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The shortage of skilled workers who can use robots is a crucial issue hampering the growth of manufacturing 
industries. We present a new type of workforce training system, TeachBot, in which a robotic instructor delivers 
a series of interactive lectures using graphics and physical demonstration of its arm movements. Furthermore, the 
TeachBot allows learners to physically interact with the robot. This new human-computer interface, integrating 
oral and graphical instructions with motion demonstration and physical touch, enables to create engaging 
training materials. Effective learning takes place when the learner simultaneously interacts with an embodiment 
of new knowledge. We apply this “Learning by Touching” methodology to teach basic concepts, e.g. how a shaft 
encoder and feedback control work. In a pilot randomized control test with a small number of human subjects, 
we find suggestive evidence that Learning by Touching enhances learning effectiveness in this robotic context 
for adult learners. Students whose learning experience included touching the robot as opposed to watching it 
delivers the lessons showed gains in their ability to integrate knowledge about robotics. The “touching” group 
showed statistically significant gains in self-efficacy, which is an important antecedent to further learning and 
successful use of new technologies, as well as gains in knowledge about robotic concepts that trend toward 
significance.
1. Introduction

Amid the revolutionary changes to manufacturing and other indus-

try sectors, the shortage of skilled workers who can use robots and 
advanced technologies are becoming a serious problem. A study by the 
Manufacturing Institute estimates that this shortage will leave two mil-

lion unfilled manufacturing jobs in the United States alone [1]. The 
widening gap between required expertise and the skills of the available 
workforce is hampering technological growth in industries [2].

Workforce development for advanced robotics and automation is a 
crucial challenge. In the robotics and automation society, as well as 
in the education research sector, a number of valuable educational 
materials using robots have been developed. These include robotics 
programming instruments for elementary school children [3]; cellular-

phone-based, low-cost robots for college students [4]; and industrial 
mobile robots for graduate students [5]. While education and training 
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have traditionally targeted youth [6], the workforce shortage problem 
cannot be solved through youth education alone. It is necessary to reach 
out to a broader population including older generations, incumbent 
workers, and others lacking engineering education. The goal of this 
work is to develop a new methodology for reaching out to these broad 
populations, engaging them, and empowering them with the training 
and education necessary to become employed in jobs involving robotics 
and automation.

In the future, occupations in which employees work productively 
alongside robots will be ubiquitous. Decades of robotics research have 
given robots more intelligent behavior such as understanding human 
intentions and coordinating motion alongside humans [7, 8]. Collab-

orative robotic systems are growing rapidly in popularity in industry. 
In the past five years, the market for collaborative robots has more 
than doubled to over $1 billion [9]. Appropriately, surveys of workers 
in manufacturing industries have shown worker attitudes toward these 
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Fig. 1. The TeachBot System. A collaborative robot, a cloud computer (not 
shown), a projector (not shown), and peripheral devices.

collaborative robotic systems to be both nuanced and highly varied, 
with little clarity regarding of what robots are capable and how they 
can be used effectively in the workplace [10]. We believe that merely 
making robots “smarter” is not enough to yield a productive human-

robot relationship. The humans must also learn, so that they are better 
prepared for interacting with robots.

An important consideration for teaching the knowledge necessary to 
utilize advanced robotics will be each individual’s self-efficacy for in-

teracting with robotics [11]. High levels of self-efficacy for completing 
work-related tasks have been linked to good service quality, efficiency, 
and effectiveness in the work place. In contrast, individuals with low 
levels of self-efficacy for tasks have difficulty completing them, despite 
being capable in terms of intellect or skill [12]. Furthermore, intrinsic 
interest in any activity, including robotics, may be cultivated by increas-

ing self-efficacy in individuals with respect to that activity. Therefore, a 
robotics workforce education system should attempt to increase learn-

ers’ self-efficacy for interacting with robots.

