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Abstract

Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of

these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the

network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway

there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes

being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in

vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway.

We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in
Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting

selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found

that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results

indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components.

Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying

biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila.
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Introduction

The neutral theory of molecular evolution predicts a negative
correlation between the functional significance of genomic

regions and the levels of polymorphism and divergence

(Kimura 1983). Indeed, the level and pattern of selection

vary widely across different genes and genomic regions.

The evolutionary meaning of such variation is a major topic

in evolutionary biology. A number of factors affect selective

constraint levels acting on genes, including expression

level and breadth (Duret and Mouchiroud 2000; Pál et al.
2001; Subramanian and Kumar 2004), codon bias (Sharp

1991; Pál et al. 2001), the length of the encoded proteins

(Subramanian and Kumar 2004), or molecular function

(Castillo-Davis et al. 2004). These factors, however, account

for only a small fraction of the variation in selective con-

straint, particularly in higher eukaryotes (Ingvarsson 2007).

The role of natural selection in the evolution of

complex biological systems is poorly understood (Cork

and Purugganan 2004). Genes do not act in isolation but

rather interact with numerous genes within complex net-

works. The recent availability of large-scale protein–protein

interaction (PPI) and metabolic data allows studying the

impact of a gene’s position in a network on its pattern of

evolutionary change. Remarkably, elements with greater

connectivity or centrality in a network tend to be highly

constrained (Fraser et al. 2002; Hahn and Kern 2005),

and physically interacting proteins show correlated evolu-

tionary histories (Fryxell 1996; Fraser et al. 2002). These

observations clearly indicate that network architecture con-

strains the molecular evolution of its components.

Compelling evidence exists in well-characterized path-

ways suggesting a relationship between network position
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and evolutionary change. Specific enzymes in a pathway can
contribute differentially to overall pathway function (and,

hence, to the associated phenotypes). Genes encoding en-

zymes with high control coefficients (those exerting

a relatively high influence over flux; Kacser and Burns

1973), such as those acting at network branch points

(LaPorte et al. 1984; Stephanopoulos and Vallino 1991)

or those acting in the upstream part of linear metabolic

pathways (Wright and Rausher 2010), are expected to
evolve under stronger natural selection (Hartl et al. 1985;

Eanes 1999; Watt and Dean 2000; Wright and Rausher

2010). For instance, in the Drosophila pathways involved

in glucose metabolism, positive selection acts preferentially

on genes encoding branch point enzymes (Flowers et al.

2007). Furthermore, it has been proposed that, as a result

of the hierarchical structure of branched pathways, genes

acting upstream evolve under stronger purifying selection
than those acting downstream because mutations in the

former may have more pleiotropic effects. In agreement,

Rausher et al. (1999) found that in the plant anthocyanin

biosynthetic pathway, the level of selective constraint corre-

lated with gene position along the upstream/downstream

axis of the pathway, with the upstream genes (involved in

the biosynthesis of a greater number of compounds) being

the most constrained. This polarity seems to be neither ex-
plained by differences in mutation rates (Lu and Rausher

2003) nor by positive selection (Rausher et al. 2008) along

the pathway. A similar polarity of the selective constraint

distribution has been observed along the plant isoprene, ter-

penoid, and carotenoid biosynthetic pathways (Sharkey

et al. 2005; Livingstone and Anderson 2009; Ramsay

et al. 2009) and in the Drosophila Ras signaling pathway

(Riley et al. 2003). This feature, nevertheless, is not general
(Olsen et al. 2002; Jovelin et al. 2009; Yang et al. 2009) but

rather may depend among other factors on the architecture

of the particular pathway. Indeed, we found a polarity in the

opposite direction (i.e., purifying selection is greater for the

downstream genes) in the insulin/target of rapamycin (TOR)

(IT) signal transduction pathway of Drosophila (Alvarez-

Ponce et al. 2009).

The IT pathway plays a central role in fundamental biolog-
ical processes, such as growth, energetic metabolism, repro-

duction, and aging (Oldham and Hafen 2003; LeRoith et al.

2004; Taguchi and White 2008). In addition, a number of

diseases, such as insulin resistance, diabetes, obesity, and

cancer, are associated with dysregulation of genes involved

in this pathway. The IT pathway is well characterized in

a number of organisms, and both its structure and function

are highly conserved from insects to vertebrates. Therefore,
this molecular pathway provides an excellent opportunity for

studying the relationship between pathway architecture and

gene evolution across a wide range of phylogenetic groups.

