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Abstract: RNA-seq has been a powerful method to detect the differentially expressed genes/long
non-coding RNAs (lncRNAs) in schizophrenia (SCZ) patients; however, due to overfitting problems
differentially expressed targets (DETs) cannot be used properly as biomarkers. This study used
machine learning to reduce gene/non-coding RNA features. Dorsolateral prefrontal cortex (dlpfc)
RNA-seq data from 254 individuals was obtained from the CommonMind consortium. The average
predictive accuracy for SCZ patients was 67% based on coding genes, and 96% based on long non-
coding RNAs (lncRNAs). Machine learning is a powerful algorithm to reduce functional biomarkers
in SCZ patients. The lncRNAs capture the characteristics of SCZ tissue more accurately than mRNA
as the former regulate every level of gene expression, not limited to mRNA levels.

Keywords: schizophrenia; machine learning; transcriptome; long non-coding RNAs

1. Introduction

Schizophrenia (SCZ) is a complex biological disorder that involves combined effect
of many genes, each conferring a small increase in susceptibility to the illness [1]. The
redundancy of the gene networks underlying SCZ indicates that many gene combinations
have the potential to result in a brain dysfunction that can manifest as SCZ or a related
neurodevelopmental disorder [2]. Next-generation sequencing (NGS) enables measures of
the transcriptome gene expression through RNA-seq, however, expressed genes cannot
be used as biomarkers in many diseases that involve complex genetic networks, due to
high noise level from a large number of genes and small number of samples. While the
current solution is considering only differentially expressed targets (DETs) between SCZ
and healthy controls, this often has multiple potential problems. For example, single or a
small number of differentially expressed genes may not be clinically important for SCZ [3,4],
indicating that a more comprehensive analysis is necessary to reveal the underlying genetic
network for SCZ. Selection criteria for DETs are arbitrary, and while many researchers use
adjusted p value of 0.05 as a cut-off, this static standard often brings more ambiguity and
neglects downstream analysis [5]. Even if only DETs were selected with a p value cut-off as
features for labeling or prediction, the DET number could still be too large which means
that an overfitting problem could exist theoretically [6]. The key to address overfitting from
too many features is to effectively reduce the number of features.

Beside coding genes, non-coding RNAs, especially long non-coding RNAs (lncRNAs)
are important factors in shaping SCZ networks and are dynamically regulated by neuronal
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activation [7–10], and should therefore also be considered as potential feature vectors for
SCZ gene network regulations. In this study, we acquired dorsolateral prefrontal cortex
(dlpfc) samples’ RNA-seq data from 254 subjects from the CommonMind consortium [11]
(120 SCZ patients and 130 healthy controls, all non-Hispanic Caucasian). We then applied
machine learning algorithms, including random forest, forward feature selection (ffs), and
factor analysis to reduce the number of expressed genes into small list of feature vectors, in
order to solve the overfitting problem. Two-fold shuffle tests showed that these selected
feature vectors could accurately label SCZ patients versus controls. Selected genes were
further clustered into gene modules through factor analysis, to explore potential functional
units within the complex underlying genetic networks in SCZ.

2. Results

The statistical analysis and fold changes of genes were calculated. Altogether, 10,100 genes
showed nominal significance with p < 0.05 uncorrected for multiple testing (Table S1. Among
the 10,100, expression of 3483 genes were down-regulated, and expression of 6617 genes were
up-regulated. Using the WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) web tool [12],
over-representation analysis (ORA) by the Reactome approach [13] highlighted genes involved
in mitochondrial function as down-regulated; and genes involved in gene transcription as
upregulated (Tables S3 and S4).

