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Abstract

Governments around the globe use non-pharmaceutical interventions (NPIs) to curb the

spread of coronavirus disease 2019 (COVID-19) cases. Making decisions under uncer-

tainty, they all face the same temporal paradox: estimating the impact of NPIs before they

have been implemented. Due to the limited variance of empirical cases, researchers could

so far not disentangle effects of individual NPIs or their impact on different demographic

groups. In this paper, we utilize large-scale agent-based simulations in combination with

Susceptible-Exposed-Infectious-Recovered (SEIR) models to investigate the spread of

COVID-19 for some of the most affected federal states in Germany. In contrast to other

studies, we sample agents from a representative survey. Including more realistic demo-

graphic attributes that influence agents’ behavior yields accurate predictions of COVID-19

transmissions and allows us to investigate counterfactual what-if scenarios. Results show

that quarantining infected people and exploiting industry-specific home office capacities are

the most effective NPIs. Disentangling education-related NPIs reveals that each considered

institution (kindergarten, school, university) has rather small effects on its own, yet, that

combined openings would result in large increases in COVID-19 cases. Representative sur-

vey-characteristics of agents also allow us to estimate NPIs’ effects on different age groups.

For instance, re-opening schools would cause comparatively few infections among the risk-

group of people older than 60 years.

Introduction

In 2020, governments tried to curb the spread of COVID-19 without having an appropriate

medical response available. Most governments implemented non-pharmaceutical interven-

tions (NPIs) which affect societal life in an unseen manner. Although there is initial evidence

that NPIs, such as the closure of educational facilities [1–3], workplaces [3, 4] and certain busi-

nesses [1, 2], the cancellation of mass gatherings [1–3], case detection and contact tracing [4,

5], shielding of vulnerable people [6], mobility restrictions [7], wearing masks [8] or specific

network intervention strategies [9] are effective in reducing the amount of new cases, it is also

clear that NPIs come with severe side effects, e.g., on the economy [9–11], labour markets [12],
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people’s physical [13] and mental health [14], or concerns on increasing domestic violence

[15]. Thus, decision-makers act under immense pressure to balance public health risks while

sustaining economic activities. In so doing, policy-makers are facing a temporal paradox when

it comes to the implementation of NPIs: they have to decide whether a particular NPI (or a set

thereof) is curbing the spread of COVID-19 without having reliable knowledge about the

NPIs’ actual effectiveness. The best way to evaluate the effectiveness of NPIs would be to mea-

sure the empirical correlation between the implementation of a NPI and the change of the

infection rate. However, an empirical estimation is difficult in many areas due to the unavail-

ability of data. Only few studies exist with a rather narrow set of scenarios [1–3] or coarse reso-

lutions [16]. Empirical studies on the effect of NPIs are by-design limited in scope because

they can only measure the impact of what governments implement, i.e., estimations rest on

scenarios which have actually happened. Based on inter-temporal cross-country data, Brauner

et al. [1], for instance, cannot disentangle the effect of school closure and the effect of univer-

sity closure, because in most countries these two institutions were closed almost at the same

time. To circumvent one’s reliance on detailed empirical data in order to evaluate a larger vari-

ety of scenarios, simulation methods can be used to create and investigate the effect of NPIs

which did not occur in reality [17, 18].

In addition, there is great need for more detailed knowledge of how NPIs work in the spe-

cific context of a country’s or region’s social structure [17, 19]. Preliminary evidence exists that

the spread of COVID-19 cases is starkly influenced by structural circumstances, such as age

distributions [20, 21] or network densities of geographic areas [22]. To reflect social structures

and relevant characteristics of people’s behavior in simulations, agent-based modeling (ABM)

have proven to be good complements to epidemiological differential equation models [9, 17,

23, 24]. Once a model with predictive capability is established [25], it is possible to create sce-

narios that differ from empirical scenarios and to apply the simulation results to reality [17,

18].

Many researchers already exploit the benefits of data-driven agent-based models to investi-

gate NPIs in the context of a countries’ specific circumstances [4, 6, 26–29]). ABM exist for the

U.S. [26, 30], Canada [4], Colombia [31], Australia [27], France [6], Singapore [28], Iran [29]

and the UK [26]. Our model not only adds (parts of) Germany to this list but uses an innova-

tive method to generate an artificial population of agents which resembles the real population

of a federal state and, hence, important parts of its social structure. Thus, instead of corre-

sponding to a few, rather coarse macro-characteristics of the target population, our study rep-

resents households of survey participants. The micro-level of the simulation—agents with

specific attributes living together with other agents with specific attributes—therefore reflects

important properties of the social structure of a society; much more than synthesizing the arti-

ficial population based on aggregated macro-data on the target populations’s household

structure.

Materials and methods

The overall purpose of our simulation study is to investigate the effects of various non-phar-

maceutical interventions (NPI) in curbing the spread of COVID-19. We predict case numbers

of counter-factual scenarios in which certain NPIs are (not) implemented and compare the

predicted case numbers to empirical case numbers. We evaluate our agent-based model by its

ability to reproduce time-series data of observed case numbers in a baseline scenario that mim-

ics the factual implementation of NPIs happened in spring 2020 in Germany. Hence, dropping

certain measures or combinations thereof (i.e., deviations from the empirical baseline sce-

nario) allows us to estimate each NPI’s efficacy. We model the infection on the level of federal
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states. We chose the four states in Germany (Baden-Wuerttemberg, Bavaria, Hamburg, Saar-

land) with the highest infection rate relative to its population size during the first wave of

Covid-19 in Germany (March 2020). To describe the model, we roughly follow the ODD

(Overview, Design concepts, Details) protocol for describing individual- and agent-based

models [32, 33]. All code is made available to reproduce results or to add further scenarios

and, respectively, NPIs.

