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Diabetes precision medicine: plenty of potential, pitfalls and perils
but not yet ready for prime time
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Abstract
Rapid advances in technology and data science have the potential to improve the precision of preventive and therapeutic interventions,
and enable the right treatment to be recommended, at the right time, to the right person. There arewell-described examples of successful
precision medicine approaches for monogenic conditions such as specific diets for phenylketonuria, and sulfonylurea treatments for
certain types ofMODY. However, the majority of chronic diseases are polygenic, and it is unlikely that the research strategies used for
monogenic diseases will deliver similar changes to practice for polygenic traits. Type 2 diabetes, for example, is a multifactorial,
heterogeneous, polygenic palette of metabolic disorders. In this non-systematic review I highlight limitations of the evidence, and the
challenges that need to be overcome prior to implementation of precision medicine in the prevention and management of type 2
diabetes. Most precision medicine approaches are spuriously precise, overly complex and too narrowly focused on predicting blood
glucose levels with a limited set of characteristics of individuals rather than the whole person and their context. Overall, the evidence to
date is insufficient to justify widespread implementation of precision medicine approaches into routine clinical practice for type 2
diabetes. We need to retain a degree of humility and healthy scepticism when evaluating novel strategies, and to demand that existing
evidence thresholds are exceeded prior to implementation.
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CGM Continuous glucose monitoring
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Introduction

Rapid advances in technology and data science have the potential
to improve the precision of preventive and therapeutic interven-
tions, and enable the right treatment to be recommended, at the
right time, to the right person. Type 2 diabetes is a multifactorial,
heterogeneous, polygenic palette of metabolic disorders for

which a ‘one size fits all’ approach is flawed [1]. However, we
need to retain a degree of humility and healthy scepticism when
evaluating novel strategies, and to demand that existing evidence
thresholds are exceeded prior to implementation. In this non-
systematic review I will highlight limitations of the evidence,
and the challenges that need to be overcome prior to implemen-
tation of precision medicine in the prevention and management
of type 2 diabetes. The polarised focus on limitations and chal-
lenges is deliberate, and serves as a counterpoint to the accom-
panying papers describing the rapid recent advances in the field,
highlighting some opportunities for future research.

I have long advocated for stratification, having developed a
diabetes risk score, derivatives of which are used in many
diabetes prevention and early detection programmes [2].
More recently I have researched the potential for more
nuanced cancer screening programmes based on simple
phenotypic and/or genetic information, in order to minimise
harms and maximise benefits by varying screening intervals
and the age of onset of screening [3–5]. However, there is a
material difference between a rough ranking of a population
(stratification) and so-called precision medicine approaches to
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inform recommendations to individuals about disease preven-
tion or treatment, for which evidence of effectiveness,
let alone cost-effectiveness, is still lacking (Fig. 1).

The ADA–EASDConsensus Report definition of precision
diabetes medicine is shown in Text box 1 [6]. The major
distinction from standard medical approaches is the use of
complex data to characterise the individual’s health status,
predisposition to disease, prognosis and treatment response.

There are well-described examples of successful precision
medicine approaches for monogenic conditions such as
specific diets for phenylketonuria [7], and sulfonylurea treat-
ments for certain types of MODY (see [8] as an example).
However, the majority of chronic diseases are polygenic. It
is unlikely that the research strategies used for monogenic
diseases will deliver similar changes to practice for polygenic
traits. Examples from cancers, where mutations in cancer
tissue can inform treatment decisions, also do not translate

well to diabetes because we do not have access to relevant
patient tissue in the clinical setting.

I will discuss my concerns around precision medicine
under four headings: (1) spurious precision; (2) unnecessary
complexity; (3) personalised versus precision medicine; and
(4) the individual.

Spurious precision

Access to large datasets, omics technologies and artificial
intelligence can lend a patina of precision to the science, for
example by generating narrow confidence intervals, albeit
around potentially biased and inaccurate estimates. The
following examples serve to highlight why the precision is,
thus far, frequently spurious.