2.1. Accuracy Measure for Labeling Schizophrenia (SCZ) Patients Based on 2-Fold Shuffle Testing

As described in the method section, 2-fold shuffle testing was applied to test the
labeling prediction 50 times. Reduced genes, based on multiple machine learning methods,
ranged from 36 to 282, showed certain level of accuracy (~67%) in classifying SCZ patient’s
dorsolateral prefrontal cortex (dlpfc) samples versus healthy controls (Figure 1a). In
contrast, to acquire a similar accuracy, we needed at least 100 top expressed coding genes to
do random forest classification, whereas the accuracy of the traditional K-means clustering
based on the top differentially expressed coding genes was only 50.2% at best. K-means
clustering is an unsupervised classification method without requiring an independent
training dataset. It is the simplest and the most popular method when the number of
clusters was known. But still overfitting is possible as we identified the differentially
expressed genes in the same dataset as features used for K-means, which means that the
accuracy of 50.2% by K-means is possibly over-estimated. The actual performance of
K-means could be even worse than that of random forest. Machine learning methods
reduced long non-coding RNAs (lncRNAs), ranging from 32 to 110 lncRNAs, and showing
extremely high accuracy in classifying SCZ patients (accuracy level ~99%) (Figure 1b).
In contrast, the accuracy of random forest classification based on the top differentially
expressed lncRNAs was only ~64%, whereas the accuracy of the traditional K-means
clustering based on the top differentially expressed lncRNAs was poor with the highest
accuracy of 36.7%. These machine learning results, demonstrating high accuracy indicate
the existence of an functionally essential regulation network for SCZ brain tissues. The
key difference between the clustering methods is the feature vector selections, in other
words, the selection of genes/lncRNAs representing the essential differences between two
groups (SCZ vs. controls). K-mean clustering used the 100 top differentially expressed
genes, which is the most routine method, instead of multiple filtering steps of our machine
learning methods. Considering gene co-expression network, overlapped information from
the 100 top differentially expressed genes is always a concern. More importantly, the nature
and complexity of SCZ have determined that the disease is not impacted by single or
several genes, and the most differentially expressed genes are not necessarily the essential
regulators. For lncRNAs, the issue is even enlarged because lncRNAs work as regulators
of networks instead of expressed genes.
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Figure 1. Two-fold random shuffle testing results for 50 rounds. X-axis is the round number, Y_1
axis (left) is the number of reduced genes (a) and lncRNAs (b), Y_2 axis (right) is the accuracy
measurement ranged from 0 to 1.

2.2. Selected Gene/lncRNA Feature Based on Machine Learning Algorithm

After multiple layers of filtering, including the machine learning methods, the number
of genes reduced from 27,101 to 734 in the total of 254 dorsolateral prefrontal cortex (dlpfc)
samples (Figure 2a). Expressions of all these genes have nominally statistical significance
with p value range from 1.5 × 10−9 to 6.45 × 10−3. Among the 734 genes (Table S5),
412 were downregulated; and 322 genes were upregulated. These genes were found to
be enriched in glycosaminoglycan metabolic processes (adjusted p value = 3.1 × 10−3),
aminoglycan metabolic processes (adjusted p value = 3.7 × 10−3), mucopolysaccharide
metabolic processes (adjusted p value = 1.2 × 10−2), based on Gene Ontology [14]. A total
of 13,871 long non-coding RNAs (lncRNAs) identified in GENCODE were reduced to
605 using comparable pipelines. The results suggest that by combining multiple machine
learning methods is a powerful tool to reduce the number of gene features which represent
the variations of the data. It is also worth mentioning that only 255 of the 734 coding genes
have differential expression with False Discovery Rate (FDR) Adjusted p value < 0.05.
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2.3. Factors and Potential Gene Modules from Factor Analysis