Entities and scales

The four main entities driving the simulation’s dynamics are agents, locations, a virus and a

global environment. The agents represent humans living their daily life in the pandemic. Dur-

ing the day, they execute various activities and spend their time either at home, kindergarten,

school, university, supermarket or an occupation-specific work place. Each action depends on

the day of week, the time of day and individual characteristics of each agent. The values of the

agents’ characteristics, such as age, gender, occupation, daily working hours or the time usually

spent in the supermarket, are taken from survey data, i.e., each agent represents a survey

respondent in regard to his or her attributes.

Locations represent the different sites where agents can reside during the day and between

which agents move. Space is modeled by locations, however, no geographical distance between

different locations are represented. The types of locations implemented in the model are

agents’ homes, workplaces, school classes, kindergartens, universities and supermarkets, in

order to simulate the most important NPIs that had come into effect in each federal state in

Germany in Spring 2020. Whenever possible, the number of each type of locations is deter-

mined by the composition of the agent population and empirical macro data (cf. subsection

Initialization). Locations can only be accessed by assigned agents, e.g., only members of a spe-

cific household can enter their home or only employees of a specific company can enter the

company’s office.

The virus represents COVID-19 infecting the agents. If an agent gets infected by the virus, a

multistage disease process is triggered. The virus can be transmitted from an infectious agent

to a susceptible agent, if these two are at the same location (cf. subsection Disease process and

virus transmission).

The global environment represents laws and decrees influencing the daily schedule of the

agents (cf. subsection Non-pharmaceutical interventions). This means especially the imple-

mentation of NPIs, but also the closing of schools due to state-wide holidays. For the base

model we create a schedule of NPI implementations and relaxations that mimics the history of

events during the first wave of COVID-19 in Germany. In the simulation experiments, we

then design contra-factual scenarios using schedules that differ from the empirical baseline

scenario (cf. subsection Scenarios and model execution).

Time is represented via discrete steps. 18 time steps represent one day, where each time

step usually represents one hour. Only in the night time of each day 6 hours are skipped due to

run-time optimization. We assume the night time when most people sleep is not relevant for

the spread of the virus. Each run simulates 100 days (1800 time steps), starting with the day

when the case numbers in the federal state are closest to 50 cases per 100,000 inhabitants.

(Start dates and end dates: Hamburg 2020.03.19–2020.06.26; Baden-Wuerttemberg:

2020.03.21–2020.06.28; Bavaria: 2020.03.23 -2020.06.30; Saarland 2020.03.25–2020.07.02).

Initialization

The first step of model initialization is to create the population of empirical-grounded agents.

Each agent-based model includes a population of at least 100,000 agents. The values of the
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agents’ characteristics, such as age, gender, occupation, daily working hours or the time usually

spent in the supermarket, are taken from survey data, i.e., each agent represents a survey

respondent in regard to his or her attributes. For that purpose, we use the 2017 German Socio-

Economic Panel (SOEP) [34]. The SOEP is a representative panel survey that includes entire

households of respondents. To set the agents’ daily routines in the simulation, we classify each

agent either as kindergartner, school student, university student, working university student,

working or non-working agent. All agents in the age from 0 to 5 are classified as kindergarten

kids. Each agent in the age from 6 to 19 is classified as school kid. Older agents are either uni-

versity students, working university students, working (with a certain occupation) or non-

working agents. In order to distinguish the occupational fields of the agents we use the current

version of the Statistical Classification of Economic Activities in the European Community

(NACE Rev. 2) on level 1 (NACE-sections) and level 2 (NACE-divisions) provided in the

SOEP. S1 Table lists all variables used to set agents’ attributes.

Like every survey, SOEP has to deal with missing values. For 3.53% of the sample we replace

missing data on working hours by age- and gender-specific group means. For 3.46% of the

sample we replace missing data on the occupation by a random occupation code in each simu-

lation run. For cases with missing information about the time spent daily in supermarkets

(26,92%) we impute the overall mean (approximately 1h). Finally, 1.62% of the households are

excluded, because the case itself or a member of the corresponding household has missing

data.

To create a population of agents that represents a given federal state, we first create a subset

of SOEP-respondents who reside in the given state. In a second step, we take a random sample

of households (with replacement) from the subset until a population size of at least 100,000 is

reached. The households’ selection probabilities are not equal, but are weighted by the corre-

sponding cross-sectional representativity weight provided by the SOEP for each household.

Due to the random sampling of households of different sizes, the final population size is either

exactly or slightly above 100,000.

After the creation of the population, the simulated world is built, which consists of different

types of locations. In a first step, for each type of location the necessary frequency is calculated.

In a second step, the agents are assigned to selected locations. For each household of agents a

home is created in which all members of the household (taken from the SOEP) reside. The

number of additional location types is adjusted to the characteristics of the agent population

and the respective federal state. S1 Table shows the parameters we use to calculate the corre-

sponding number of locations in the simulation model. After all locations are created, kinder-

garten kids are randomly assigned to one of the kindergartens, pupils are randomly assigned

to one of the school classes, university students are assigned to the university and working

agents are randomly assigned to one work place of the corresponding NACE-section. All

agents above the age of 13 are assigned to two randomly selected super markets.

In order to start a pandemic when the simulation executes, at the beginning of each single

simulation run the infection status of 50 randomly selected agents is set to infectious.

