, 175 samples were of healthy 
persons, 224 samples were of people with Influenza-A viral pneumonia, 
and 219 samples were of COVID-19 affected people. Authors reported an 
overall accuracy of 86.7%. 

Baltruschat IM et al. [9] compared different deep learning ap-
proaches for identification of various diseases using X-ray images. The 
comprehensions of powerful architecture ResNet-50 and its extended 
versions are discussed in this paper. Along with the pathologies visible in 
X-ray images, such as cardiomegaly, nodule, pneumonia, etc., few 
non-image parameters such as gender, age and acquisition method are 
also considered for classification. The performance of algorithms is 
compared with 5-fold resampling and multi-label loss function using 
Receiver Operating Characteristics Curve measures and rank correla-
tion. The method reported Area Under Curve (AUC) of 0.795, 0.785 and 
0.806 for the architectures ResNet-50, ResNet-101 and ResNet-38 
respectively. 

The assistance for findings lung cancer is suggested by Nicolas 
Coudray et al. [10]. The most frequently appearing types of lung cancer 
– LUAD and LUSC – are classified automatically from normal tissues 

Fig. 1. Status of the number of confirmed, recovered, and deaths cases of Covid-19 from 22nd January to 20th June 2020 [3].  
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using Googles CNN - Inception v3. The proposed method was evaluated 
on whole slide images and reported a sensitivity, specificity and accu-
racy of 89%, 93% and 97% respectively, in addition to validation of the 
model for various frozen tissues. 

Anthimopoulos et al. [11] defined a CNN for classification of 6 
interstitial lung disorders. The proposed CNN includes five convolu-
tional layers with Leaky Rectified Linear Unit (RELU) activation func-
tion to avoid overfitting, followed by max-pooling, finally classifying 
with soft-max function. In total, 14,696 patches of images were derived 
from 120 CT images obtained from two local hospitals. The 
cross-entropy was used for minimizing the loss function, and the author 
reported an overall accuracy of 85.61%. 

X-ray equipment is used to scan the vital body parts and identify 
pathologies such as bone dislocations, fractures, lung infections, tu-
mours and pneumonia. A type of advanced X-ray technique is CT 
scanning; it inspects the very lenient structure of the active body portion 
and produces more detailed photographs of the internal soft tissues and 
organs [12]. 

The use of chest X-ray images for automatic image analysis and 
detection of COVID-19 was explored in [13]. The performance of 
automatic detection is compared using three different convolutional 
neural networks - InceptionV3, InceptionResNetV2 and ResNet50. The 
author has used 100 chest X-ray images, 50 each from GitHub and 
Kaggle repository. A deep transfer knowledge build approach was used 
for training due to limited availability of image samples. Indian Scien-
tists propose the AI-based tool for discrimination of COVID-19 and other 
lung-related syndromes at Kyoto, Japan, as per the article in Times of 
India [14]. 

To classify the malicious pulmonary nodule, a hybrid CNN based on 
AlexNet and LeNet was proposed by Zhao et al. [15]. A database of 743 
CT images was used for evaluation of the proposed agile CNN. The 
performance of the proposed CNN was analyzed by the varying learning 
rate, kernel size, etc. The author reported accuracy of 0.822 and AUC of 
0.877. Further improvement was suggested through transferred 
learning, or feeding derived features to a classifier like Support Vector 
Machine (SVM). 

A 3D weakly superimposed deep CNN was proposed by Zheng et al. 
[16] for COVID-19 detection using chest CT images. A pre-trained U-Net 
was used for segmentation of CT images. Lesion annotation is not 
required in training; out of 630 CT images acquired from samples from 
hospitals during 13th December to 6th February 2020, 499 were used 
for training, and 131 were used for testing the proposed CNN architec-
ture. A probability threshold of 0.50 was used to classify samples as 
COVID-19 affected or normal. The proposed method reported accuracy, 
Positive Predictive Value (PPV) and Negative Predictive Value (NPV) of 
0.901, 0.840 and 0.982, respectively. 