In this study, we sought to determine whether the polar-

ity in selective constraint levels detected in Drosophila is

incidental and specific to this genus or whether it represents
a more general feature. For that purpose, we characterized

the molecular evolution of the IT pathway genes of six

vertebrates. We identified and manually annotated the

orthologs and paralogs of 72 genes involved in the human

IT pathway and reconstructed their evolutionary history. We

determined that, as previously observed in Drosophila,

genes acting in the downstream part of the vertebrate IT

pathway are the most evolutionarily constrained. Therefore,
the polarity in the distribution of selective constraints along

the pathway is neither incidental nor specific to the Dro-
sophila genus, suggestive of a more general biological

mechanism.

Materials and Methods

Selection of IT Pathway Genes for Analysis

We selected genes that encode the human IT signal trans-

duction pathway for analysis by searching the literature for

known human orthologs of those genes included in our

prior analysis of the Drosophila IT pathway (Alvarez-Ponce
et al. 2009). In addition, we included in our analysis the

insulin receptor gene (INR) and its closest paralogs, which

encode the IGF1 receptor (IGF1R) and the insulin receptor-

related receptor (INSRR), as well as the nine protein

kinase C genes (PRKC). We also studied the nearest anno-

tated paralogs of the selected genes (Ensembl database

version 50; Flicek et al. 2008).

We attempted to identify unannotated paralogs using
a two-round Blast search. We initially performed a TBlastN

search (E value , 10�5) for each human IT pathway protein

against the human genome (International Human Genome

Sequencing Consortium 2004). The resulting hits were then

used as query in a BlastP search against the human pro-

teome. If the best hit corresponded to the original gene

or one of its paralogs with a sequence identity higher than

60% and covering at least 50% of the sequence length, we
manually annotated this sequence and included it in the

analysis. The final set (supplementary table S1, Supplemen-

tary Material online) consisted of 72 genes, which belong to

23 paralogous groups, and 43 pseudogenes, 40 of which

are intronless (likely processed copies). Twenty-one, out

of these 23 paralogous groups, were used in the network-

level analysis (fig. 1).

Identification and Annotation of IT Pathway Genes
in Nonhuman Vertebrates

We searched for the IT pathway genes in the genomes of the
mammals Mus musculus (Mouse Genome Sequencing

Consortium 2002), Bos taurus (The Bovine Genome Se-

quencing and Analysis Consortium 2009), Monodelphis
domestica (Mikkelsen et al. 2007) and Ornithorhynchus
anatinus (Warren et al. 2008), and the bird Gallus gallus
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(International Chicken Genome Sequencing Consortium

2004). We retrieved the coding sequences (CDS) for the hu-

man genes and their predicted orthologs from the Ensembl

database. For genes with alternative splicing, we chose the

variant encoding the longest protein that was shared across

the six species (supplementary table S1, Supplementary
Material online).

Given that the Ensembl information is based mainly on

computational gene predictions, we visually inspected

and, when required, manually reannotated all sequences.

To do so, we 1) removed exons that did not correspond with

the human orthologs; 2) added exons that were missing in

the original data set; and 3) merged gene model predictions

from different portions of the same gene. In addition, we
searched the GenBank database for incomplete or missing

genes in our data set.

We performed a two-round Blast search to identify non-

human unannotated sequences. Each human IT pathway

protein was used as query in a TBlastN search (E value ,

10�5) against all nonhuman genomes, and the resulting hits

were used as query in a second TBlastN search against the

human genome. Sequences that resulted in the original

gene or one of its paralogs as the best hit were manually

annotated and included in the analysis.

Sequences with premature stop codons or frameshifts

were classified as putative pseudogenes. We confirmed

these features by inspecting the corresponding trace ar-

chives. If there was a sequencing read that did not contain
the disrupting feature or if the concerned chromatograms

had low quality at the affected positions, these features

were considered as sequencing errors. We also examined

the trace archives to determine whether some paralogous

copies were the result of erroneous genome assembly

due to sequencing errors. For that purpose, we

checked the quality of the sequencing traces at the mis-

match positions; each group of putative paralogs that did
not have a confirmed difference was considered as a single

copy.