Sitting in a classroom, people are often unengaged, merely gain-

ing superficial knowledge. Similarly, online learning, particularly large 
open courseware, has often failed to engage the broader population 
[13]. The question is: how can these individuals be better engaged, and 
thus achieve a more fruitful learning experience? Recent research in 
teaching science addresses what is missing in those learning methodolo-

gies. Specifically, investigations into the effectiveness of “hands-on” ac-

tivities as tools for learning have concluded that a key factor to success-

ful learning activities involves allowing learners to manipulate physical 
objects with their own hands. Modern neuropsychology research has in-

dicated that these interactions with physical objects enhance students’ 
learning and creates a solid “embodiment” of knowledge in their brains 
[14]. Robotics education lends itself well to a hands-on learning format. 
However, the exact benefits of embodied learning is still an open re-

search question in learning sciences. Many physical human-robot inter-

action studies have demonstrated the effect of embodiment [15, 16, 17, 
18, 19, 20, 21, 22]. We can utilize the advantages of object-mediated 
learning to engage trainees and enhance their learning experiences. As 
opposed to video or classroom lectures, interactive learning with a robot 
implicitly instructs its usage. An interactive robot is an intriguing “ob-

ject” that can engage a broad population of learners.

In the following sections, a novel workforce training system, called 
TeachBot, is introduced. Extending the object-mediated learning con-

cept, we develop a new methodology for teaching the basics of robotics 
through physical interactions with the robot, referred to as Learning 
by Touching. We hypothesize that people will be more confident and 
comfortable working alongside robots if they have an opportunity to 
2

Fig. 2. Example of Traditional Curriculum. Diagrams explaining the principle 
of an optical shaft encoder.

engage in Learning by Touching with a robotic instructor. The concept 
is implemented on a collaborative robot system connected to an online 
learning environment as shown in Fig. 1. We investigate the hypothe-

sis that Learning by Touching helps learners become more comfortable 
with and confident about the material than if they learned the same con-

cepts without physical interaction. We present results from randomized 
control trials indicating that this new platform significantly improves 
learner self-efficacy. Furthermore, an experiment investigating the ef-

fect of Learning by Touching on knowledge gained opens a promising 
future of development on this platform to upskill adult learners in col-

laborative manufacturing robotics.

2. Literature review

The scientific foundation of object-oriented learning can be found in 
brain and cognitive sciences. Recent neurological studies have revealed 
that thinking about completing a task and actual muscular motion are 
closely related. Indeed, imagining doing an activity and actually doing 
it excite the same parts of the brain [23, 24]. Hauk et al. [25] have 
also shown that the specific segments of the brain responsible for lin-

guistic communication and those for manipulating tools are colocated 
over a wide range of the brain. For the growth and maturation of homo 
sapiens, this implies that the neurological development associated with 
physical actions and that of high-level language skills concurrently oc-

curred [26].

In fact, the same areas of the brain responsible for motor control are 
also among the most capable of supporting learning and the emergence 
of skilled behavior. Strick et al. [27] observed that certain regions of 
the cerebellum are adaptively plastic, allowing them to modify internal 
models of systems so that complex task execution can be fast and ac-

curate. Further, when a person is attempting to master a new skill, the 
same adaptively plastic regions continuously construct forward mod-

els predicting what sensory input will result from muscle motion. Then, 
much like a real-time adaptive control algorithm, the brain trains its un-

derstanding of reality by reversing the model and backpropagating the 
error. The human cerebellum learns by performing real-time adaptive 
control using the body’s muscles as actuators and its sensory percep-

tion as feedback. The cerebellum is evolutionarily designed to excel at 
Learning by Touching.

Previous work has leveraged this phenomenon in a variety of ap-

plications. While treating patients who suffered brain damage, Doidge 
[28] discovered that playing language games designed to excite the 
adaptive learning centers of the cerebellum significantly improved pa-

tients’ ability to re-learn motor skills. Robotic teachers have been used 
to help stroke patients recover through muscle therapy [29, 30, 31] 
and teach children diagnosed with autism important language skills 
by inviting them to play games designed to excite the cerebellum [32, 
33, 34]. Furthermore, many successful consumer robots such as LEGO 
Mindstorms [35], Root [36], and Hapkit [37] educate K-12 and college 
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Fig. 3. Learning by Touching. In contrast to traditional education, a learner touches the robot and rotates a specific joint. Simultaneously, the learner observes the 
shaft encoder of the joint ticking and indicating the joint angle on a display.
students in robotics and automation. Many studies have concluded that 
such products are effective at teaching young students the fundamen-

tals of robotics [38, 39, 40, 41, 42, 43, 44]. Further work by Troussas et 
al. [45, 46] has leveraged the ability of hands-on, interactive learning 
to implement fuzzy logic-based, automated curriculum personalization, 
demonstrating that even simple individualization of the learning envi-

ronment can positively impact learners.