Guidelines and treatment decisions are commonly based on
average effects and overall evidence of cost-effectiveness of
interventions among trial participants who, ideally, are similar
to the patients that we care for. This evidence rarely extends to
identifying individuals for whom the treatment will be partic-
ularly beneficial or harmful.Much of the science behind preci-
sion medicine is based on subgroup analyses. That is to say,
we are led to believe that a subset of the sample, defined by a
particular set of characteristics, experiences benefits or harms
of a treatment much more or less than the rest of the popula-
tion. Since this is predictable, the proponents of precision
medicine believe that these characteristics should therefore
influence which medication we prescribe to an individual.

Such subgroup analyses are, or should be, hypothesis-
generating rather than forming the basis for changes to policy
and practice. A classic example of the dangers of subgroup
analysis comes from the ISIS-2 trial of aspirin after heart
attack [9]. Overall, aspirin led to a highly significant 23%
reduction in mortality at 1 month, but when stratified by
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Fig. 1 Stratified and precision
medicine. This figure is available
as part of a downloadable slideset

Text box 1: Precision medicine in 

diabetes: a Consensus Report from 

the ADA and EASD [6]

Precision diabetes medicine refers to an approach to 

optimise the diagnosis, prediction, prevention or treat-

ment of diabetes by integrating multidimensional 

data, accounting for individual differences. The major 

distinction from standard medical approaches is the 

use of complex data to characterise the individual’s

health status, predisposition, prognosis and likely 

treatment response

From Chung et al, 2020 [6]
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astrological sign, because of the play of chance, the apparent
effects differed from one subgroup to another. So while there
was no apparent effect of aspirin among people with the star
signs Libra or Gemini, aspirin appeared to reduce the mortal-

ity rate by 50% in people born under the star sign of Capricorn
(see Text box 2) [9]. Trial subgroup claims are commonly
unsupported by the trial data, sensitive to spurious or chance
findings, and rarely corroborated [10].

There are limitations in the design and analysis of precision
medicine studies. Much of the research is based on case–
control studies, or features sampling from the extremes of
the distribution of the exposure or the outcome. As measures
of discrimination (sensitivity, specificity and area under the
receiver operating characteristic [ROC] curve) are not inde-
pendent of prevalence, the predictive utility of precision medi-
cine characteristics is likely to be exaggerated due to spectrum
bias (see Text box 3) [11]. Furthermore, even though precision
medicine studies frequently concern prediction, for example
of medication response or adverse effects, results are often
expressed as odds ratios rather than measures of discrimina-
tion (such as sensitivity, specificity, predictive value, likeli-
hood ratio or area under the ROC curve).

The contribution of precision medicine to behavioural
approaches to the prevention and management of type 2
diabetes remains uncertain. Remission and prevention of type
2 diabetes are achievable via energy-restricted diets [12, 13].
In relation to remission, energy restriction appears to be more
important than the specific content of the diet [14]. In relation
to diabetes prevention, progression from impaired glucose
tolerance to diabetes can be reduced by dietary modification
targeting weight loss, regardless of genetic predisposition.
Nevertheless, a lucrative, unregulated, precision nutrition
industry has developed, supported by academic vested inter-
est. The purported benefits of precision nutrition depend on a
number of key assumptions: that different individuals have

variable responses to the same nutrition intervention, that
responses are reproducible, that responses can be understood
and predicted by measurable characteristics such as omics,
and that these characteristics (for example the microbiome)
can be accurately specified with a single sample.

Text box 3: Spectrum bias 

Spectrum bias is the variation in the performance of 

tests among different population subgroups that 

arises because all tests are subject to error. The re-

sult is that tests developed in a sample with a high 

prevalence of disease, when applied to a population 

with low prevalence, will typically have a lower sensi-

tivity and higher specificity. Thus, if the predictive 

tool is tested in a sample with an inflated prevalence 

of the outcome, for example in case–control studies, 

its predictive utility may well be overestimated

Summarised from Usher-Smith et al 2016 [11]

Table reprinted by permission from Springer Nature Customer Service GmbH: Nature Publishing Group; Peto R. Current 

misconception 3: that subgroup-specific trial mortality results often provide a good basis for individualising patient care. 