The purpose of factor analysis is to group the reduced feature vectors genes/lncRNAs
into modules, which could function together for a complex disease as SCZ. The 734 genes
were clustered into 66 factors, where the first 13 factors contribute ~70% of the variances
(Figure 2c, Table S5). Factor 1 contains 339 genes and contributes 24.5% of the total vari-
ance, all genes in factor 1 are down regulated in SCZ versus health controls, as shown by
differential expression in CommonMind consortium database [15]. Not unexpectedly, the
over-representation analysis (ORA) by Human Phenotype Ontology (HPO) shows that factor
1, as the major factor of SCZ transcriptome, contains a number of genes critical in neurodevel-
opment that are involved in various brain disorders, including HP:0001298_Encephalopathy,
HP:0001098_Abnormal fundus morphology, and HP:0004329_Abnormal morphology of
the posterior segment of the globe. Enrichment analysis by biological pathways using
the expressed gene list (FPKM ≥2) as the background (Figure 3a) highlighted sulfur
compound biosynthetic processes (FDR adjusted p value = 4.8 × 10−4), glycosaminogly-
can metabolic processes (FDR adjusted p value = 8.1 × 10−3), and glycoprotein metabolic
processes (FDR adjusted p value = 0.019). Eight genes were identified in previous PG2
GWAS studies [16], including APH1A (rs140505938, FDR adjusted p value = 4.49 × 10−10),
ASPHD1 (rs11646127, FDR adjusted p value = 4.55 × 10−11), BRINP2 (rs6670165, FDR ad-
justed p value = 4.45 × 10−8), CHRM4 (rs7951870, FDR adjusted p value = 1.26 × 10−11),
INO80E (rs11646127, FDR adjusted p value = 4.55 × 10−11), PCCB (rs7432375, FDR adjusted
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p value = 7.26 × 10−11), SPCS1 (rs3617, FDR adjusted p value = 4.26 × 10−11), and TAC3
(rs61937595, FDR adjusted p value = 2.02 × 10−12), all these hotspots were also identified
in CLOZUK, which SCZ cases were ascertained with the assistance of Novartis, and the
samples consisted of individuals with treatment-resistant schizophrenia according to the
clozapine registration forms completed by treating psychiatrists [17]. Of note, 159 out of
the 339 genes (46.9%) have at least one supportive evidence from previous knowledge, and
12 genes have at least four supportive evidences (Table 1).
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A total of 166 genes clustered into factor 2 and majority of them (94%) are up regulated
in SCZ. Factor 2 contributes 13.9% of the data variance (Figure 2c, Table S6), 11 genes
(6.7%) were found to be differentially expressed and none of them are down regulated in
SCZ. A total of 65 out of 165 genes (39.3%) have at least one supportive evidence from
previous knowledge, and 5 genes have at least four supportive evidences (Table 1). En-
richment analysis by biological pathways highlighted phosphorylation (FDR adjusted
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p value = 5.1 × 10−3). There are 88, 33, and 33 genes in factor 3, 4 and 5 (Table S6), respec-
tively, contributing 10%, 5.7% and 4.8% of the variance, respectively.

Table 1. Genes in gene factors with high supportive evidences, including genome-wide association study (GWAS), Genome
Wide Linkage Study (Linkage) Copy Number Variation (CNV), integrative analysis (Integrative), differentially methylated
(Diff Methy), Differentially expressed (Diff Exp), identified by exome sequencing (Exome), expression level in brain tissues
(Brain Exp), Gene Ontology (GO), and total score (Score)

Factor Gene GWAS Linkage CNV Integrative Diff Methy Diff Exp Exome Brain Exp GO Score

1 ASPHD1 1 0 1 0 0 1 1 1 (26.68) 0 5
1 AK4 0 0 0 0 1 1 0 1 (13.55) 1 4
1 APH1A 1 0 0 0 0 0 1 1 (43.24) 1 4
1 FPGS 0 0 0 0 1 1 0 1 (14.38) 1 4
1 FSCN1 0 0 0 0 1 1 1 1 (48.13) 0 4
1 INO80E 0 0 1 1 1 0 0 1 (20.22) 0 4
1 P2RX6 0 0 1 0 1 1 0 0 (4.99) 1 4
1 PCCB 1 0 0 1 1 0 0 1 (26.64) 0 4
1 PRODH 0 1 0 0 0 1 1 1 (24.04) 0 4
1 SCN1B 0 0 0 0 1 1 0 1 (25.12) 1 4
1 SEMA7A 0 0 0 0 1 1 0 1 (13.64) 1 4