These findings imply that providing dual, concurrent stimuli to the 
learner, one physical and the other conceptual, will improve learning 
effectiveness. This is the key idea underpinning the TeachBot method-

ology.

3. TeachBot: a robot that teaches robotics to humans

The goal of the current work is to create a new workforce devel-

opment methodology that can effectively engage broad populations, 
including older generations. Beyond merely providing educational ma-

terials for hands-on learning, we must invite and engage people who 
might otherwise be unable to get training. Our approach is to develop 
a new workforce training system that integrates oral explanation and 
guidance, graphics and animations that are coordinated with the vocal 
instruction, physical demonstration of the machine in a realistic setting, 
and concurrent body movements that create touch and proprioceptive 
sensations. Integrating these will allow us to create new curricula. We 
hypothesize that people will be more confident and comfortable work-

ing alongside robots if they have an opportunity to interact with a 
robotic instructor. Here, we propose an integrated, verbal-graphical-

demonstrative-and-touchable system called TeachBot.

TeachBot is an autonomous, robotic instructor that introduces work-

ers on a manufacturing line to robotics. TeachBot plays a dual role: 
an instructor delivering a lecture and a demonstration machine that 
can execute programmed movements and perform various tasks. It is 
the physical extension of an online course where lectures and labora-

tory sessions are seamlessly integrated. It requires no on-site human 
instructor; instead, trainees interact directly with TeachBot. Course ma-

terials are presented to produce a synergistic effect: integrating verbal 
and pictorial instructions into physical demonstrations and laboratory 
exercises. Learners will not only listen to instructions from the robot, 
but also participate in demonstrations with the robot. This methodol-

ogy aligns with the latest learning science research on object-mediated 
learning and embodiment. TeachBot aims to attract a broad range of 
learners with diverse backgrounds.

Fig. 1 shows the overview of a TeachBot prototype system. It consists 
of:
3

(A) A robot that can interact with learners physically. The system is 
built with the technology of collaborative robotics that allows hu-

mans to safely interact with the robot;

(B) A computer that accesses a cloud-based learning platform, delivers 
instruction materials, and controls the entire system;

(C) An interactive projector that displays graphs, scripts, and other im-

ages for instruction and communication; and

(D) Peripheral devices and materials, including workpieces, jigs and 
fixtures, parts-feeders, and belt conveyors.

Instead of using a computer monitor, the projector is used for dis-

playing various images on a large worktable. Learners around the work-

table focus just on the robot and the worktable rather than distributing 
their attention to a computer monitor, keyboard, and other places. All 
information is communicated both verbally and visually by combining 
TeachBot with the projector. The robot is synchronized with the au-

diovisual system so that the explanation of concepts and techniques 
is seamlessly integrated and coordinated with the physical demonstra-

tions. When talking about the three-dimensional orientation of an ob-

ject, for example, TeachBot immediately demonstrates with its posture 
how to hold an object in the desired orientation. TeachBot also points 
to objects with its end effector and speaks with gestures. TeachBot can 
be programmed to speak any language.

This unique integration of oral instruction, graphics, demonstration, 
and physical interaction will allow us to create unique curricula. Sup-

pose that a learner with limited engineering background is to study how 
a robot can precisely move its joints to desired angles. A shaft encoder 
plays a key role in closed-loop control by measuring joint angle. The 
principle of a shaft encoder, however, is challenging to understand for 
most people. A diagram explaining the principle of an optical shaft en-

coder is confusing (see Fig. 2). Allowing the learner to touch and move a 
joint of the TeachBot with their own hands while they observe changes 
in the signal from a shaft encoder enables more effective learning (see 
Fig. 3).

As they push the robot arm and observe the effects of their actions 
resulting in the generation of signals, learners make a mental connec-

tion between the motion and measured signals. Their muscular action 
and visual observation occur concurrently, creating a synergistic “em-

bodiment” of the function of the shaft encoder. This is not merely a 
standard hands-on laboratory experience. No complex reasoning is re-

quired. The learner can understand intuitively what a shaft encoder can 
do by touching and moving it: Learning by Touching.