Main simulation loop

After the initialization, the main simulation loop starts and simulates one (hourly) time step

every round until 100 days were simulated. In each time step, the current date and time are

updated by incrementing the datetime by one hour. Because most of the night time is skipped,

the clock is set forward to 7 a.m. if it is 1 o’clock.

Every agent starts each time step by an update of its infection status, i.e., an agent checks

whether it has to set it’s infection status from exposed to infectious with symptoms or from
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infectious with symptoms to recovered (cf. subsection Disease process and virus transmission).

In the next step, if the agent is infectious, it potentially infects (susceptible) agents present at

the same location (cf. subsection Disease process and virus transmission). In the next two pro-

cesses the agent first checks whether it stays at home that day due to feeling sick or due to an

ongoing isolation of the whole household (cf. subsection Non-pharmaceutical interventions).

If neither is the case, agents start, continue or finish an activity depending on the weekday, the

clock time, the age, student status, daily work hours and the NPIs that are currently in effect

(cf. subsection Activities).

Activities

Activities cause agents to leave their home during the day, to visit other locations, to encounter

other agents, and as a consequence, to potentially spread the virus through physical proximity.

An activity is implemented in the simulation as staying at a location for a certain period of

time. Every agent has a daily schedule of activities that determines which locations an agent

visits, and for how long. The default activity that every agent exhibits when there is no other

activity on its schedule is being at home. From Monday to Friday at 8 o’clock, kindergarten

kids go to kindergarten, school kids go to school, university students attend university, and

workers go to work. School kids and kindergarten kids return to their homes after 5 hours,

university students after 4. While the dwell time at kindergarten, school and university are

based on assumptions, the average daily working hours represent those of the modeled survey

respondents (we have tested the effect of differing assumptions on the case numbers in the

baseline model—cf. S1–S3 Figs). If university students have jobs, they first go to work and then

go to university. When agents are at home and there is no other activity, there is a certain

probability to go to the supermarket. The average time an agent spends at the supermarket is

taken from the SOEP. To account for the possibility of home office in the simulation, working

agents change their location to their workplace only with a certain probability and otherwise

start working from home. The probabilities to work from home are derived from data on the

frequency of home office use per NACE-division in Germany in 2018 [35] (cf. S4 Table).

Disease process and virus transmission

The biological aspect of the infection (i.e., what happens to an agent after the virus was trans-

mitted) was implemented in strong orientation to the way the process of infection is imple-

mented in Covasim [36]. It can be considered as an extended S-E-I-R (susceptible, exposed,

infectious, recovered) infection model [37]. The process of infection by COVID-19 is modeled

by an multi-stage infection process including up to six different phases of infection an agent

can have: susceptible, exposed, infectious, infectious with symptoms, infectious without symp-

toms and recovered. Except for 50 randomly selected agents starting with the status infectious,

every agent is initially susceptible to an infection. When an agent got infected, the agent goes

through the stages of infection. For each agent and each stage of infection we draw individual

time spans from a log-normal-distribution following Covasim [36] (cf. S1 Table). In addition,

the decision whether an agent develops symptoms or not is determined by an age-dependent

probability, which also resembles Covasim [36].

The first stage after the infection occurs is being exposed to the virus. At this stage, the virus

has entered the agent’s body, but the agent is not yet infectious or symptomatic. The second

stage of infection is being infectious. This is the time during the infection when the agent is

already infectious but not yet symptomatic because the body has not had enough time to

develop symptoms. In the next stage the agent can either develop symptoms or remain

completely asymptomatic. Finally, an agent reaches the stage of being recovered from the
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infection. We assume permanent immunity after recovery, thus, an agent cannot be infected

for a second time.

The agent-to-agent transmission of the virus is one of the most essential elements in the

modeling of infectious diseases. In our model, a transmission of the virus can occur whenever

an infectious agent and a susceptible agent are at the same time in the same place. At each time

step, each infectious agent randomly selects one agent that is currently in the same location (if

the infectious agent is currently not alone in its location). If the agent randomly selected by the

infectious agent is susceptible to infection, its infection status is set to ‘exposed’ by a certain

probability of infection. This infection probability per time step is an important, yet unknown

parameter and is therefore determined by model calibration to empirical infection data of a

given state (cf. section Calibration). In the model calibrated for this study, these infection prob-

abilities range from 0.04727 to 0.0645 (cf. Table 3).

Non-pharmaceutical interventions

Non-pharmaceutical interventions (NPIs) affect the agents’ daily schedule by canceling certain

activities and causing the agents to stay at home instead. The changes on the agents’ daily lives

due to NPIs considered in the model are the following: less to no time at school, kindergarten

or university, an increased amount of time working from home, quarantining households of

infected agents and reduced or no work hours due a (partial) shutdown or economic down-

turn in certain occupational fields. For most of the NPIs a daily probability distribution deter-

mines for each agent individually whether it starts a certain activity and leaves its home or not.

In response to active NPIs, the specific probability reflects whether a certain location is closed

(or to what degree), or that work hours are reduced for a given NACE-section. For example, a

(partially) closed school is implemented as a daily probability that determines for each school

kid separately whether he or she goes to school that day. To model that only half of the pupils

are allowed to go to school, the daily probability to go to school for each pupil is set to 0.5. If

schools are completely open, the probability for school attendance is 1. Complete closure of

schools are reflected in a daily probability of school attendance equal to 0. If, for instance, 80

percent of a specific NACE-division has to work from home, the daily probability to visit the

work place is set to 0.2 for all agents belonging to that specific NACE-division. Besides the

potential closure of work places and educational facilities also the isolation of households is

implemented as an NPI. If an agent shows symptoms of an infection over a certain period of

time, the agent and all household members are quarantined at home for 14 days. The period of

time from the onset of symptoms of one of the household member to the isolation of the

whole household is one of the two calibrated parameters and lies between 21 and 26 time steps

(cf. Table 3).