2 BCCIP 0 0 0 0 1 1 1 1 (26.92) 1 5
2 HNRNPU 0 0 0 0 1 1 1 1 (108.84) 0 4
2 HSP90AA1 0 0 0 0 0 1 1 1 (411.41) 1 4
2 NRG1 0 1 0 0 1 0 1 0 (4.47) 1 4
2 PDE4B 1 1 0 0 0 0 0 1 (38.88) 1 4

3 TIMP2 0 0 0 0 0 1 1 1 (107.98) 1 4

7 BCL6 0 0 0 0 1 1 1 1 (29.50) 1 5

9 RERE 1 0 0 1 0 0 0 1 (25.51) 1 4

For lncRNAs, factor analysis resulted in 91 factors, where the first 45 factors (contain
496 lncRNAs) explain ~70% of the variations of the expression data (Figure 2d, Table S7).
The first 3 factors of lncRNA factor analysis explained 21%,14%, and 13% variance re-
spectively, with a subtotal of 48%. Among the 496 lncRNAs, only 88 have differential
expression with FDR Adjusted p value < 0.05. The genes closest to the lncRNA binding
sites were identified as their target genes. Mapping lncRNAs and their targets is a challeng-
ing problem. Computational methods cannot effectively solve the false positive issue, and
literature-based databases usually have low sensitivity. Previous studies [18–20] showed
that lncRNAs tend to regulate expression of neighboring protein-coding genes and thus
contribute to the regulation of mRNA and protein levels in mammal. Therefore, choosing
the closest genes of the lncRNA could capture at least a certain level of corresponding
target genes and be more practical in the application. However, due to gene functional
overlapping, choosing only the closest genes may indeed introduce bias. In the trade-off be-
tween high sensitivity and acceptable specificity, based on our results and current literature,
three closest genes is plausibly the most reasonable choice of the selection.

A total of 1193 genes were selected and found to be enriched in multiple disease cate-
gory [21], METABOLIC (FDR adjusted p value = 2.8 × 10−5), CARDIOVASCULAR (FDR
adjusted p value = 3.2 × 10−2), HEMATOLOGICAL (FDR adjusted p value = 7.3 × 10−3),
IMMUNE (FDR adjusted p value = 4.8 × 10−2), and post translational modifications such as
phosphorylation (8.2 × 10−4). Multiple neurodevelopmental related pathways which can-
not be captured by the mRNA pathway analysis, are highlighted for the lncRNAs’ targeted
gene sets, including regulation of transferase activity (FDR adjusted p value = 1.8 × 10−3),
neuron projection morphogenesis (FDR adjusted p value = 4.8 × 10−3), positive reg-
ulation of nervous system development (FDR adjusted p value = 4.6 × 10−3); regu-
lation of kinase activity (FDR adjusted p value = 5.7 × 10−3), neuron differentiation
(FDR adjusted p value = 8.3 × 10−3), and neuron projection development (FDR adjusted
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p value = 8.8 × 10−3). Target genes in lncRNA factors with high supportive evidence are
shown in Table 2.

Table 2. Target genes in lncRNA factors with high supportive evidence.

Factor lncRNA Target
Gene GWAS Linkage CNV Integrative Diff

Methy
Diff
Exp Exome Brain Exp GO Score

1 ENSG00000247735.2 ASPHD1 1 0 1 0 0 1 1 1 (26.68) 0 5
1 ENSG00000232912.1 RERE 1 0 0 1 0 0 0 1 (25.51) 1 4
1 ENSG00000235770.1 FN1 0 1 0 0 0 0 1 1 (38.33) 1 4
1 ENSG00000235831.2 ITPR1 0 0 0 0 1 0 1 1 (25.59) 1 4
1 ENSG00000239569.2 SRPK2 1 0 0 0 1 0 0 1 (75.17) 1 4
1 ENSG00000243762.1 RANBP1 0 1 1 0 1 0 0 1 (30.73) 0 4
1 ENSG00000247735.2 SEZ6L2 1 0 1 0 0 0 0 1 (38.77) 1 4
1 ENSG00000257126.1 FOXG1 1 0 0 0 1 0 0 1 (22.05) 1 4
1 ENSG00000261220.2 ST3GAL1 0 0 0 0 1 0 1 1 (8.93) 1 4
1 ENSG00000271849.1 PJA2 0 0 0 0 1 0 1 1 (144.54) 1 4