Multiple Sequence Alignment and Phylogenetic
Analysis

We applied phylogenetic analysis to infer orthology/

paralogy relationships among homologous genes. To do

FIG. 1.—Directed graphs used in the network-level analyses. (A) Graph G containing all interactions (arcs) among human IT pathway proteins

(nodes). This graph consists of 21 nodes and 39 arcs, of which 32 represent PPIs, five involve the membrane phospholipid PIP3 (synthesized by p110

isoforms and activates the IRS, Melted, PDK1, PKB, and PKC proteins), and the other two represent the activation of the INR and IRS2 genes by the

FOXO transcription factors (Puig and Tjian 2005). Numbers on the left indicate the position of each component in the pathway. Human proteins having

orthologs in Drosophila (Alvarez-Ponce et al. 2009) were assigned the same position as their Drosophila counterpart. We assigned position 5 to PKC

proteins because they are activated by PDK1 (position 4) (LeRoith et al. 2004). We excluded the phosphoinositide phosphatase PTEN from network-level

analysis because it does not directly interact with any other element in the graph (for review, see Vinciguerra and Foti 2006). The cytohesins Cyh1–4

were also excluded because their specific function in the pathway remains unclear (Hafner et al. 2006). (B) Graph S, subgraph of G containing only the

32 physical interactions. Both graphs were constructed using information gleaned from the literature.
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so, we generated a protein multiple sequence alignment
(MSA) for each homology group using Probcons 1.11

(Do et al. 2005). These alignments were used to

guide the alignment of the CDS sequences. We then built

a neighbor-joining tree for each MSA based on either the

CDS or the protein sequences (in function of the divergence

level), using the MEGA4 software (Tamura et al. 2007) and

applying either the Tamura–Nei (Tamura and Nei 1993) or

the Jones, Taylor, and Thorton (Jones et al. 1992) evolution
models.

We generated a separate MSA for each orthologous

group. Sequences with pseudogenic features were excluded

from these alignments, and only groups with putatively

functional representatives in all six species were further con-

sidered. For those orthologous groups with multiple copies

in a given genome (co-orthologs), we used the sequence

that covered the largest fraction of the human ortholog.
In order to avoid redundancy, if two orthologous groups

shared a particular sequence due to gene duplication after

the mammal/bird split, we only considered the most directly

involved in the IT pathway according to the literature. All

MSAs were manually curated using the BioEdit 7.0.5.2

software (Hall 1999), and poorly aligned positions were

discarded from the analysis.

We evaluated the impact of natural selection on gene
evolution using the nonsynonymous (dN) to synonymous

(dS) divergence ratio (x 5 dN/dS). Values of x lower than

1 indicate the action of purifying selection, whereas

x 5 1 and x . 1 are indicative of strictly neutral and adap-

tive evolution, respectively. We obtained x estimates by ap-

plying two evolutionary models implemented in the codeml

program from the PAML 3.15 package (Yang 1997). The M0

model assumes a single x value across all codons and phy-
logenetic branches, whereas the free-ratio (FR) model as-

sumes an independent x value for each branch. We

tested for the presence of codons evolving under positive

selection by contrasting the M1a and M2a models (Wong

et al. 2004) and the M7 and M8 models (Yang et al.

2000) by the likelihood ratio test (Whelan and Goldman

1999). A significantly better fit to the data of models

M2a or M8 was interpreted as evidence of positive selection.
We controlled for the false discovery rate (FDR) associated

with multiple testing at q 5 0.05 (Benjamini and Hochberg

1995). We used the Bayes Empirical Bayes approach (Yang

et al. 2005) to identify specific codons that evolved under

positive selection (posterior probability � 95%). All codon-

based analyses were conducted using the accepted species

tree topology (fig. 2), the F3�4 codon frequency model

(Goldman and Yang 1994), complete deletion, and three
different starting x values (0.01, 0.1, and 1) to overcome

the multiple local optima problem. Any set of FR estimates

(dN, dS, and x) with x. 3, dS . 5, or S� dS , 1 (where S is

the number of synonymous positions) was discarded from

the analysis.