A two-dimensional Deep CNN built on ResNet-50 architecture was 
proposed by Gozes et al. [17] for detection of COVID-19. The U-Net 
architecture was used for segmentation of CT images. The CT images of 
56 confirmed cases of COVID-19 disease were used. The algorithm has 
reported sensitivity, specificity and AUC of 0.982, 0.922 and 0.996, 

respectively. 
Barstugan et al. [18] explored COVID-19 detection algorithm by 

applying features extracted with different feature extraction techniques 
like Grey Level Co-occurrence Matrix (GLCM), Discrete Wavelet Trans-
form (DWT), Grey-Level Size Zone Matrix (GLSZM), etc. Further, 
extracted featured were applied as an input to SVM classifier for clas-
sification of input sample as normal or COVID-19 affected. The method 
derived multiple samples of data by extracting 16 × 16, 32 × 32, etc. 
sized CT images patches. The algorithm was evaluated with different 
parameters like sensitivity, specificity, F-score and accuracy by imple-
menting 2-fold, 5-fold as well as 10-fold cross-validations and reported 
overall accuracy of 99.68% on 150 CT abdominal images. 

Xie Y et al. [19] proposed a Multi-View Knowledge-Based Collabo-
rative (MV-KBC) deep learning architecture for separation of malignant 
nodules over benign nodules using CT images. Three pre-trained 
ResNet-50 architectures were used for analyzing nodules’ overall 
appearance, heterogeneity in shape and voxel. An adaptive weighing 
scheme updated through backpropagation with 9 KBC sub-modules was 
used for classification. The reduction in false-negative rate is achieved 
using a penalty loss function over conventional cross-entropy function. 
The proposed module is evaluated on 1945 images from the LIDC-IDRI 
dataset consisting of 1301 benign and 644 malignant nodules; it ach-
ieved an overall accuracy of 91.60% and AUC of 95.70%. 

It is observed from the literature that for the detection of COVID-19 
disease, recognition of abnormalities on chest CT scans plays a signifi-
cant role and image processing with machine learning algorithms can 
make it feasible. However, most of the methods in the literature are 
computationally resource-hungry, where separate mechanisms in terms 
of a cascade of architectures, are required for segmentation, complex 
feature extraction and detection of exact lesion locations. These limi-
tations provoked us to imply a new method for detection of COIVID-19 
disease. The key contributions of the proposed method are:  

1. Proposed method uses an end-to-end system. So, the separate 
mechanism for segmentation, feature extraction or location detec-
tion is not required. The image needs bare pre-processing. 

2. The performance evaluation is done on a collection of CT-scan im-
ages from three different sources. 

3. The performance evaluation is compared with other four architec-
tures with a similar dataset, hardware and software platform. 

3. Materials and method 

3.1. Dataset 

To exercise and evaluate any computational approach for disease 
diagnosis, collection of a database that is rich in variations is essential. 
GitHub repository, designed for coordinating the research work amongst 
all for computational exploration, contains X-ray and Chest CT images of 
COVID-19 cases. Fifty chest CT images showing the COVID-19 syn-
dromes were obtained from GitHub repository, made available online by 

Fig. 2. Lung CT scan images a) CT scan of a healthy Lung b) chest CT scan demonstrating the peripheral right lower lobe ground-glass opacities (arrow). c) Chest CT 
image progressed with more sub-pleural curvilinear lines, in the extent of Ground-Glass Opacities (GGO), (arrows). 
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Fig. 4. Proposed U-Net Architecture for detection of Normal and COVID-19 affected cases. (Every combination of blocks denotes a multi-channel feature map 
(mentioned at the upper left corner of contraction path and upper right corner of extraction path). 

Fig. 3. Block Diagram of Proposed Methodology.  
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Dr Joseph Paul [20]. We have picked up another set of 110 chest CT 
images, affected with COVID-19, from the Italian Society of Medical and 
Interventional Radiology’s excellent collection. There were about 60 
cases, with example Chest X-rays and single slice CT-images, a simple 
download from these cases resulted in 110 usable, axial CT-images of 
confirmed COVID-19 cases [21]. The third source of COVID-19 chest 
affected dataset images is GitHub UCSD-AI4H/COVID-CT, in which 288 
chest CT images are available for 169 COVID-19 cases [22]. The 552 
normal lung CT scans were acquired from LIDC Dataset, available online 
[23]. As a result, a dataset of 1000 images were used to train the 
pre-defined U-Net architecture. 