2 ENSG00000224563.1 BCL6 0 0 0 0 1 1 1 1 (29.50) 1 5
2 ENSG00000226978.1 MAGI2 0 1 0 0 1 0 0 1 (24.46) 1 4
2 ENSG00000236031.1 AKT3 1 0 0 0 0 0 1 1 (35.93) 1 4
2 ENSG00000248816.1 TENM3 0 0 0 0 1 1 0 1 (8.06) 1 4
2 ENSG00000272367.1 RASA1 0 0 0 0 1 1 0 1 (20.45) 1 4

3 ENSG00000272989.1 DLG1 0 0 1 0 0 1 1 1 (52.38) 1 5
3 ENSG00000239569.2 SRPK2 1 0 0 0 1 0 0 1 (75.17) 1 4
3 ENSG00000273164.1 PRODH 0 1 0 0 0 1 1 1 (24.04) 0 4
3 ENSG00000273164.1 DGCR2 0 1 1 0 0 0 1 1 (30.80) 0 4

37 ENSG00000248816.1 TENM3 0 0 0 0 1 1 0 1 (8.06) 1 4

Consequently, we tested the machine learning algorithm in an independent dataset
including 22 non-EA SCZ and 27 controls. The performance with coding genes was highly
reproducible with the accuracy of 95%, whereas the accuracy with lncRNAs was only 37%.

3. Discussion

Growing evidence indicates that distinct neuronal ncRNAs, particularly lncRNAs, are
likely to influence the development of neurodevelopmental diseases, including SCZ [7].
However, to date, neither genes in neurodevelopmental networks nor the lncRNAs in reg-
ulation processes have been successfully applied as feature vectors to label the phenotypic
status of the patients. The main obstacle is the number of genes/lncRNAs as predictive
features is huge (over 20,000 genes and 10,000 lncRNAs), and the number of biological
samples, especially brain tissues, is usually small due to the difficulty in sample collec-
tions. Therefore, predictive models are deemed to fail due to overfitting issues. Currently,
the solution for this problem is to select a small number of genes that are differentially
expressed between SCZ and controls. While this may help, the algorithm and criteria used
for selecting these gene remains controversial, and genes contributing to the network with
small effects and less statistical significance may be missed.

Machine learning methods have been proven to be effective in reducing the feature
vectors while capturing essential data differences in studies of many fields, include genetic
expression studies [22,23]. In this study, we applied multiple machine learning layers for
expressed genes in dorsolateral prefrontal cortex (dlpfc) RNA-seq data from 254 samples
from the CommonMind consortium, in order to show that reduced gene/lncRNA fea-
tures could accurately classify SCZ patients versus healthy controls. Combining machine
learning methods, such as random forest and forward feature selection (ffs) for expressed
genes/lncRNAs, the number of genes was significantly reduced from over 25,000 to an
average ~180 genes while the lncRNA number was reduced from 13,000 to on average ~70
through the simulations. The 2-fold shuffle tests (samples split to 1:1 ratio, half used as
training data and rests used as testing data) applied in 50 separate rounds (Figure 1) shows
that reduced gene feature vector has modest power (~67% accuracy) in classifying SCZ
patients versus healthy controls, whereas lncRNAs could serve as an effective predictor
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(~99% accuracy). On the other hand, the random forest classification tends to require a
larger number of top differentially expressed coding genes to get similar accuracy as that
of machine learning selected genes, as top differentially expressed coding genes may not
be independent of each other because of gene co-expression networks. The random forest
classification based on top differentially expressed lncRNAs has poor performance, while
with lncRNAs as regulators highly differential lncRNAs may not be the most important
lncRNAs. These results demonstrate that machine learning has the potential to be an
alternative methods to detect the essential differences of gene expressions in SCZ, also
the regulation networks involved in lncRNAs are more stable than gene expression net-
works, in other words, gene expressions remain highly diverse for different persons but the
lncRNAs expression seems universal among different individuals. More importantly, as
demonstrated by our findings that the average predictive accuracy for SCZ patients is 67%
based on coding genes, and 96% based on lncRNAs, lncRNAs represent a more accurate
biomarker for the SCZ transcriptome. The lncRNAs regulates every level of gene expres-
sion, including but not limited to mRNA levels, which may explain why lncRNAs capture
the characteristics of SCZ tissue more accurately [24]. Considering gene co-expression
network, duplicated/overlapped information from top differentially expressed mRNAs is
always a concern. On the other hand, too many mRNAs will cause overfitting unavoidably.
Our study, therefore, suggests lncRNAs are more informative and better features.