“Feedback control,” a basic technique for controlling robots and 
all kinds of machines, is not easy to understand for the majority of 
people who have a limited engineering background. Even engineering 
students have difficulty in understanding the concept [37]. TeachBot 
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Fig. 4. Encoder Readings. (a) TeachBot attempts to move its arm from point A 
to point B. (b) TeachBot undershoots, stopping instead at point C. (c) TeachBot 
overshoots, stopping instead at point D.

takes a different approach to teaching the principle of feedback con-

trol to non-engineering people. A learner experiences feedback through 
manual execution of actions to correct TeachBot’s joint position. Sup-

pose that TeachBot attempts to move from point A to point B as shown 
in Fig. 4(a). With no feedback, the TeachBot may not reach point B. 
Instead it may stop at point C, as shown in Fig. 4(b). Next, Teach-

Bot asks the learner to move the arm towards the destination, point 
B. The learner pushes the arm to the right. Then, TeachBot tries again, 
but this time overshoots to point D, as shown in Fig. 4(c). The learner 
again pushes the arm back towards the destination. These are “man-

ual” feedback operations completed in a primitive manner. TeachBot 
explains that the actions the learner has taken can be generated by 
comparing the encoder reading at the current position against the one 
at the destination. For example, if the current reading is smaller than 
the destination reading, move right. If it is larger, move left. This is 
a demonstration of feedback control that a broad range of people can 
understand. Experiencing manual feedback where physical actions and 
visual observations take place simultaneously can help the learner un-

derstand the principle.

4. Materials and methods

4.1. Implementation

We implement TeachBot on a Rethink Robotics Sawyer robot arm 
[47]. The Sawyer is connected to a Dell Precision 7720 laptop running 
Ubuntu 18.04. The Sawyer is programmed in Python on ROS Melodic 
using Rethink Robotics’ Intera SDK [48].

The software architecture is illustrated in Fig. 5 and released under 
a BSD-3-Clause open source software license at [49]. All commands 
to the robot are coordinated by a web client written in HTML, CSS, 
and JavaScript and running on Firefox. The web client communicates 
with a cloud-based server written using Node.JS. The server acts as the 
master node, issuing commands through the client to the robot to move 
and requesting joint states. The server also commands the browser to 
display graphics and animations and play audio.

TeachBot graphics and text are projected onto a worktable by an Ep-

son Powerlite projector. The table was built in-house out of aluminum 
and melamine board to optimize the projection surface.

The concepts taught by TeachBot in this study are categorized into 
seven sub-modules: Motors and Degrees-of-Freedom, Encoders, Feed-

back, Kinematics, Memory, Orientation and Position, and Waypoints.

4.2. Framework and methodology

We conducted a pilot human subject experiment based on a protocol 
approved by the Massachusetts Institute of Technology Committee on 
the Use of Humans as Experimental Subjects (COUHES), #1806389401. 
The objective was to investigate the efficacy of robot-mediated learning.

In particular, this experiment focuses on the evaluation of the Teach-

Bot curriculum along two axes: self-efficacy and knowledge gained by 
4

Fig. 5. Software Architecture. A cloud-based server written in Node.JS commu-

nicates through a local browser-based client to the robot using ROS.

the learner. In addition to quantifying the knowledge gained from the 
curriculum, we include an evaluation of self-efficacy because previous 
studies have indicated the importance of self-efficacy for learning and 
applying knowledge on the job [11, 12]. We based our self-efficacy test-

ing materials on surveys from that literature.

More than simply investigating TeachBot’s ability to upskill work-

ers, this pilot study specifically attempts to evaluate the Learning by 
Touching methodology against online video learning. For this reason, 
we selected a methodology of randomized control trials in which the 
control group took a video-based version of the TeachBot course. In 
order to isolate the effect of physical interaction with TeachBot, we de-

signed the control group’s video curriculum to include exactly the same 
audiovisual content as the experimental group’s curriculum: namely, a 
video recording of an example student taking the TeachBot course.

4.2.1. Participants

Subjects, like the workforce they represented, were diverse: men, 
women, young adults, retirees, people who worked in jobs with robots, 
and people who were uncomfortable with the idea of robots in the 
workplace. Twenty-two subjects were recruited from Central Square in 
Cambridge, MA, USA and pre-interviewed to ensure none had a four-

year degree in STEM. Before the TeachBot course, subjects were given a 
short survey to gather demographic information (see Appendix A) and 
the results are illustrated in Fig. 6. The plurality of subjects had some 
education beyond high school not including attaining a bachelor’s de-

gree. There were slightly more women in the sample than men. Ages 
ranged from 18 to 68 years old. Participant ethnicity was varied. Par-

ticipants were given a $25 gift card and a certificate of completion for 
their participation in the experiment.