British Journal of Cancer © 2011 [9]

Astrological 

birth sign

No. of 1-month deaths

(aspirin vs placebo)

Statistical 

significance

Libra or Gemini 150 vs 147 NS

All other signs 654 vs 869 2P<0.000001

Any birth sign 804 (9.4%) vs 1016 (11.8%) 2P<0.000001

Text box 2: Effect of aspirin on mortality rates among subgroups defined by 

astrological birth sign in the ISIS-2 trial [9]
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A series of detailed analyses of data from the PREDICT study
has generated evidence of inter-individual variability in postpran-
dial metabolic responses to standardised diets, that is associated
with factors such as baseline sequencing of an individual’s gut
microbiome rather than their human genotype [15, 16]. In addi-
tion, the PREDICT study has quantified the association between
postprandial dips in glucose and hunger and subsequent energy
intake [17]. However, Hall and colleagues have highlighted a
number of issues that hamper interpretation of data from the
continuous glucose monitoring (CGM) used in PREDICT.
They have demonstrated intra-individual variation of postprandi-
al glucose according to the CGM device used [18]. The inter-
device variability could arise from the different anatomical loca-
tions used for each device, and hence the interstitial fluid
sampled. However, it is unclear which interstitial fluid is themost
relevant both physiologically, and in relation to risk of compli-
cations. Furthermore, identifying the signal from the noise is
made more challenging by the variable responses within the
same person, using the same device, to the same meal 1 week
apart, even in a controlled metabolic laboratory (K.D. Hall,
National Institute of Diabetes and Digestive and Kidney
Diseases, Bethesda, USA, personal communication).
Advocates of precision medicine highlight inter-individual vari-
ation to justify the need for bespoke diets, but pay less attention
to this intra-individual variation, which adds complexity and
increases uncertainty.

A personalised, rather than precision medicine, approach to
supporting people with dietary changemight consider an alter-
native set of correlates such as an individual’s psychological
and environmental context [19, 20], which may be more influ-
ential determinants of habitual behaviours such as diet. Our
understanding would be enhanced by more studies incorpo-
rating randomisation of individuals to the precision nutrition
intervention or a standard care control group. Such studies are
commonly required before regulatory approval, commission-
ing and implementation of health-related behavioural inter-
ventions. One such example reported significant, sustained
(12 months) effects on CGM-determined glucose levels of a
precision diet based on a machine learning algorithm that inte-
grates clinical and microbiome features to predict personal
postprandial glucose responses, compared with a
Mediterranean diet, among people with ‘prediabetes’ [21]. In
addition, effects were seen on HbA1c, for which the relation-
ship with patient health outcomes has been well characterised.
This single-blind explanatory trial was rigorously conducted,
but inevitably generates additional questions. In particular,
how much more effective in terms of diabetes prevention
would such a precision diet intervention be compared with
the existing ‘one size fits all’ diabetes prevention strategies
focused on weight loss [13]? What were the key components
of the complex dietary intervention? Adherence to the respec-
tive diets was assessed by self-report—is it possible that the
persuasive, bespoke nature of the precision intervention led to

better adherence to what appeared to be effectively a low
carbohydrate diet? Greater progress has been made in other
disease areas, for example psychiatry, in the trial evaluation of
pharmacogenomic-guided treatment selection [22]. Precision
medicine approaches involving pharmacogenomic testing for
drug–gene interactions do indeed reduce prescription of medi-
cations with predicted drug–gene interactions. However,
effects on patient outcomes such as symptom remission are
small and short-lived [23].

Next there is the issue of intermediate endpoints. Precision
medicine in diabetes has been narrowly focused on blood
glucose levels, which have a relatively weak relationship with
the main burden of type 2 diabetes, namely cardiovascular
disease. Indeed, some medications that lower glucose, such as
gliptins, have no effect on cardiovascular risk [24], whereas
others, such as rosiglitazone, may increase risk [25]. We do
not know how all of the drugs work, nor the mechanisms of
all adverse effects. Furthermore, several drugs for type 2 diabe-
tes reduce the risk of complications via mechanisms other than
glucose lowering [26], so advising patients about which
glucose-lowering drug to take, based on small genetic differ-
ences in glucose-lowering effects, is rather missing the point.
Precision medicine advocates measure the easily measurable
and base clinical recommendations on influencing the easily
measurable. A personalised approach considers a wide range
of potentially mutable determinants of disease and disease
outcome, and incorporates a variety of biopsychosocial factors
during shared decision-making concerning treatment options.
There remains a lack of trial evidence that a precision medicine
approach is more effective than existing strategies at improving
outcomes deemed important by patients and clinicians.