Furthermore, the reduced gene/lncRNA features were clustered based on factor
analysis to form the gene modules. Our study showed that major factors were enriched for
genes important in neurodevelopment and brain disorders, thereby proving the validity of
the dimension reduction process. While genes in major factors show enrichment of SCZ
related pathways or neurodevelopmental associated network and can serve as a proof-of-
principle of this study, other factors may harbor novel knowledge about SCZ and warrant
further study. Genes within each factor have higher portion of SCZ supportive evidences
while known differentially expressed genes only counted small portion of genes in each
factor (Figure 4). Combining these clues together indicates that the machine learning
models capture contributing genes more effectively compared to traditional differential
expression tests. SCZ genetics involves combined effect of many genes, each conferring a
small increase in susceptibility to the illness [25].

Genes in certain factors highlighted SCZ-associated networks and the biochemical
molecules, synthesis/metabolism, as neuro system modulators. For example, 339 genes
in gene factor 1 were enriched in sulfur compound biosynthetic and metabolic processes
(adjusted p value = 4.8 × 10−3). Sulfur is an essential chemical for proteinogenic amino
acid methionine (Met), and methionine-folate cycle-dependent one-carbon metabolism is
implicated in the pathophysiology of SCZ while deficiencies in the one-carbon metabolism
components folate is consistent findings in SCZ patients [26]. These genes are also enriched
in glycosaminoglycan metabolic processes (adjusted p value = 8.1 × 10−3). Glycosamino-
glycans, an alternative name of mucopolysaccharides, play critical roles in the normal
function of the central nervous system [27]. Abnormal glycosaminoglycan synthesis in
cerebral cortex have been reported to associated with SCZ [28]. Hyaluronic acid, one of the
major classes of glycosaminoglycans, is a critical component on the surface of perineuronal
nets (PNNs), while a decreased number of PNNs is associated with schizophrenia [29].
Other enriched chemical synthesis procedures for genes in factor 1 include glycoprotein
metabolic processes (adjusted p value = 0.019) where p-glycoprotein a major efflux pump
in the blood-brain barrier, has a profound effect on entry of drugs, peptides and other sub-
stances into the central nervous system [30]. For lncRNA factor 2, 321 targeted genes (the
union of 128 lncRNAs’ top three closest genes) were significantly enriched in cell adhesion
(adjusted p value = 9.7 × 10−9), phosphorylation (adjusted p value = 2.2 × 10−3), SCZ
associated pathways include calcium ion binding, while dysregulation of neural calcium
has been found signaling in SCZ [31] (adjusted p value = 8.1 × 10−5) as well as the Wnt
signaling pathway, a crucial pathway in neurodevelopment and in regulating the function
and structure of the adult nervous system [32] (adjusted p value = 0.022) (Figure 3b). In
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contrast, many factors although with high consistent regulation tendency have no known
genetic functions. For example, gene factor 2 (94% genes up regulated in SCZ, 39.3% have
at least one supportive evidence, and only 11% of the genes are known to be differentially
expressed in SCZ), gene factor 3 (78% genes up regulated in SCZ, 31.8% have at least one
supportive evidence, and only 4.5% of the genes are known to be differentially expressed),
gene factor 4 (70% genes down regulated in SCZ, 42.4% have at least one supportive
evidence, and only 15% of the genes are known to be differentially expressed), and lncRNA
factor 1, which contains 229 lncRNAs (597 target genes) but no enrichment were identified
for biological functions. Taken together, these factors are potential targets for researchers to
explore in further studies. One of the limitations of this study is the selection of target genes.
We chose 3 closest genes of a lncRNA to capture the corresponding target genes based on
previous studies showing that lncRNAs tend to regulate the expression of neighboring
protein-coding genes [18–20]. The mapping procedure of lncRNAs to their target genes is
currently a challenging problem and without a gold standard. We chose the 3 closest genes
of a lncRNA to balance the trade-off between high sensitivity and acceptable specificity.
More sophisticated approaches are still warranted. In addition, we emphasize that, as an
exploratory study with limitations, the prediction model created in this study warrants
further validation in other datasets, especially in different ethnicities. As shown by our
data in a small sample of non-EA individuals from the CommonMind database (including
22 SCZ and 27 controls), the prediction accuracy of coding genes was reproducible, but
not that of lncRNAs. In contrast to coding genes directly determining the pathophysiol-
ogy of SCZ, lncRNAs have only regulatory and indirect effects in SCZ. Their prediction
performance might thus be inferior if applied to a different ethnicity.
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4. Methods & Materials
4.1. RNA-Seq Data for Dorsolateral Prefrontal Cortex (DLPFC) Samples