4.2.2. Design

The testing of each subject was completed in three parts, with the 
whole experiment taking up to 90 minutes per participant:

1. Pre-Test: Subjects were evaluated for baseline knowledge and self-

efficacy.

2. Learning Module: Subjects completed either the TeachBot or 
video course.

3. Post-Test: Subjects were evaluated again for newly learned knowl-

edge and changed self-efficacy.

4.2.3. Tests

The pre- and post-tests each had 34 questions. Of these, six mea-

sured subject self-efficacy by asking subjects to rate how confident they 
would be completing various tasks involving a robot. The remaining 
28 questions evaluated subjects’ knowledge of robotic systems. The 28 
knowledge-evaluation questions were divided evenly among the seven 
concepts taught by TeachBot discussed in Sec. 4.1. Knowledge regard-

ing each concept was tested using four questions:
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Fig. 6. User Study. (a) Number of subjects with differing levels of education. (b) Number of subjects of each gender. (c) Histogram of subject age. (d) Number of 
subjects of each ethnicity.

Fig. 7. Control Group Video Learning Module. Two adjacent displays synchronized to present equivalent content without Learning by Touching to subjects in the 
control group.
• One verbatim question generated from ideas and information ex-

plicitly stated in the learning module and that required subjects 
to merely recall the correct responses. These questions required 
the shallowest level of understanding for the subject to answer 
correctly. For example, “Consider a robot with position feedback 
control. You push the arm away from its target position, then let 
go. What does the arm do?”

• One integration question also generated from ideas and informa-

tion explicitly stated in the learning module, but which required 
subjects to integrate two or more ideas from the learning mod-

ule. Thus, integration questions required a slightly deeper level of 
understanding. For example, “What devices allow a robot arm to 
change its position and orientation?”

• Two inference questions that required subjects to generate ideas 
beyond the information presented in the learning modules, thus 
requiring the deepest level of understanding. For example, “The 
motors in this activity can only rotate. How can you move motors 
to make something move in a straight line?”

The three categories of questions represent different levels of cogni-

tive activity required to respond to the question; these categories were 
also considered to be indicative of question difficulty [50, 51]. Addi-

tionally, all subjects were given a five-question survey requesting their 
level of education, gender, age, occupation, and ethnicity. The results 
of this demographic survey are shown in Fig. 6.

After completing the learning module, subjects took a post-test to 
evaluate self-efficacy for knowledge gains that could be attributed to 
completion of the learning module. The post-test was identical to the 
pre-test except that it did not include the demographic survey and the 
question order was shuffled.
5

Please see Appendix A for the complete test materials.

4.2.4. Experimental and control groups

Before beginning the pre-test, subjects were asked to draw a piece of 
paper randomly from a table. Half of the papers directed the subject into 
the experimental group, half into the control group. The papers were 
discarded after each draw to guarantee an equal number in each group. 
The experimental group participated in an approximately 20-minute, 
interactive, hands-on learning module conducted by the TeachBot. The 
control group was told to watch a video on two monitors showing a 
model subject taking the hands-on TeachBot course. As illustrated in 
Fig. 7, one monitor showed what the TeachBot projected onto the table 
while the other showed a video of the model subject interacting with 
the TeachBot. The videos were synchronized with each other and a sin-

gle audio stream to teach content equivalent to what the experimental 
group received but without Learning by Touching. The videos can be 
found at the following links: [52, 53, 54, 55]. Since the topical content 
of the lesson is identical for the treatment and control groups, this re-

search design allows us to assess the extent to which touching the robot 
during the lesson, as opposed to simply seeing the lesson, is associated 
with higher learning outcomes.

4.3. Evaluation

Similar to VanLehn’s evaluation [56] quantifying student learning, 
we measured differences in subjects’ scores on the pre- and post-tests. 
For each learner, two metrics were calculated: a self-efficacy gain to 
measure a growth in subject confidence with robotics between the pre-

and post-tests, and a learning gain to determine how much a subject 
learned between taking the tests.
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4.3.1. Self-efficacy gain, G
On both the pre- and post-tests, subjects were asked to rate how 

confident they would be completing each of six unique tasks involving 
a robot on a scale from one to ten with one being least confident and ten 
being most confident. These ratings were assigned a label 𝑋𝑖,𝑗 where 𝑖
is the question number and 𝑗 is the test identity: pre-test or post-test:

𝑋𝑖,𝑗 ∈ [1 . . 10] (1)

Next, the differences between each subject’s 𝑋𝑖,𝑗 ’s were calculated 
across the pre- and post-tests:

Δ𝑖 =𝑋𝑖,post −𝑋𝑖,pre (2)

Therefore, Δ𝑖 is used to symbolize the amount of confidence gained by 
a subject during the learning module.