Scenarios and model execution

The model allows us to simulate different scenarios where the duration and degree of imple-

mentation of specific NPIs can be varied by entering specific timetables during model initiali-

zation. Those timetables contain daily information about the state of each NPI. Because the

initial goal of the model is to capture the course of the pandemic during its first wave in Ger-

many, we create a baseline model with a timetable which mimics the factual implementation

of NPIs as it took place in Germany in spring 2020. In the baseline model we mimic the course

of the lockdown in Germany with its onset at around march 16 and the following 100 days of

disease spread. Table 1 shows the varying degree of implementation of different NPIs by date

in the baseline scenario.
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To estimate the effects of specific NPIs, we simulate different contra-factual scenarios using

timetables that differ in one or more aspects from the one used in the baseline model. It is

important to note that each effect is the change in the number of cases if a given NPI had not

been implemented while all other NPIs remain active (if not reported differently, e.g., the com-

bined effects of education-related NPIs in the School_Kinder-scenario). Overall, the simula-

tion experiment includes 9 counterfactual scenarios with differing timetables. The

counterfactual scenarios and their deviation from the baseline scenario are listed in Table 2.

For each state and scenario, we simulate 100 days, starting with the day when a state had

approximately 50 cases per 100,000 inhabitants. In each run of the simulation we collect the

new infections per day, the cumulative cases on a day and the age of the infected agents. If the

size of the agent population is exactly equal to 100000 cases, frequencies can be directly inter-

preted as cases per 100000 inhabitants. Otherwise, the infection frequencies are calculated by

I�100000/P, where I is the number of infections and P is the actual population size in the

Table 1. Timetable of NPIs in baseline scenario.

NPI March 16 April 20 May 6 May 18 June 2 June 15

Kindergartens 0.1 0.1 0.3 0.3 0.3 0.6

Schools 0 0.1 0.3 0.3 0 0.3

NACE-section G 0.25 0.5 1 1 1 1

NACE-section I 0.25 0.25 0.5 1 1 1

NACE-section P 0.25 0.5 1 1 1 1

NACE-section R 0.25 0.5 0.75 0.75 0.75 0.75

NACE-section S 0.25 0.5 1 1 1 1

Universities 0.1

Working from home maximum

Household isolation yes

Work hour reduction yes

Table 1 shows the timetable of NPI implementation in the baseline scenario mimicking the factual course of NPI implementation in the first wave of COVID19 in

Germany in 2020. For kindergartens, schools and universities as well as the five NACE-sections the values reflect the degree of openness for each kind of location (cf.

subsection Non-pharmaceutical interventions). For the NPI Working from Home the value maximum means the full utilization of industry-specific capacities to work

from home. See S4 Table for a full list of home-office exploitation rates per NACE-division. For industry-specific values regarding the Work hour reduction see S3

Table.

https://doi.org/10.1371/journal.pone.0259108.t001

Table 2. Manipulation of NPIs in counter-factual scenarios.

Scenario Manipulation Value Baseline value

Open.Schools Schools (degree of openness) 1 0–0.3

Open.Kinder Kindergartens (degree of openness) 1 0.1–0.6

Open.Uni Universities (degree of openness) 1 0.1

Normal.HomeOffice Working from home (industry-specific use of hours worked f. home) normal maximum

No.Quarantine Household-isolation no yes

Normal.Work.Hours Work hour redu.; NACE-sec. G, I, P, R, S (degree of openness) no; 1 yes; 0.25–1

Open.AllEduc Scenario combines Open.Schools & Open.Kinder & Open.Uni
Open.Schools.Kinder Scenario combines Open.Schools & Open.Kinder

Table 2 shows the differences between the scenario-specific timetables and the baseline scenario timetables shown in column “Baseline value” and in detail in Table 1.

The values in the baseline scenario represent the factual degree of NPI-implementation in the first wave of COVID19 in Germany 2020.

https://doi.org/10.1371/journal.pone.0259108.t002
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simulation. Therefore, all results can be interpreted as cases per 100000. Due to the many sto-

chastic elements used in the simulation, each single run of the model returns different results,

even when the same set of parameters is used. Thus, to obtain reliable results for a given set of

parameters we run 60 repetitions of model runs and average the results.

Calibration

Although the model includes relevant micro-level mechanisms of a pandemic and a represen-

tative agent population, we must perform some iterative fine-tuning as is often done in ABMs,

i.e., calibrating the model to reproduce empirical data [38]. To calibrate the ABMs on infection

frequencies in a given federal state, we determine the values of two parameters: the hourly

probability an infected agent will infect another agent, and the time needed to quarantine a

household after the first symptoms of a household member appear. Among the different simu-

lated scenarios, the baseline scenario is the one whose goal is to represent the scenario that

actually happened in reality and thus the one that should be able to reproduce the correspond-

ing empirical data on infections. Therefore, we calibrated the model in the baseline scenario to

the corresponding data on the cumulative infection frequencies per 100.000 inhabitants in a

given state. We performed the calibration using the Latin Hypercube Sampling algorithm [38],

which is implemented in the python package Spotpy [39]. For each model to be calibrated, we

searched for the set of model parameters that generate simulated data with the smallest devia-

tion to the corresponding daily empirical data on cumulative number of infections (data

source: [40]). We stopped the calibration process when at least one set of parameters was

found to generate simulated data with a fit of a root mean squared error less than 20. S6 Fig

shows the parameter combinations sampled using Latin Hypercube Sampling and the result-

ing model fit using these parameter combinations in the baseline scenario. Table 3 shows the

parameter combinations yielding the best model fit for each federal state.