This study was approved by The Children’s Hospital of Philadelphia (CHOP) Institu-
tional Review Board (IRB). All the patients who participated in this project were consented
and they agree to the publication of the results. RNA-seq data of dorsolateral prefrontal cor-
tex (DLPFC) samples were obtained from the CommonMind consortium [11]. More specifi-
cally, the RNA-seq data were downloaded from the CommonMind Consortium Knowledge
Portal at synapse (https://www.synapse.org/#!Synapse:syn2759792/wiki/69613) accessed
on 1 January 2017.

To minimize the confounding effect of ethnicity, we only selected SCZ patients and
controls who are of European ancestry (EA). A total of 254 RNA-seq BAM files were
obtained include 120 SCZ patients and 134 healthy controls. Samples with a minimum
of 50 million mapped reads and less than 5% rRNA-aligned reads were retained for
downstream analysis. The RNA-seq data were aligned using the Spliced Transcripts
Alignment to a Reference (STAR) [33]. Details for individuals, such as gender, age, and
read counts/unique reads were listed in Table S2.

Based on the consortium’s description, RNA was isolated from 50 mg homogenized
tissue in Trizol using the RNeasy kit based on the instructional protocol. The mean total
RNA yield was 15.3µg (±5.7). The RNA integrity number (RIN) was determined by
fractionating RNA samples on the 6000 Nano chip (Agilent Technologies, Santa Clara,
CA, USA) on the Agilent 2100 Bioanalyzer. The mean RIN was 7.7 (±0.9), and the mean
ratio of 260/280 was 2.0 (±0.02). Processing order was re-randomized prior to ribosomal
RNA (rRNA) depletion. Briefly, rRNA was depleted from about 1µg of total RNA us-
ing a Ribo-Zero Magnetic Gold kit (Illumina/Epicenter Cat # MRZG12324) to enrich for
polyadenylated coding RNA and non-coding RNA. The sequencing library was prepared
using the TruSeq RNA Sample Preparation Kit v2 (RS-122–2001-48 reactions) in batches
of 24 samples. A pool of 10 barcoded libraries was layered on a random selection of two
of the eight lanes of the Illumina flow cell bridge amplified to ~250 million raw clusters.
One-hundred base pair paired end reads were obtained on a HiSeq 2500. The sequence
data were processed for primary analysis to generate Quality Control (QC)values.