Some subjects began with a greater initial level of self-efficacy for 
robotics than others. Simply comparing the Δ’s between the control and 
experimental groups weights subjects with less self-efficacy more heav-

ily because such subjects have more potential to improve their scores 
between tests. To account for this effect, we normalized each Δ by com-

puting a ratio of the self-efficacy gained to the amount the subject could 
have gained:

G=
∑

𝑖Δ𝑖

10𝑁G −
∑

𝑖 𝑋𝑖,pre

(3)

where 𝑁G = 6, the number of self-efficacy questions. 𝑁G is multiplied 
by 10 because the maximum rating for each of these questions is 10. 
Simply put, G is the self-efficacy gained by a subject normalized by the 
amount they could have gained when they began the experiment, the 
“self-efficacy gain”, with positive values indicating higher self-efficacy 
and negative values indicating self-efficacy lost.

4.3.2. Learning gain, Λ
To quantify learning, we used subjects scores on the 28 knowledge-

evaluation questions. Subjects answer to these questions on the pre-

and post-tests were assigned a binary grade, 𝑋𝑖,𝑗 where 𝑖 is the question 
number and 𝑗 is the test identity: pre-test or post-test:

𝑋𝑖,𝑗 =

{
1, if correct

0,otherwise
(4)

Similar to the calculation of self-efficacy gain above, Δ’s were com-

puted for each of the 28 knowledge-evaluation questions using Eq. (2). 
For these questions, Δ𝑖 is used to symbolize the quantity learned by 
a subject between taking the pre- and post-tests, with positive val-

ues indicating new knowledge learned and negative values indicating 
knowledge forgotten or mislearned.

Some subjects came in with significantly more understanding of the 
field of robotics and automation than others. As in the above calcula-

tion of self-efficacy gain, simply comparing the Δ’s between the control 
and experimental groups weights subjects with less prior knowledge 
more heavily because such subjects have more potential to improve 
their scores between tests. To account for this effect, we normalized 
each Δ by computing a ratio of the amount learned to the amount the 
subject could have learned:

Λ =
∑

𝑖Δ𝑖

𝑁Λ −
∑

𝑖 𝑋𝑖,pre

(5)

where 𝑁Λ = 28, the number of knowledge-evaluation questions. Simply 
put, Λ is the amount learned by a subject normalized by the amount 
they did not yet know when they began the experiment, the learning 
gain.
6

Table 1. Results for Self-Efficacy and Learning Gains. Pairwise Comparisons 
Using a One-Tailed, Two-Sample, Unpaired, Heteroscedastic t-Test.

Metric Mean difference p-value

Self-Efficacy Gain, G 0.264 0.046**

Learning Gain, Λ 0.106 0.120*

* Significant with 𝛼 = 0.2. ** Significant with 𝛼 = 0.05.

4.3.3. Analysis by question type

The learning gain, Λ, was also computed for each category of ques-

tion using Eq. (5). Separating results into verbatim, integration, and 
inference categories revealed the areas in which TeachBot was the most 
helpful and areas that could be improved during future iterations of the 
project. Identifying TeachBot’s strengths over traditional methods veri-

fies the potential utility of the system and ensures that no critical gaps 
exist.

5. Results and discussion

We evaluate how well TeachBot improves subjects’ understanding 
of fundamental robotics concepts, as well as their self-efficacy regard-

ing those concepts. We use a one-tailed, two-sample, unpaired, het-

eroscedastic 𝑡-test to compare the results of both metrics across groups. 
For each metric, this test allowed us to test the hypothesis that the mean 
learning or self-efficacy gain of a learner who takes the TeachBot course 
is greater than that of a learner who watches a video lecture containing 
the same information. Values of the learning gain, Λ, and self-efficacy 
gain, G, were computed for each subject. We present the results in Fig. 8

and Table 1 and observe the following:

• Subjects in the TeachBot course gained more self-efficacy for 
interacting with robots than those in the video course. As 
shown in Fig. 8 and Table 1, the median G for the experimental 
group is 0.26 compared to 0.13 for the control group, implying that 
subjects who took the TeachBot learning module gained signifi-

cantly more confidence with robots than those who took the video 
course. The results from the 𝑡-test allow us to reject the null hypoth-

esis with 𝑝 < 0.05. Physically interacting with the TeachBot system 
increased learner confidence in and comfort with their understand-

ing of the material.