Network-Level Analysis

The IT pathway structure (information extracted from

the literature) was encoded into a directed graph (termed

G; fig. 1A) with nodes and arcs representing proteins and

activatory/inhibitory interactions, respectively. This graph
consists of 21 nodes (representing paralogous groups) con-

nected by 39 arcs (interactions), of which 32 represent phys-

ical PPIs (fig. 1B). We used this graph to assign the position

of each pathway element, which was computed as the num-

ber of steps required to transduce the signal from the insu-

lin/IGF1 receptor (position 0) to the remaining elements in

the pathway (the maximum was ten steps). Paralogous

genes share the same pathway position; however, paralo-
gous copies not involved in insulin signaling (INSRR, PIK3CG,

EIF4E2, and EIF4E3) were eliminated from network-level

analysis. In the end, a total of 58 genes were assigned a path-

way position but only 48 genes had copies in all six species

and were therefore used in the analysis.

We contrasted whether physically interacting IT pathway

proteins tend to exhibit similar dN, dS, or x values by

applying a Monte Carlo method (Fraser et al. 2002). For this
analysis, we used a subgraph of G containing only physical

interactions (denoted as S; fig. 1B), and the average abso-

lute difference between the dN, dS, or x values of pairs

of physically interacting elements in the IT pathway (X) as

statistic:

X5
1

n

Xn

i5 1

jxi1 � xi2j;

where n5 32 is the number of interacting pairs in S, and

xi1 and xi2 are the dN, dS, or x values of genes encoding the

two interacting proteins at pair i. We contrasted whether

the observed X value is less than or equal to that expected

at random by generating 100,000 randomizations of S. Each
random network had the same 21 nodes and the same

number of arcs (n 5 32) connecting two different nodes

(sampled without replacement). P values were computed

Homo sapiens

Mus musculus

Bos taurus

Ornithorhynchus anatinus

Monodelphis domestica

Gallus gallus

300 200 100 0

Divergence time (million years)
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i

FIG. 2.—Phylogenetic relationships among the six vertebrate

species used in this study. Tree topology and divergence times were

taken from Ponting (2008).
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as the proportion of simulated networks with an X value
equal to or lower than the observed one. We also applied

this Monte Carlo method to determine whether genes

encoding physically interacting proteins exhibit similar

values of expression level and breadth, codon bias, or

connectivity.

Additionally, we conducted a modified Monte Carlo test

controlling for the association between pathway position

and selective constraint. For that purpose, we used linear
regression to model the relationship between pathway po-

sition and either x or dN and used the residuals of the model

(the difference between observed and predicted values) for

the Monte Carlo analysis. We used a similar approach to

factor out the effect of the putative associations between

connectivity and selective constraint levels.

Statistical Tests of Association

We used the nonparametric Spearman’s rank correlation

coefficient (q) to contrast whether dN, dS, and x estimates

correlated with pathway position along the IT pathway.

We used the binomial test to contrast whether the number

of branches with a negative sign in the correlation between

the pathway position and the levels of selective constraint

(values estimated under the FR model) is higher than

expected at random (i.e., 50%). Additionally, we performed
a Monte Carlo test using as statistic the weighted sum of

P values of the correlation analysis across all phylogenetic

branches:

Y 5
Xn

i51

wiPi ;

where i is the phylogenetic branch, n is the number of

branches in the phylogeny (either nine or seven, depending

on whether or notO. anatinus is included in the analyses),wi

is the relative length of branch i (taken from Ponting 2008;

fig. 1), and Pi is the P value of the correlation test for branch

i. We assessed the statistical significance of Y from 10,000

randomized data sets; in each replicate, the pathway posi-
tions of x, dN, and dS values in each phylogenetic branch

were assigned at random. The P value was computed as

the proportion of replicates with a Y value less than or equal

to that observed.

Because selective constraint levels are affected by a num-

ber of factors, including gene expression level and breadth

(Duret and Mouchiroud 2000; Pál et al. 2001; Subramanian

and Kumar 2004), codon bias (Sharp 1991; Pál et al. 2001),
protein length (Subramanian and Kumar 2004), and con-

nectivity (Fraser et al. 2002), a polarity in these factors along

the upstream/downstream IT pathway axis could potentially

account for the distribution of dN, dS, and x. Therefore, we

included all these factors in the analyses to factor out their

potential effect on sequence evolution. This information
was gathered from multiple sources:

� Expression level and breadth: We used human gene
expression data from Su et al. (2004) (U133Aþ
GNF1H data set, normalized using the MAS5
algorithm), which contain gene expression measures
for 79 different tissues (or organs) with two replicates
each. We excluded data from cancerous tissues
because IT pathway elements are at times dysregu-
lated in cancer. Furthermore, because some organs
are represented by multiple entries in the data set (for
instance, the brain is represented by multiple entries,
including the whole brain and different portions), we
only used a set of 25 nonredundant tissues (supple-
mentary table S2, Supplementary Material online) to
avoid biasing the results. For each gene and tissue,
we took the average of both replicates. When
multiple probes matched the same gene, we chose
the entry with the highest average signal. For each
gene, the expression level was estimated as the
average of 25 selected tissues, and expression
breadth was measured as the number of tissues
where it is expressed (expression level � 200; see Su
et al. 2002).