4.2. Gene/Non-Coding RNAs Expression Matrix

The genomic template used for coding genes expressions is hg19 refSeq, and long non-
coding RNAs template is GENCODE version 19 [34]. The expression matrix was generated
based on Cuffnorm functions in Cufflink package version 2.2.1 [35], and the SCZ and
controls groups are normalized. More specifically, the Cuffnorm reports expression values
in Fragments Per Kilobase (FPKM) for each gene were properly normalized based on library
size. To eliminate potential noisy signals, the gene expression FPKM values less than 2 were
removed due to potential noises from low FPKM genes. Genes/lncRNAs with collinearity
over 80% were removed because generally feature selection methods assume feature
vectors are independent to each other. Differential expression analysis was undertaken by
independent Student’s t-tests based on the FPKMs after the classic-FPKM normalization.

4.3. Gene Reductions Using Machine Learning Algorithms

Multiple machine learning algorithms include random forest, forward feature se-
lection (ffs), and factor analysis, were applied to select and reducing the informative
gene/lncRNA features between SCZ and controls. Random forest is one of the most widely
used algorithms for feature selection, which computes relative importance or contribution
of each gene feature in the prediction, then scales the relevance down so that the sum of
all scores is 1. All the genes/lncRNAs with zero relative importance were removed. The
following parameters were applied for the random forest model, including: the function to
measure the quality of a split, using “gini”; the minimum number of samples required to
split an internal node equals 2; and nodes are expanded until all leaves are pure or until all
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leaves contain less than 2. The number of features to consider when looking for the best
split equals the square root (num_features) and the number of trees in the forest equals 500.

The second algorithm forward feature selection (ffs) is one of the most common
methods to reduce number of features for machine learning inputs by trying to find the
best features which improve the performance of the model. The modeling codes are based
on based on the Scikit-learn package (version 0.21.3) in Python language [36].

In order to test the predictive abilities for selected gene/lncRNA features, we applied
a 2-fold shuffle testing. In other words, the SCZ and control samples were split into 1:1 ratio
for 50 rounds randomly, one set used as training data and another one used as independent
testing set. Gene/lncRNA features were selected as described in previous paragraph for
training data (to overcome overfitting problem, the only parameter altered is we required
random forest relative importance >0.0005 rather than >0), then a random forest classifier
is applied to label whether the sample is SCZ or control in testing data based on training
data gene/lncRNA features.

Factor analysis was applied to the entire sample set for further clustering gene/lncRNA
features. Factor analysis is a statistical method used to describe variability among observed,
correlated variables in terms of a potentially lower number of unobserved variables called
factors, and the methods have been proven to be a good interpreter for gene networks and
pathways [37,38]. The number of factors chosen in the model was 50 for both coding genes
and lncRNAs based on Kaiser–Meyer–Olkin (KMO) test (when eigenvalues are greater
than one), and the rotation method, “varimax”. The Python-based factor_analyzer package
was used in the analysis (version 0.3.1).

For validation, we further tested the machine learning algorithm in an independent
dataset, i.e., a small sample of non-EA individuals available from the CommonMind
database (including 22 SCZ and 27 controls).

Supportive evidences for SCZ genes were collected based on SZDB, a database con-
tains various layers of data of schizophrenia researches, such as genetic data, copy number
variants (CNVs) data, whole genome/exome sequencing (WGS/WES) data, gene expres-
sion data, functional genomics data, and protein–protein interaction data [39].

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/7/3364/s1, Table S1. The statistical analysis and fold changes of gene expression; Table S2.
Details of the research subjects; Table S3. Downregulated genes pathways; Table S4. Upregulated
genes pathways; Table S5. Selected Gene features based on Machine learning algorithm; Table S6.
Factors of coding genes; Table S7. lncRNAs.
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