• Subjects in the TeachBot course learned more than those in the 
video course. As shown in Fig. 8 and Table 1, all 11 of the subjects 
in the experimental group performed better on the post-test than 
they did on the pre-test. The median Λ for the experimental group 
is 0.43, implying that the TeachBot learning module taught the me-

dian learner 43% of the total amount they could have learned. 
The median Λ for the experimental group is 0.27. The results from 
the 𝑡-test allow us to reject the null hypothesis with 𝑝 < 0.2. We 
also experimented with a more complex grading rubric, replacing 
the binary grading scheme in Eq. (4) with ternary grades and ef-

fectively offering partial credit. The effect of this was to increase 
everyone’s scores and eliminate the learning differences between 
groups.

Additionally, analyzing the question category learning gains high-

lights the strengths of the TeachBot curriculum as well as specific areas 
for improvement. Subjects in the TeachBot course did better on integra-

tion questions than those in the video course. As shown in Fig. 9 and 
Table 2, subjects in the experimental group produced an integration-

specific learning gain 0.158 higher than those in the control group. 
Results from the 𝑡-test allow us to reject the null hypothesis with 
𝑝 < 0.2. Physically interacting with embodiments of the concepts be-

ing learned allowed users to better understand connections between 
those concepts. Previous work has found that hands-on learning envi-

ronments must have highly integrated curricula in order to help learners 
grasp connections between ideas [57]. The structure of robotics learn-

ing is inherently connected: in order to understand waypoints, one must 
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Fig. 8. Comparison of performance of the control and experimental groups.

(a) compares box plots of the self-efficacy gain, G, demonstrating that subjects 
in the experimental group tended to experience a greater gain in self-efficacy 
than those in the control group. (b) compares box plots of the learning gain, 
Λ, demonstrating that subjects in the experimental group tended to learn more 
than subjects in the control group.

Fig. 9. Comparison of performance of subjects between different categories 
within the control and experimental groups. While members who took the 
TeachBot course (the experimental group) scored higher across all three cat-

egories than members who took the online video lecture (the control group), 
the effect size and significance varied distinctly between question category.

understand feedback control, and in order to understand feedback con-

trol, one must understand encoder functionality. Enabling learners to 
touch and interact with a robot through demonstrations of knowledge 
in sequence encourages the formation of cognitive connections between 
related concepts.

However, similar improvement was not seen in subjects’ ability to 
infer new knowledge about robotic systems. We hypothesize that this 
is because, even though the TeachBot module was successful in guiding 
learners to develop a robust understanding of how concepts in automa-

tion and system integration build upon each other, we did not design 
enough inference-related material into the module. The learning mod-

ules we designed focused on helping learners connect new concepts to 
ones they already mastered, but did not guide learners to infer new 
knowledge about robot systems. Clearly, this is an area for improve-

ment in future iterations of the curriculum.

As shown in Fig. 9 and Table 2, subjects in the TeachBot course also 
did not show a significant difference in recalling verbatim information 
as subjects in the video course. Video learning is likely equivalent to the 
TeachBot system in terms of rote memorization. This is likely because 
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Table 2. Results for Question Category Learning Gains. Pairwise Comparisons 
Using a One-Tailed, Two-Sample, Unpaired, Heteroscedastic 𝑡-Test.

Question category Mean difference 𝑝-value

Verbatim 0.036 0.436

Integration 0.158 0.136*

Inference 0.111 0.226

* Significant with 𝛼 = 0.2. ** Significant with 𝛼 = 0.05.

Fig. 10. Comparison of subjects’ pre-evaluation scores with their learning gain.

Subjects who had more robotics knowledge initially did not experience a higher 
learning gain. The 𝑟-value for the control group was 0.134 and the 𝑟-value for 
the experimental group was 0.026.

physical interaction only helps construct a more robust mental model 
of the robot system. A learner will not be significantly more likely to 
recall a fact if it is spoken by a robot in front of them than if it is spoken 
by a robot in a video. This result is in line with previous work on the 
impact of hands-on learning on immediate recall [58].