Because the calibration of the model for a single federal state requires at least 180 simulation

runs (each consisting itself of 60 internal replications and one replication takes approx. 20

minutes) due to varying parameter sets, each process of calibration was serialized on 192 cores

provided by BW-HPC, a statewide computing and data infrastructure.

Results

To derive the efficacy of NPIs in counterfactual scenarios, the first step is to ensure the predic-

tive capability of the model by assessing its fit to the actual spread of COVID-19. The proposed

model matches the empirical data of the daily number of cumulative cases for each of the four

most affected federal states in Germany (Fig 1). Our model predicts the rapid rise of COVID-

19 cases in the early stages of the pandemic as well as its subsequent decelerated growth in

which the infection numbers stabilize. The model also simulates accurately the different levels

of disease spread in the four states, which vary considerable by structure (cf. Supporting

information).

After establishing that the model actually predicts the empirical spread of the Corona virus,

we can turn to implementing counterfactual scenarios. We do that by removing each NPI that

was at work in reality and examine the effect of its omission from the baseline scenario in the

Table 3. Calibrated parameters.

Parameter Baden-Wuerttemberg Bavaria Hamburg Saarland

Infection probability per time step 0.06213 0.0645 0.0502 0.04727

Time steps from symptoms to household quarantine 21 23 26 23

https://doi.org/10.1371/journal.pone.0259108.t003
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simulation. Fig 2 reveals that decreasing the urge to quarantine infectious cases and reducing

home office hours to regular percentages would cause the starkest increase across all imple-

mented NPIs. While quarantine is, by a margin, the most important NPI in the two large terri-

torial states (Baden-Wuerttemberg and Bavaria), it is a bit less important than increased

home-office in the two smaller states. At the other end of the efficacy spectrum is the scenario

in which there was no reduction of work hours. Across all states, it has almost no effect in our

simulation if people would have worked normal hours. This small impact, e.g., compared to

Fig 1. Model fit by state. The solid lines depict the cumulative number of reported COVID-19 cases and the average of cumulative infections across 60

simulation replications per state. Shaded areas represent the 95% confidence intervals of the averages. The root mean squared error of the model’s

predictions ranges between 8.414 for Bavaria and 16.56 for Hamburg.

https://doi.org/10.1371/journal.pone.0259108.g001
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the impact of working from home, can be explained by the rather small empirical changes in

working hours due to economic downturns. While working time reductions were close to zero

in most industries, only hospitality industry (NACE-section I) and arts, entertainment and

recreation (NACE-section R) experienced significant reductions of about 32.3% and 15.5%,

respectively. For further details on the reduction of work hours per industry sector see S3

Fig 2. Effect of counterfactual non-implementation of NPIs, by state. Each line represents the average cumulative case numbers per scenario. While

all NPIs considered are implemented in the baseline scenario to mimic the real scenario, the lines of the other scenarios show the estimated cumulative

case numbers caused by the omission of one or more NPIs. For exact values of the average cumulative case numbers, standard deviations and

confidence intervals on day 100, see also S5 and S6 Tables.

https://doi.org/10.1371/journal.pone.0259108.g002
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Table. In addition, the total closure of businesses and facilities is only selective and temporary

in the baseline scenario, which can be seen in Tables 1 and 2.

Which education facilities may be kept running is a controversial topic in Germany, since it

affects the lives of millions of children and parents. Turning to education-related NPIs, our

model predicts a large increase of COVID-19 cases if all three types of institutions (kindergar-

tens, schools, and universities) would re-open. In contrast to previous studies [1], our model

also allows us to inspect the effect of each education facility separately. In the counterfactual

scenarios presented in Fig 2, opening schools would have increased COVID-19 cases by several

hundred (per day). Fig 3 disentangles the numbers further. It shows that opening all educa-

tion-related institutions at the same time has a considerable effect (third largest overall, Fig 2),

which exceeds the sum of the effects of each institution in all four regions. One possible expla-

nation for this large effect of combined opening of educational institutions is that children

who go to kindergarten often have siblings who go to school, and vice versa, as one can see in

S9 Table. Thus, households with children could link two of the largest social network hubs

(schools and kindergartens) in Germany, making it easy for the virus to spread to large seg-

ments of society that would otherwise be unreachable. Therefore, contagious effects seem at

work which can be mostly attributed to the interplay of kindergarten kids and pupils (Open.

Schools_Kinder in Fig 3). If comparing education-related NPI individually, we see that the

effects of all three types are rather similar. Yet, opening universities has slightly lower effects

than the other two, and opening schools causes the highest average effect in all four states.

In general, the opening of schools and kindergartens, both combined or each separately,

seem to have notable effects on the case numbers due to two further points besides the linkage

between pupils and kindergarten kids through households. Both pupils and kindergarten kids

also typically live in relatively large households, which are breeding grounds for virus transmis-

sion (cf. S9 Table). In addition, those households not only seem to provide a link between

pupils and kindergarten kids, but also provide a link between these two groups and the world

of working adults, as S9 Table shows. On the other side, those household compositions can

also explain the minor importance of universities regarding the number of infections. Univer-

sity students live in households of smaller average size compared to the households of other

people. In addition, university students rarely live together with school kids or kindergarten

kids, thus the contacts between those groups are limited (cf. S9 Table). Furthermore, in our

sample the frequency of university students is much smaller than kindergarten kids or pupils

(cf. S8 Table).