The representative chest CT scans of healthy lungs and lungs affected 
with SARS-CoV-2 are shown in Fig. 2(a–c). 

3.2. Proposed methodology 

The proposed work, as shown in Fig. 3, was focused on the use of U- 
Net architecture for Covid-19 detection using Chest CT scan images. It 
was done in three phases: 1) Acquiring the Chest CT images and pre- 
processing for patient’s information and other label removals. 2) 
Training the fully convolutional U-Net Architecture for loss minimiza-
tion. 3) Testing the applied input image on trained U-Net Architecture to 
identify COVID-19 affected cases. 

3.2.1. Pre-processing 
The acquired chest images were pre-processed for removal of labels 

carrying patient’s details. Since the images were acquired from different 
sources, resizing of images was needed. All input images, including 
training and test CT scans, were resized to 512 × 512. 

3.2.2. U-Net architecture 
Though object recognition using Convolutional Neural Networks has 

brought a revolution in the traditional approach of classification [23], 
yet the practical implementations based on CNN remained unattended 
due to requirement of large size of training data and availability of 
high-end hardware. Most of the biomedical image applications, for 
classification tasks, require at least one class label and the locations of 
abnormal pixels to be marked. 

J. Long and Shelhamer [24] explored the end-to-end training by 
sharing the image features between down-sample and up-sample routes 
using the Fully Convolutional Network (FCN) and improved the seg-
mentation output. Concurrently, an architecture named U-Net, specially 
devised for biomedical image segmentation was published by Olaf 
Ronneberger et al. [25]. 

The reasons for choosing U-Net architecture are: i) The U-Net ar-
chitecture has already been proved superior to other available prior best 
methods for biomedical image analysis, ii) The end-to-end training re-
quirements can be satisfied with very few samples, which proves un-
doubtedly beneficial, as a large cohort of training samples may not be 
available to every researcher, iii) The inclusion of contracting context 
capture and expansions of symmetric paths enables the U-Net archi-
tecture to find precise locations of pixels compared to available Con-
volutional Neural Networks (CNN) approaches [19,25]. 

The U-Net architecture was modified in a way that the up-sample 
section is comprised of many feature blocks, facilitating the transfer of 
contextual information to upper-resolution layers by the network [8]. 
Consequently, the expansion path was relatively symmetric to the 
contraction path, resulting in a U- form of architecture as shown in 
Fig. 4. 

The implied U-Net model, as shown in Fig. 4, contained multiple 
layers of convolutions with ReLU activation functions, followed by max- 
pooling in contraction path and convolutions with up-sampling and 

feature concatenation followed by softmax layer for final decisions 
makes the extraction path. 

The contraction path was following the conventional architecture of 
a CNN; there was the repeated use of dual 3 × 3 padded convolutional 
operations, one layer succeeded by the activation function ReLU. The 
acquired feature map was down-sampled with consecutive four 2 × 2 
max pool operations with a stride of 2. Each block in expansion route 
consists of an up-sampling the feature maps succeeded by convolutional 
operation of 2 × 2, a concatenated sequence of equivalent feature vector 
out of the contraction route and two 3 × 3 convolution operations, each 
one of it succeeded by activation function ReLU. The mapping of every 
32- section feature map to two separate classes was done at the end with 
a 1 × 1 convolutional operation. 

In each convolutional layer i at depth n, for the input patches applied 
or from the outputs of earlier levels, locally 3 × 3 convolutions are 
computed, further added with a bias followed by application of Rectified 
Linear Unit for producing the results defined in Eq. (1). 

ln
i = max(0,

∑

j
ln− 1
j ∗wn

ij + bn
i ) (1)  

Here, the weights of all the 2D convolution kernels wn
ij and the biases bn

i 

are the trainable parameters. As a max pool layer succeeds each con-
volutional layer, it computes the max on a 2 × 2 kernel which decreases 
the size of the feature map by 2. 

The normalized exponential function, Softmax, for pixel-wise deci-
sion defined in Eq.2 was used to find the energy at the output. 

p(x)i =
exi

∑k

j=1
exj

(2)  

The equation takes as input a vector of k real numbers and normalizes it 
into a probability distribution consisting of k probabilities. After 
applying softmax, each component will be in the interval (0,1), and the 
components will add up to 1 so that they can be interpreted as proba-
bilities. p(x)i is the estimate of the maximum of activation function, i.e. 
p(x)i ≅ 1 for k that has maximum activation function and p(x)i ≅ 0 for 
other values of k. The softmax classifier resolves the vector as bright 
(infected) or dark (normal) pixels. 