Finally, there is no correlation between pre-test score and learning 
gain. As illustrated in Fig. 10, the learner’s score on the pre-test is not 
predictive of their learning gain. Comparing pre-evaluation scores and 
learning gains reveals no significant correlation between initial scores 
and Λ. This indicates that the normalization in Eq. (5) successfully re-

moved the effect of different initial knowledge state from the analysis.

These results are promising indicators that the TeachBot system 
would be a powerful tool to upskill adult workers to be confident and 
comfortable working with collaborative manufacturing robotics. This 
small pilot experiment indicated self efficacy gains for subjects who 
took the TeachBot course statistically significantly greater than sub-

jects who completed a purely video-based curriculum. Learning gains 
for those who took the TeachBot course tended toward significance. 
Additionally, these results also help identify the specific strengths and 
weaknesses of the existing curriculum. Learners who took the TeachBot 
course saw gains in their ability to integrate knowledge across a vari-

ety of concepts, but more work needs to be done to enable students to 
infer new insights without being explicitly told. More generally, this ex-

periment offers promising evidence toward the future of collaborative 
robots in education.

6. Conclusion

We have presented TeachBot, an automatic, robotic education and 
training system. TeachBot leverages the state-of-the-art in robotics, ed-

ucation, and neuropsychology to create an engaging learning environ-

ment and empower a diverse workforce with the skills necessary to 
contribute in advanced manufacturing occupations. A novel method-

ology has been developed by streamlining instruction, demonstration, 
and physical interaction with the robot. Human subject tests have been 
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conducted to evaluate the efficacy of the new methodology, Learning by 
Touching. These human subject tests demonstrated that TeachBot pro-

vides a significant benefit to learners’ self-efficacy for interacting with 
robots, their belief in their innate ability to interact productively with 
a collaborative robotic system. The findings about self-efficacy are im-

portant because self-efficacy is an important determinant of additional 
learning and effective use of new technologies. Even if there were no 
gain to “learning by touching” on conceptual measures, the fact that 
touch may improve self-efficacy makes it an important improvement, 
especially for non-traditional learners.

The findings of this pilot experiment have great implications for life-

long education and closing the manufacturing skills gap. We have pro-

posed a novel educational platform, TeachBot, to upskill manufacturing 
workers to integrate, maintain, and operate collaborative manufactur-

ing robotics in their places of work. We have provided the software 
to deploy TeachBot with an open source license. Preliminary human 
subject testing has demonstrated that learners who take the TeachBot 
course gain significantly more self-efficacy for manufacturing robotics 
than do learners who take a video version of the course. Measurements 
of knowledge gained by subjects in the experimental group also show an 
increase in learning that tends toward significance. These findings both 
motivate future development and study of the Learning by Touching 
methodology for collaborative manufacturing robotics education and 
offer insights into how the curriculum can be improved.

These findings build on previous studies investigating the efficacy of 
hands-on robotics in education [38, 39, 40, 41, 42, 43, 44]. Much of the 
prior literature in this space uses uncontrolled studies and focuses on K-

12 or university-level robotics education. This pilot experiment focuses 
on adult learners, a relatively understudied population. It leverages a 
more rigorous randomized control trial research methodology to com-

pare TeachBot against an alternative teaching method, video lectures, 
that contain the same content but lack the ability to facilitate Learning 
by Touching.

The concepts taught in this pilot experiment are basic, and the ex-

periments conducted are preliminary. This will be expanded to teach a 
broader range of concepts and skills, and the experiment will be ex-

tended to more subjects. Currently, the research team is developing 
more course materials including trajectory generation and use of var-

ious sensors and vision systems. In addition to more material, the team 
is also developing more challenging activities that are directly applica-

ble to real life scenarios found in manufacturing such as tasks involving 
pick and place and operating alongside CNC machinery. We envision 
a multiple-day training curriculum to teach learners a broad range of 
techniques that they need to know to begin working in advanced man-

ufacturing.

While the focus of this pilot experiment is on self-efficacy and foun-

dational knowledge gains, it is also important to investigate how taking 
the TeachBot course might additionally affect subjects’ practical abil-

ities to work with a robot on real manufacturing tasks. Additionally, 
future work should also include a qualitative component to address 
questions related to learners’ relationship with the robot.
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