Brilliant scientists, undertaking elegant studies, supported
by rapidly advancing technology, have described the polygen-
ic architecture of type 2 diabetes, common alleles with small,
cumulative effects on disease risk. However, thus far these
discoveries have had limited clinical utility in terms of disease
prediction or prevention, and have made relatively small
contributions to disease classification and precision medicine
approaches to treatment. We need to be humble and acknowl-
edge our ignorance when translating discoveries into recom-
mendations for patients. Most single nucleotide polymor-
phisms (SNPs) are in non-coding regions of the genome. For
the most part, we cannot link variants to biology and clinical
endpoints. We do not know what tissues genetic variants
influence, and at what stage in the disease trajectory the influ-
ence may be important. There are also few, if any, replicated
examples of gene–environment interactions in diabetes aetiol-
ogy that can be readily translated into specific advice to
people, at sufficiently high absolute risks, to justify the effort
[27–29]. Most of the omics precision medicine research has
been based on data from populations of European ancestry,
whereas the greatest burden of diabetes and its complications
is in non-white populations, for which the evidence might not
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be relevant, even if the necessary technology were affordable
and widely available [27].

A major, but rarely acknowledged, limitation of studies of
effects and adverse effects of medication is that patients do not
take their medicines as prescribed [30]. In genetic studies of
treatment response or adverse effects, adherence is either not
measured, or it is not measured with accuracy. In addition,
genetic studies of treatment response often use trial datasets.
Participants enrolled in trials have higher levels of adherence
than patients in routine practice. Indeed, they often include a
run-in phase prior to randomisation to ensure that this is the
case. I will return to the theme of medication adherence in the
subsequent sections. Precision medicine studies also ignore
the placebo and nocebo effects, which have been well
described for statins [31]. There is an order of magnitude
difference in the reporting of adverse effects of statins among
people who do and do not know that they are taking a statin.
Medical record data include patients who are aware of the
treatment that they have been prescribed (some of which they
may actually ingest), in contrast with trial participants, who
are usually unaware of the nature of their treatment.
Medication adherence and placebo/nocebo effects will therefore
affect the validity or the translation of findings from precision
medicine studies to routine practice, or possibly both, and need
to be considered when data are analysed and interpreted. Finally,
while trials have limitations, in particular generalisability, they
minimise the threat of confounding and selection bias when
attempting to quantify treatment effects. In contrast, use of elec-
tronic health records will always be constrained by the risk of
treatment indication bias and residual confounding, even after
the use of techniques such as inverse probability weighting.

Unnecessary complexity

Humans are beguiled by techno-optimism and would rather have
a clever, new, bespoke solution than simply apply, more effec-
tively, what we already know. The famous socialist GP, Julian
Tudor Hart, described how managing conditions like diabetes
involves doing simple things well, for large numbers of people,
few of whom feel ill.

In all healthcare settings, many people are not receiving
elements of care that are known to be both effective and cost-
effective. In the UK this is clearly demonstrated in the UK NHS
National Diabetes Audit [32] (https://www.diabetes.org.uk/
professionals/resources/national-diabetes-audit). Small
improvements in the delivery of care to the population will have
far bigger impacts on health outcomes than precision medicine
approaches for selected individuals. Further evidence is provided
by the STENO-2 trial, in which relatively small changes in the
intensity of treatment of multiple risk factors were associated with
50% reductions in the incidence of cardiovascular events and
premature mortality [33, 34]. These effect sizes are an order of

magnitude bigger than any seen in precision medicine studies of
polygenic diseases. Clearly, there should be no false dichotomy.
Wemust continue to develop and evaluate new strategies, but not
at the expense of shifting the focus away from successful imple-
mentation of tried, trusted and effective approaches. Furthermore,
prior to implementation, new strategies must be supported by
similar rigorous standards of evidence that are equivalent to those
demanded of current recommendations.