Besides considering NPIs separately, using an ABM with representative survey respondents

as agents allows us to trace infections by age group. Age constitutes one of the main factors to

identify risk groups [20]. In general and for each NPI, the mean age of infected agents

decreases over time (Fig 4). This reflects recent findings using rare empirical data on the age of

infected [41]. Furthermore, Fig 4 details how each NPI affects different age groups. It reveals

that the counterfactual removal of NPIs drive COVID-19 numbers through the infection of

agents younger than 60. Across all states, the scenarios in which schools re-open and pre-pan-

demic home office rates are attained lead to the lowest proportion among the elderly risk-

group. In contrast, re-opening the universities yields a higher proportion of infections among

people older than 60, although the vast majority of infections pertains younger people and the

absolute numbers of COVID-19 caused by re-opening universities are rather low (Fig 2).

Discussion

Overcoming the temporal paradox of deciding whether the implementation of a particular

NPI is decreasing the spread of COVID-19 before knowing its actual effect is crucial for
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policy-makers and researchers alike. Testing such counterfactual what-if scenarios could

improve the basis for decision-making considerably and help to decide which NPIs to imple-

ment. Our approach illustrates a way to estimate the effectiveness of otherwise unobservable

scenarios by simulating agents with attributes taken from a large survey representing about 27

million people. In so doing, our study generates insights on the effectiveness of several wide-

spread NPIs (quarantine, home-office, closing universities, schools, and kindergartens,

Fig 3. Cumulative infection numbers on day 100 for each counterfactual non-implementation of education-related NPIs, by state. Boxplots depict

the distribution of all replications. For exact values of the average cumulative case numbers, standard deviations and confidence intervals on day 100,

see also S5 and S6 Tables.

https://doi.org/10.1371/journal.pone.0259108.g003
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reduced work hours) in four federal states in Germany. Going beyond previous studies, our

approach enables us to disentangle the effect of individual NPIs and, hence, provides informa-

tion for policy makers who need to balance the trade-off underlining each NPI between indi-

vidual and economic freedom on the one side, and prevention of disease spread on the other.

It can be shown that focused quarantining of infected agents and their household members

(i.e., close contacts) is the most effective NPI. Governments should therefore make every effort

Fig 4. Share of infected agents belonging to the risk-group (age> = 60), by state. Lines represent the share of cumulative cases in the risk group for

each NPI over all simulation runs. To facilitate readability, a ribbon of confidence intervals is omitted. Figures including the CIs are available upon

request.

https://doi.org/10.1371/journal.pone.0259108.g004
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to increase their ability of case detection and contact tracing [4, 5]. The second largest effect is

the home office scenario. It can be shown that an increased usage of home office capacities is a

very effective measure to reduce the number of new infections, which is in line with observa-

tional studies [42]. This result is particularly important, because although there was a consider-

able increase of home office usage in the beginning of the pandemic [43], both employers and

employees still refuse to comprehensively rely on home office in the long term [44].

The most controversial NPI is the closure of educational facilities. In contrast to many

observational studies [1, 16, 45], we are able to estimate a separate effect for each education-

related NPI. Our simulations suggest that the separate re-opening of each institution yields

rather low infection numbers. However, combined openings lead to multiple infections, in

particular, re-opening kindergartens and schools at the same time increase COVID-19 cases

considerably. Therefore, alternating periods of open educational institutions could represent a

promising way to maintain low infection numbers while sustaining institutional functions.

A key characteristic of COVID-19 is its elevated mortality for older people and the subse-

quent importance of demographics [20]. Taking into account social structures by using agents

with survey-characteristics and in accordance with a very recent study for the USA [41], our

findings reveal that younger age (less risk-prone) groups sustain the spread of COVID-19

when the fore-mentioned NPIs are omitted. Furthermore, simulations suggest that the

removal of NPIs affect age groups differently. Considering age adds an important puzzle piece

how to select NPIs, i.e., it allows to distinguish the impact of NPIs in regard to its overall effects

and group-specific effects for the people who are most vulnerable to COVID-19.

Like other simulation studies, our analysis has several limitations. First, our model does not

contain a representation of contacts between households or agents that do not take place in

one of the implemented locations, e.g., contacts with relatives or friends. Second, our model

does not contain locations were people meet during spare time. However, the influence of

both points is mitigated because private contacts and leisure activities were reduced to a mini-

mum in the observed period in Germany. Having said that, care should be taken when apply-

ing the results to other countries or other times. For instance, while in our model elderly and

retired people are somewhat protected against COVID-19 outbreaks among younger people

because they often live in separate households and do not have explicit contact with relatives,

this might not be the case in countries with different household compositions. Finally, the

SOEP survey does not contain information on respondents’ social network, hence, we could

not consider this important transmission channel.

A further limitation is that we do not model changes of people’s behavior. For example, we

do not take into account the change in caution about infection risks in daily life or the obliga-

tion to keep distance and wear masks inside buildings. Also beyond the scope of this paper is

the inclusion of external influences. Instead, we simulate a closed system. After the initial

infections at the beginning of a run no infections occur due to agents coming home from out-

side, e.g., commuters or tourists.

As many other simulation studies, we had to assume some parameter values due to a lack of

empirical data. However, we conducted a series of robustness checks for the most important of

those parameters (cf. S1–S5 Figs). Sensitivity analyses suggest that the results are robust to

changes in the parameters and, hence, to potential errors in assumed values.