� Connectivity: We obtained PPI data from the human
interaction network of Bossi and Lehner (2009). This
data set consists of 80,922 physical interactions
gleaned from 21 different sources, of which 2,030
involve IT pathway components. The connectivity of
each IT pathway protein was computed as the
number of PPIs in which it is involved.

� Codon bias: For each orthologous group, codon bias
was estimated as the median of the effective number
of codons (ENC; Wright 1990) across all six studied
species. ENC values were computed using the DnaSP
5.00.02 software (Librado and Rozas 2009).

� Protein length: Because many nonhuman sequences
are incomplete and protein length is highly conserved
across species (Wang et al. 2005), we used the length
of the human protein.

We conducted a bivariate correlation analysis using

these factors, the pathway position and the dN, dS, and

x estimates. Furthermore, we applied two multivariate

analysis techniques (path analysis and partial correlation

analysis) to better characterize the relationships among
these factors. For path analysis, we used the causal model

depicted in figure 3 and, when needed, variables were ei-

ther log- or square root-transformed to improve normality.

We conducted this analysis using the following packages:

AMOS 17 (path analysis), PASW Statistics 17 (bivariate cor-

relation analysis), and R (Ihaka and Gentleman 1996) (par-

tial correlation analysis). Throughout this paper, we report

two-tailed P values, except for the association between
pathway position and dN and x, where we had an a priori

hypothesis about the direction of the association (one-tailed

tests).
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We used three data sets for the network-level analysis:

� Data set 1: This data set includes all 48 genes used for
network-level analysis (elements with assigned path-
way position and present in all six species; supple-
mentary table S3, Supplementary Material online).

� Data set 2: This is a subset of data set 1 that includes
only a single gene per paralogous group (n 5 21;
table 1). We used this data set to avoid the use of
multiple paralogous copies, which may exhibit similar
selective constraint levels and are, therefore, not
suitable for correlation analysis (which assumes that
all observations are independent). We chose a single
paralog per group according to the available molec-
ular function information (obtained from the litera-
ture). We chose, from the copies present in all six
species: 1) the copy that plays the most direct role in
the IT pathway (e.g., mutation of this copy most
severely affects insulin signaling); 2) the copy whose
activation is most affected by insulin signaling; 3) the
embryonic lethal paralog; or 4) the archetypical copy
that performs all functions (only partially undertaken
by its paralogs). When the information on the
differential molecular function of paralogs was in-
sufficient, we chose the copy with a higher expression
breadth.

� Data set 3: This data set was also derived from data
set 1; for each paralogous group, values were
averaged across all copies (n 5 21; supplementary
table S4, Supplementary Material online).

Results

Distribution of IT Pathway Genes across
Vertebrates

We applied a combination of automatic methods and man-

ual curation to identify and annotate the orthologs of 115

human IT pathway sequences (72 genes and 43 pseudo-

genes; supplementary table S1, Supplementary Material on-

line) in five nonhuman vertebrate genomes. We identified

617 putative orthologs of the human genes (332 putatively
functional genes, 246 pseudogenes, and 39 intronless se-

quences; supplementary table S5, Supplementary Material

online). Therefore, the current analysis encompasses a total

of 732 sequences (129 of them were manually reannotated,

and another 364 that were not in the Ensembl data set were

identified by our search protocol). Because current genome

data comprise unsequenced regions, this number should be

considered as the minimum number of sequences. More-
over, recent duplicates might have been treated as a single

Table 1

Summary Statistics Used in the Analysis (Data Set 2)