We have used the cross-entropy function for deriving the costs of the 
decisions and for summing up the total error. Cross-entropy (E) is always 
a positive valued function. Cross entropy is used to modify the weights 
while training and minimizing the error. As the network gets better 
trained for acquiring the desired output for applied input samples, the 
cost function leaned toward zero. Cross-entropy (E) is calculated by 
finding the difference between predicted values (p) and targets (c), as 
defined in Eq.3. 

E = −
1
N
(
∑N

i=1
ci .log(pi) ) (3)  

3.2.3. Image classification 
Here, the U-Net architecture is used for object detection, the ab-

normalities are treated as objects of interests. The U-Net architecture 
detects the abnormalities as objects, further if the count of detected 
objects is greater than zero, the image is declared as Covid-19 affected 
case. 

3.3. Evaluation platform and parameters 

The implementation of proposed algorithms was done in both Python 
and MATLAB. A Laptop with Intel-i7 2.4 G CPU, 16 G DDR3 RAM, 
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Windows10, MATLAB R2019a was used for simulation of proposed al-
gorithms. Once the network was trained, testing of images was per-
formed on a single kit using Raspberry Pi. 

The performance of U-net model is measured using parameters like 
sensitivity, specificity, accuracy and precision. The sensitivity indicates 
the ability to detect true positives cases; specificity shows the ability to 
detect true normal samples. Accuracy shows the correctness of pre-
dictions, whereas precision shows the consistency of correctness. These 
parameters are defined in the Eqs. (4–7). Here TP represents COVID-19 

cases detected as positives, TN indicates normal sample detected as 
negatives, FN represents the number of COVID-19 affected cases 
detected as negative by the FCN and FP indicates the normal chest CT 
images detected as COVID-19 affected cases by the proposed FCN. 

Sensitivity =
TP

(TP + FN)
(4)  

Specificity =
TN

(TN + FP)
(5) 

Fig. 6. Chest CT images a) Input to U-Net architecture b) Infections due to occurrence of COVID-19 disease detected by U-Net.  

Fig. 5. Training accuracy of U-Net found over the first 100 epochs.  
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Accuracy =
(TN + TP)

(TN + TP + FN + FP)
(6)  

Precision =
TP

(TP + FP)
(7)  

3.4. Training 

In the proposed work, a transfer learning method is used to train the 
defined network architectures. Here, the stored weight of the pre- 
trained CNN architectures on LIDC dataset was loaded and then 
further trained with other two datasets used in this study. The benefit of 
employing the transfer learning method, for training the network is that 
by this time the primary layers of CNN are trained, and the network is 
learned with necessary features such as identifying borders, edges and 
shapes in the image. So, to save time, reduce computational burden and 
heavy resource demands, transfer learning proves beneficial. A train-test 
split method is used to randomly divide the available dataset of 1000 
images into two parts training set images, and validation set images. 

It was learned from the literature of Artificial intelligence [26] that 
the model parameters should be evaluated on the input samples that 
were unused to set hyperparameters of the model. Hence, initially, a 
90/10 approach was used to divide the input samples into 900 images in 
the training set and 100 images in the validation set. In the total dataset 
of 1000 images, the partition of 900 /100 has saved more samples for 
training. Further, the test set of 100 images was precisely small, facing a 
lot of variation while evaluating the performance. So, 10-fold validation 

of a total of 1000 samples was used to reduce the variance and making 
performance evaluation less sensitive to the partitioning of the samples. 
The network was trained using 900 images from training samples, and a 
trained model was used to estimate the test error rate by applying the 
images from validation samples. 