Despite those limitations, we provide a reproducible model based on empirical agents

which can be adopted and/or extended. For instance, the current model including above NPIs

could be applied on any states or regions. Researchers would only need to calibrate the model

with subsequent empirical data on COVID-19 cases and survey data. To represent ongoing

vaccination efforts, the model could also be modified so that vaccinated agents have lower

probabilities to transmit the virus. In addition, researchers could extend the existing model
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with alternative NPIs which may be relevant for a specific region. The simulated world can be

amplified by many other meeting places in which certain persons come into contact.

Despite all efforts and increasing availability of vaccinations, it appears that COVID-19 will

accompany our societies for some time to come [46]. Thus, the demand for data-driven epide-

miological models including realistic social structures and demography will stay high. Our

model is an instance how to incorporate survey-based populations and test counterfactual sce-

narios. The development and improvement of such models and the timely availability of more

accurate data was maybe never more important than in the current global pandemic.

Supporting information

S1 Table. Values and data sources of simulation parameters. � At the time of conducting

our simulation experiments, we used the most recent values listed in the latest version of Cova-

sim and the associated article. Unfortunately, these values have changed (slightly) in the final

release of Covasim. Nevertheless, we do not expect these changes to have a significant impact

on our model results [34, 36, 47, 48].

(PDF)

S2 Table. Descriptive statistics on federal states [34, 49, 50].

(PDF)

S3 Table. Reduction of work hours per NACE-section. S3 Table gives the percentages to

which the work hours were reduced in the second quarter (April, May, June) of 2020 as com-

pared to 2019 per NACE-section. We assume that the differences between 2020 and 2019 are

mainly caused by the COVID-19 pandemic. The values are taken from [51].

(PDF)

S4 Table. Amount of working from home per NACE-divisions. The column “Normal” gives

the share of people frequently working at home office per NACE-division. The column “Maxi-

mum” gives the share to which the work could be done in home office i.e. the maximum capac-

ity of working from home per NACE-division. We interpret all values as share of work hours

per NACE-division. We assume that in the total lock- and shutdown in the first wave of

COVID-19 in Germany 2020 the full capacity of working from home was exploited in each

NACE-division. All values are taken from [35].

(PDF)

S5 Table. Case numbers on day 100. S5 Table shows the cumulative number of infected

agents per 100,000 agents after 100 simulated days, averaged over 60 replications per state and

scenario, along with the standard deviation and 95% confidence interval.

(PDF)

S6 Table. Case numbers on day 100 as the difference to baseline scenario. S6 Table shows

the cumulative number of infected agents per 100,000 agents after 100 simulated days, aver-

aged over 60 replications per state and scenario, as the difference from the corresponding base-

line scenario, along with the standard deviation and 95 percent confidence interval.

(PDF)

S7 Table. Infected agents by age-group. S7 Table shows the proportion of each age group in

the cumulative number of infected agents on simulation day 100.

(PDF)

S8 Table. Share of vocational statuses per federal state. S8 Table shows the proportion of dif-

ferent vocational statuses per federal state in the population of agents. “None/other” are those
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agents who are neither working, studying, or of kindergarten or school age. “Working” means

any agent who works more than zero hours per day and is not enrolled at a university.

(PDF)

S9 Table. Household composition by vocational status and state. S9 Table shows for each

vocational status the average number of agents living in the same household by their vocational

status. For instance, on average, an agent classified as a kindergarten child in Baden-Wuert-

temberg lives in a household that contains 1.53 kindergarten children, 0.63 schoolchildren,

0.03 students, 1.4 employed persons, and 0.58 other persons. “None/other” are those agents

who are neither working, studying, or of kindergarten or school age. “Working” means any

agent who works more than zero hours per day and is not enrolled at an university.

(PDF)

S1 Fig. Robustness check: Hours at kindergarten. Compares the number of COVID-19

infections in the baseline scenario across different values for the daily hours at kindergarten.

The value in the center is the one used in the main analysis.

(TIF)

S2 Fig. Robustness check: Hours at school. Compares the number of COVID-19 infections

in the baseline scenario across different values for hours at school. The value in the center is

the one used in the main analysis.

(TIF)

S3 Fig. Robustness check: Hours at university. Compares the number of COVID-19 infec-

tions in the baseline scenario across different values for hours at university. The value in the

center is the one used in the main analysis.

(TIF)

S4 Fig. Robustness check: Number of colleagues. Compares the number of COVID-19 infec-

tions in the baseline scenario across different values for number of colleagues. The value in the

center is the one used in the main analysis.

(TIF)

S5 Fig. Robustness check: Maximum number of students per university. Compares the

number of COVID-19 infections in the baseline scenario across different values for the maxi-

mum number of students per university. We used 100,000 in the main analysis, which means

that there is only one university per simulated world.

(TIF)

S6 Fig. Sampled parameter space. S6 Fig shows the tested combinations of the two calibrated

parameters and the respective model fit when using the combination in the baseline model.

The parameter combination that gives the best model fit is indicated by the cross.

(TIF)
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André Bächtiger, which greatly improved this manuscript. In addition, we thank the state of

Baden-Wuerttemberg for providing us with computing capacity through bwHPC.

Author Contributions

Conceptualization: Marius Kaffai, Raphael H. Heiberger.

PLOS ONE Survey-based simulations of non-pharmaceutical interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0259108 October 28, 2021 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259108.s015
https://doi.org/10.1371/journal.pone.0259108


Data curation: Marius Kaffai.

Investigation: Marius Kaffai, Raphael H. Heiberger.

Methodology: Marius Kaffai, Raphael H. Heiberger.

Software: Marius Kaffai.

Validation: Marius Kaffai, Raphael H. Heiberger.