Tudor Hart was also the first to describe the inverse care
law—the principle that the availability of goodmedical care tends
to vary inversely with the needs of the population [35]. Precision
medicine runs the risk of exacerbating inequalities given that,
assuming it works, it will only be available to rich individuals,
within high-income countries, for the foreseeable future.

The issue of unnecessary complexity also applies to a topic
that I touched on in the previous section, medication adherence.
For treatments with trial evidence of overall effectiveness, a key
determinant of benefit for an individual is whether they actually
take the medication or not. One factor known to reduce adher-
ence is the presence of adverse effects. Precision medicine stud-
ies have sought to identify genetic markers of the risk of adverse
effects in order to inform prescribing decisions. In one such case–
control study, Dawed et al identified a SNP and concomitant
medications associated with metformin side effects [36]. I did a
back of the envelope calculation comparing those with and with-
out adverse effects. The univariable association for sex was over
1.5 times greater than for the G allele for the intronic SNP
SLC29A4. Thus, if you know the sex and the age of the patient,
you get better prediction of the risk of adverse effects than you do
from the SNP. The strength of the associations reported in the
papermay be exaggerated due to the sampling strategy and study
design. Nevertheless, the study highlights potential mechanisms
underlying adverse effects and the fact that simple routinely
available information may predict response to medication better
than genetics. Furthermore, it is important to be aware of other
well-known predictors of adherence, such as dosing regimen,
patient beliefs, reminder systems, and communication with and
trust in the prescribing physician [37].

Personalised versus precision medicine

The finding that more complex omics information does not
improve the predictive and clinical utility of simpler, routinely
available information extends to the differential response to
glucose-lowering treatment. Genetic predictors of drug efficacy
with large effect sizes are likely to be rare [38]; compared with
standard approaches genotype-guided treatment has not consis-
tently increased effects and reduced adverse effects in other
disease areas (for example treatment with tamoxifen and warfa-
rin) [39], and genetic informationmaywell increase costs, patient
anxiety and inequalities [39]. Although, there are examples of
genetic variants associated with glycaemic response [40], greater
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progress towards individualised treatment recommendations is
being made using routinely available phenotypic data from elec-
tronicmedical records and trial datasets [41]. Such an approach is
perhaps closer to personalised than precision medicine, in that it
integrates patient characteristics from multiple domains into the
therapeutic decision-making process, albeit in a formal
standardised statistical way. Personalised medicine has been
practiced for centuries. As stated by Sir William Osler [42], ‘It
is much more important to know what sort of a patient has a
disease than what sort of disease a patient has’ and ‘The good
physician treats the disease; the great physician treats the patient
who has the disease.’

Most patients with diabetes have other comorbid condi-
tions and hence take other treatments. The negotiation about
diabetes treatment options needs to take this into consider-
ation. I would argue that many important domains are not
represented in electronic health records and trial datasets, for
example those referred to in the section on adherence above. A
personalised medicine approach involves education, negotia-
tion and shared decision-making with patients, followed by
monitoring of acceptability, side effects, adherence, quality of
life and HbA1c over the subsequent 10 weeks. New policies
would need to demonstrate superiority over such a strategy
prior to implementation.

The individual

Among adults, when combinedwith routinely available informa-
tion, polygenic risk scores do improve discrimination by a small

amount, and hence identification of individuals at increased risk
of diabetes. However, preventive interventions such as promo-
tion of a healthy diet, physical activity and weight loss are
nonspecific—they are beneficial for all high-risk individuals,
and indeed, the majority of the population. Plus, they reduce
the risk of a range of diseases other than diabetes, for example
cardiovascular disease and cancers. Consequently, more precise
targeting does not increase effectiveness but may improve effi-
ciency, as the delivery of scarce resources more closely mirrors
the population distribution of risk. However, the high absolute
risk associated with obesity at any level of genetic risk underlines
the importance of universal rather than targeted approaches to
behavioural intervention [43].