The 900 training images of the total CT scan samples, along with the 
lesion masks with defined locations, were applied to train the U-Net 
model in a batch size of 100. Lesions masks were derived by cropping the 
abnormality patches from training images of the Covid-19 cases. The 
input images, along with the location references of lesion masks within 
it, were applied as an input for training. To do robust training, patches 
with Ground-Glass Opacities (GGO) of varying parenchymal density, 
patches involving halo signs, patches with the component of consoli-
dation admixed with ground-glass opacities and crazy-paving pattern 
were used. Patches of multifocal modular with new foci of GGO & 
consolidation found along with peripheral ground-glass opacities were 
also used for learning of the model. Additionally, subpleural curvilinear 
lines were also used for training. 

Here, we have used gradient descent to update the parameters 
(weight and bias) of our model to best estimate the target function. To 
reduce the time taken, we used a variant of gradient descent called 
stochastic gradient descent as an optimization function. A randomized 
training set was used to shuffle the order in which updates are made to 
the coefficients, to avoid distraction or becoming stuck. 

The training accuracy acquired for the first 100 epochs for U-Net 
architecture was elaborated with the help of graphical representation. 
Out of the five employed networks, U-Net architecture specifically 
designed for biomedical image processing applications has produced 
better accuracy, as shown in Fig. 5. 

4. Results and discussion 

The results of the input chest CT images and abnormalities detected 
by FCN are as shown in Fig. 6(a & b). In most of the cases, Lung CT 
showed patchy bilateral ground-glass opacities with per-bronchial and 
peripheral/subpleural distribution in Lung. 

In some cases, reticular opacities were also found within areas of 
ground glass (crazy-paving pattern). Fig. 6(a) shows the input chest CT 
images to U-Net Architecture with different types of infections and Fig. 6 
(b) shows the images at the output of U-Net Architecture, detected with 
different abnormalities due to COVID-19 disease. 

The validation of the network was performed using 10- fold cross- 
validation, a total of 1000 images were used for testing. The network 
was validated with each fold comprising 100 images, and the evaluation 

Fig. 7. Comparison of evaluation parameters for Covid-19 disease detection using different CNN’s and FCN.  

Table 1 
Evaluation parameters achieved during validation of the U-Net architecture 
using 10-fold cross validation.   

Sensitivity Specificity Precision Accuracy 

Fold-1 0.9219 0.9347 0.9486 0.941 
Fold-2 0.9240 0.9365 0.9508 0.943 
Fold-3 0.9123 0.9257 0.9531 0.938 
Fold-4 0.9264 0.9384 0.9553 0.946 
Fold-5 0.9304 0.9420 0.9553 0.948 
Fold-6 0.9321 0.9438 0.9508 0.947 
Fold-7 0.9157 0.9293 0.9464 0.937 
Fold-8 0.9179 0.9311 0.9486 0.939 
Fold-9 0.9245 0.9365 0.9575 0.946 
Fold-10 0.9219 0.9347 0.9486 0.941 
Average Values 0.9219 0.9347 0.9486 0.9426  
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parameters achieved during validation of the U-Net architecture are 
given in Table 1. 

Along with employed U-Net model, standard pre-trained models like 
ResNet50, DCNN, InceptionV3 and ACNN were trained and tested using 
similar chest CT-scan images for detection of Covid-19 disease. The 
images were resized according to the input requirements of the model. 
Note that all the models mentioned are trained and tested using the 
similar dataset, hardware and software platform. The performance of 
the employed U-Net architecture was compared with the implemented 
ResNet50, DCNN, InceptionV3 and ACNN architectures using the same 
dataset and same hardware using evaluation parameters like sensitivity, 
specificity, precision and accuracy results are as shown in Fig. 7. Com-
parison of execution time required to process a single test image is given 
in Table 2. 

From the details of Fig. 7 and Table 2, it is clear that U-Net perfor-
mance is better in multiple aspects as compared to other conventional 
neural networks. Further comparison of the proposed method with state- 
of-the-art methodologies is given in Table 3. 

We have demonstrated a novel method with the use of advanced U- 
Net architecture for segmentation and classification of chest CT images 
for normal or COVID-19 affected cases. To illustrate the performance of 
our method, we have collected chest CT samples from three different 
sources. The pixel-based evaluation of the proposed method has ach-
ieved a sensitivity of 92.19%, specificity of 93.47%, precision of 94.86% 
and an accuracy of 94.26% as shown in Table 3. The values of perfor-
mance parameters obtained using dataset acquired from three different 
sources prove the robustness of our algorithm. 