Visualization: Raphael H. Heiberger.

Writing – original draft: Marius Kaffai, Raphael H. Heiberger.

Writing – review & editing: Marius Kaffai, Raphael H. Heiberger.

References
1. Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et al. Inferring the effec-

tiveness of government interventions against COVID-19. Science. 2020;. https://doi.org/10.1126/

science.abd9338 PMID: 33323424

2. Hunter PR, Colon-Gonzalez F, Brainard JS, Rushton S. Impact of non-pharmaceutical interventions

against COVID-19 in Europe: a quasi-experimental study. medRxiv. 2020; p. 2020.05.01.20088260.

https://doi.org/10.1101/2020.05.01.20088260

3. Islam N, Sharp SJ, Chowell G, Shabnam S, Kawachi I, Lacey B, et al. Physical distancing interventions

and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ. 2020; 370.

https://doi.org/10.1136/bmj.m2743 PMID: 32669358

4. Ng V, Fazil A, Waddell LA, Bancej C, Turgeon P, Otten A, et al. Projected effects of nonpharmaceutical

public health interventions to prevent resurgence of SARS-CoV-2 transmission in Canada. CMAJ.

2020; 192(37):E1053–E1064. https://doi.org/10.1503/cmaj.200990 PMID: 32778573

5. Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al. Modelling the COVID-19

epidemic and implementation of population-wide interventions in Italy. Nature Medicine. 2020; 26

(6):855–860. https://doi.org/10.1038/s41591-020-0883-7 PMID: 32322102

6. Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. A stochastic agent-based model

of the SARS-CoV-2 epidemic in France. Nature Medicine. 2020; 26(9):1417–1421. https://doi.org/10.

1038/s41591-020-1001-6 PMID: 32665655

7. Lima LL, Atman APF. Impact of mobility restriction in COVID-19 superspreading events using agent-

based model. PLOS ONE. 2021; 16(3):e0248708. https://doi.org/10.1371/journal.pone.0248708 PMID:

33735290
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Altersübergreifend Gruppen, ab 0 Jahren.; 2020. Available from: https://www.laendermonitor.de/de/

vergleich-bundeslaender-daten/personal-und-einrichtungen/kita-strukturen.

49. Bruttoinlandsprodukt (VGR) | Statistikportal.de; 2020. Available from: http://www.statistikportal.de/de/

bruttoinlandsprodukt-vgr.

50. Destatis. Verwaltungsgliederung am 31.03.2020 (1. Quartal); 2020. Available from: https://www.

destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/

Verwaltungsgliederung/Verwalt1QAktuell.html.

51. Destatis. Arbeitnehmerverdienste. 2. Vierteljahr 2020. Fachserie 16 Reihe 2.1.; 2020. Available

from: https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Verdienste-Verdienstunterschiede/

Publikationen/Downloads-Verdienste-und-Verdienstunterschiede/arbeitnehmerverdienste-vierteljahr-

2160210203225.xlsx?__blob=publicationFile.

PLOS ONE Survey-based simulations of non-pharmaceutical interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0259108 October 28, 2021 19 / 19

http://doi.org/10.5684/soep.v34
https://doi.org/10.1371/journal.pcbi.1009149
http://www.ncbi.nlm.nih.gov/pubmed/34310589
https://doi.org/10.1007/s42399-020-00330-z
http://www.ncbi.nlm.nih.gov/pubmed/32838137
https://doi.org/10.18564/jasss.2503
https://doi.org/10.1371/journal.pone.0145180
http://www.ncbi.nlm.nih.gov/pubmed/26680783
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/data
https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/data
https://doi.org/10.1126/science.abe8372
http://www.ncbi.nlm.nih.gov/pubmed/33531384
https://doi.org/10.1016/j.jpubeco.2021.104373
https://doi.org/10.1016/j.jpubeco.2021.104373
https://kops.uni-konstanz.de/handle/123456789/51524
https://www.eipa.eu/research-on-home-office/
https://www.eipa.eu/research-on-home-office/
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1038/s41586-020-2405-7
http://www.ncbi.nlm.nih.gov/pubmed/32512579
https://doi.org/10.1001/jama.2020.21946
http://www.ncbi.nlm.nih.gov/pubmed/33104157
https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00112288
https://www.laendermonitor.de/de/vergleich-bundeslaender-daten/personal-und-einrichtungen/kita-strukturen
https://www.laendermonitor.de/de/vergleich-bundeslaender-daten/personal-und-einrichtungen/kita-strukturen
http://www.statistikportal.de/de/bruttoinlandsprodukt-vgr
http://www.statistikportal.de/de/bruttoinlandsprodukt-vgr
https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/Verwaltungsgliederung/Verwalt1QAktuell.html
https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/Verwaltungsgliederung/Verwalt1QAktuell.html
https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/Archiv/Verwaltungsgliederung/Verwalt1QAktuell.html
https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Verdienste-Verdienstunterschiede/Publikationen/Downloads-Verdienste-und-Verdienstunterschiede/arbeitnehmerverdienste-vierteljahr-2160210203225.xlsx?__blob=publicationFile
https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Verdienste-Verdienstunterschiede/Publikationen/Downloads-Verdienste-und-Verdienstunterschiede/arbeitnehmerverdienste-vierteljahr-2160210203225.xlsx?__blob=publicationFile
https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Verdienste-Verdienstunterschiede/Publikationen/Downloads-Verdienste-und-Verdienstunterschiede/arbeitnehmerverdienste-vierteljahr-2160210203225.xlsx?__blob=publicationFile
https://doi.org/10.1371/journal.pone.0259108