Proponents of polygenic risk scores stress their value in iden-
tifying high-risk individuals from birth. The challenges of imple-
mentation are illustrated by considering the counterfactual:
would you advise the parents of a baby with a low lifetime risk
of diabetes that it is safe for their child to be sedentary, consume
an unhealthy diet and become overweight?

The techno-optimists who promote precision medicine
appear to believe that sharing the spuriously precise informa-
tion from omics technologies with patients will have a far
more powerful impact on their behaviour than existing risk
information. However, we have shown in trials [44, 45], and
a systematic review and meta-analysis [46], that this is not the
case. The key health behaviours related to diabetes and its
complications, such as diet and physical activity, are not
affected by the provision of genetic or phenotypic risk infor-
mation [44]. Instead, as highlighted by William James (the
father of American behavioural science), these behaviours
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are largely habitual, automatic, unaccompanied by conscious
reflection and cued by environmental stimuli [47].

The main burden of diabetes is cardiovascular, and in
common with blood pressure and cholesterol, glycated
haemoglobin exhibits an approximately normal distribution
and a linear association with the risk of cardiovascular
disease [48]. The prevention paradox described by
Geoffrey Rose demonstrates that, in this situation, more
cardiovascular events would be prevented by shifting the
population distribution of glucose to the left, than by
targeting the minority of individuals close to or above the
diagnostic threshold for diabetes [49]. There is a greater
need for scalable interventions targeting the individual and
collective determinants of hyperglycaemia, than for preci-
sion medicine initiatives for rich individuals in high-income
countries. Not only is the former likely to be more effective,
but as it makes fewer demands on the agency of individuals,
is less likely to increase inequalities [50].

Healthcare has a marginal impact on population health. Type
2 diabetes is as much a societal problem as a medical one. As
Rose also pointed out, the primary determinants of disease are
mainly economic and social, and therefore the remedies must
also be economic and social [51]. Instead of focusing down on
the molecules and cells within individuals, we should be lifting
our gaze upwards to themore important individual and collective
determinants of the diabetes pandemic (Fig. 2). These determi-
nants range from individual knowledge, attitudes and beliefs,
portion sizes, internal and external built environments, accessi-
bility of healthy and ‘takeaway’ food, through to government
food, transport and trade policies, and the activities of the multi-
national producers of processed foods, which have a profound
influence on global health.

Governments and research funders appear to find the allure
of bespoke, technical, science-based solutions that target indi-
viduals, such as precision medicine, beguiling. In contrast,
most administrations are more comfortable on the lower rungs
of the Nuffield ladder of state interventions (leaving decisions
up to individuals, informing the public and engaging with
industry), and resist demands to adopt policies on the higher
rungs (regulation, taxation, restricting choice and banning)
[52], irrespective of the underlying evidence. In his 2015
State of the Union Address, Barack Obama unveiled details
of the ‘Precision Medicine Initiative’ and set aside $215
million to fund research [53]. I am not aware of an equivalent
amount being made available to support public health
research.

Conclusion

Precision medicine represents an exciting field of scientific
enquiry with the potential to revolutionise clinical practice.
Unfortunately, successful implementation in the field of type

2 diabetes is limited by the heterogeneous, polygenic nature of
the condition. Many precision medicine approaches are spuri-
ously precise, overly complex, and too narrowly focused on
blood glucose levels and on the individual and not their
context. The evidence to date is insufficient to justify wide-
spread implementation of precision medicine approaches into
routine clinical practice. Strategies to inform selection of
glucose-lowering medication that are based on routinely avail-
able phenotypic data show promise, but need more trial eval-
uation and should consider medication adherence. Our focus
should continue to be on improving the application of
personalised medicine, treatments and policies that are known
to be helpful and cost-effective, on average, for a wide range
of patients and populations. In developing and evaluating
precision medicine it is important to see the new approach as
an addition to the more traditional personalised medicine.
More trials are needed to increase understanding, such trials
should extend assessment to include non-glycaemic outcomes
such as other cardiovascular risk factors and quality of life.
Disease prediction models and new medications are subject to
regulation, and precision medicine approaches should follow
suit.
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