Our method showed better performance when compared to the ar-
chitectures proposed by (Xiaowei Xu et al.[10] and Zheng C et al. [18]. 
Though the performance of ResNet-50 was better for X-ray images in 
terms of overall accuracy - the experimentation was performed on the 
very small size of a dataset as compared to our method. Even in the case 

of chest CT images, the dataset mentioned is small in size. Though the 
value of sensitivity is more, the value of specificity is smaller compared 
to our method. 

The segmentation results of available CNN approaches get hindered 
due to the use of coarse mapping for up-sampling the down-sampled 
pixels. In U-Net architecture, the receptive parts next to convolution 
operations are connected by the receptive parts in the up-convolving 
method. This aspect permits the U-Net model, to utilize original de-
scriptions along with features from up-convolution. So, the overall 
performance observed with U-Net is better than other Convolutional 
architectures. Barstuga et al. [11] used different feature extraction 
methods with SVM classifier and achieved the highest accuracy of 99%. 
While the comparison is performed to get a rough idea about the per-
formance of various methods, a detailed introspection is needed on 
number and types of images used, sources of samples, pre and 
post-processing required, number of samples used for training and 
testing, computational complexity involved and time taken by each 
method. 

5. Conclusions 

In an effort to fulfil the urgent necessity which has emerged to fight 
against the COVID-19 pandemic, we have devised an AI-based tool for 
automatic detection of the COVID-19 disease. The higher performance 
parameters achieved in terms of sensitivity, specificity and accuracy, for 
the input samples from different sources, proves the robustness of the 
proposed algorithm. In the scenarios of availability of chest CT samples, 
the recommended U-Net architecture proves a better choice being able 
to work with little data. The flexibility of U-Net to work with various 
image sizes makes the algorithm scale-invariant. A comparison of the 
employed U-Net architecture against state-of-the-art CNN’s shows that 
the proposed network outperforms in terms of (small) number of 
training samples, precise pixel locations- as it detects anomalies with 
their locations and overall accuracy. Additionally, to demonstrate the 
robustness of the algorithm - the database was prepared with CT images 
from three different sources. Hence, the suggested tool can be promising 
as an assistive tool to clinical teams for diagnosis of the COVID-19 dis-
ease, thereby reducing the global burden on them and will help to 
reduce the chances of cross contaminations at hospitals. Further, it can 
be trained for various types of lung infections and more possible 
abnormal patches which will allow recognizing the exact reason for the 
infection. 

Table 3 
Comparison of the proposed method with State-of-the-Art Methods.  

Author and Year Deep Learning Module Used Type of Diseases 
Involved 

Dataset and type of image Results     

Metric 
Name 

Metric 
Value 

Zheng C et al. (Jan 2020) [16] Deep CNN COVID-19 Local Hospitals 630 CT Images Accuracy 0.9 

Xiaowei Xu et al. (Feb 2020) 
[8] 

3D-CNN 

COVID-19 
CT images (Hospitals in China) 
618 samples 

Accuracy 0.87 
Influenza-A viral 
pneumonia 
Healthy People 

Ali Naren et al. (March 2020) 
[13] 

ResNet50 
COVID-19 

GitHub and Kaggle repository 
100 chest X-ray Images 

Accuracy 
0.98 

Inception -ResNetV2 0.87 
InceptionV3 0.97 

Gozes et al. (March 2020) 
[17] 

ResNet-50 based 2-D CNN Covid-19 56 CT Images from Local Hospitals 
Sensitivity 0.98 
Specificity 0.92 
AUC 0.99 

Barstuga et al. (March 2020) 
[18] 

Feature Extraction –GLCM, LDP, GLRLM, 
GLSZM, DWT COVID-19 

Local Hospitals 150 CT abdominal 
Images Accuracy 0.99 

Classifier- SVM 

Proposed Method U-Net COVID-19 
1000 Chest CT Images 
GitHub Repositories & SIRM 

Sensitivity 0.92 
Specificity 0.93 
Accuracy 0.94 
Precision 0.95  

Table 2 
Comparison of Execution time required for five Network 
architectures.  

Network Architecture Execution Time 

U-Net 1.06 s 
ResNet50 2.34 s 
DCNN 2.41 s 
Inception V3 2.11 s 
ACNN 1.46 s  
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