Gene

Pathway

Position

Six Species Five Speciesa Gene Expression

Connectivity

Protein

LengthfdN
b dS

b x ENC

% Used

Codonsc dN
b dS

b x ENC

% Used

Codonsc Leveld Breadthe

INSR 0 0.185 4.344 0.043 49.77 77.50 0.155 4.131 0.038 49.52 91.61 1,012.74 22 73 1,382

IRS1 1 0.068 4.688 0.015 41.98 23.19 0.081 3.096 0.026 42.95 48.07 340.74 18 66 1,242

PIK3R1 2 0.131 4.610 0.029 55.14 77.73 0.103 1.912 0.054 55.64 98.63 835.66 25 132 732

PIK3CB 3 0.129 2.430 0.053 52.82 95.05 0.107 2.146 0.050 52.71 99.25 419.30 24 7 1,070

VEPH1 4 0.338 2.774 0.122 53.15 92.80 0.278 2.235 0.124 52.62 92.80 80.54 2 4 833

PDPK1 4 0.025 2.916 0.009 52.72 44.06 0.077 2.064 0.038 52.54 80.04 1,338.84 25 36 556

AKT1 5 0.051 6.026 0.009 45.77 74.38 0.042 4.984 0.008 40.99 92.71 970.02 19 108 480

PRKCI 5 0.017 2.722 0.006 55.98 88.09 0.029 2.208 0.013 56.39 95.13 1,147.88 25 33 596

TSC1 5 0.275 1.970 0.140 54.69 91.49 0.228 1.708 0.134 54.54 91.49 715.78 25 15 1,164

FOXO1 6 0.202 3.688 0.055 47.50 74.35 0.157 2.419 0.065 49.32 87.63 868.36 25 23 655

GSK3B 6 0.003 1.551 0.002 53.88 62.59 0.027 0.974 0.027 53.99 99.77 561.56 25 88 433

TSC2 6 0.179 4.578 0.039 45.64 83.45 0.144 3.032 0.048 49.98 94.08 358.20 17 22 1,807

EIF2B5 7 0.285 3.861 0.074 53.98 86.82 0.235 2.876 0.082 54.04 91.40 711.14 25 68 721

GYS1 7 0.078 5.856 0.013 41.29 50.07 0.069 7.092 0.010 42.24 50.07 1,352.30 25 10 737

MYC 7 0.198 3.513 0.057 43.58 47.58 0.150 3.056 0.049 44.20 73.57 490.34 18 148 454

RHEB 7 0.017 1.481 0.011 45.33 90.22 0.018 1.115 0.016 46.09 100.00 2,303.66 25 7 184

MTOR 8 0.027 2.916 0.009 49.47 94.00 0.023 2.374 0.010 50.68 96.43 302.60 20 15 2,549

EIF4EBP1 9 0.171 3.370 0.051 43.46 38.14 0.116 2.849 0.041 45.02 68.64 558.70 19 15 118

RPS6KB1 9 0.019 1.188 0.016 53.83 89.90 0.014 1.020 0.013 53.44 94.48 164.44 7 21 525

EIF4E 10 0.036 1.081 0.033 54.81 94.93 0.031 0.815 0.038 54.20 94.93 — — 106 217

RPS6 10 0.011 4.795 0.002 50.80 81.53 0.011 2.570 0.004 51.18 99.20 23,490.48 25 179 249

a
Excluding Ornithorhynchus anatinus from the analyses.

b
Values estimated as the sum across all branches of the phylogeny (M0 model).

c
Percent of used codons for estimating dN, dS, and x values.

d
Expression levels averaged across 25 selected human tissues (supplementary table S2, Supplementary Material online).

e
Number of tissues (out of 25) with expression level � 200.

f
Number of amino acids of the human protein.
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copy during genome assembly. However, it should be noted

that the six genomes have high-coverage sequence data
(from 6� to 10�) and, therefore, putatively missing genes

are most likely absent. Interestingly, we did not identify any

pseudogene nor processed copy in the chicken genome,

which agrees with the small number of processed copies de-

tected in this organism (51 [International Chicken Genome

Sequencing Consortium 2004], in contrast with the more

than 15,000 genes detected in mammals [Torrents et al.

2003; Rat Genome Sequencing Project Consortium 2004]).
Two hundred and thirty-eight (out of 732) sequences be-

long to the ribosomal protein (RP) S6 (RPS6) homology

group (6 genes, 212 pseudogenes, and 20 intronless se-

quences; supplementary table S5, Supplementary Material

online). This is in agreement with previous observations in

mammalian genomes showing that each RP is encoded

by a single gene with introns that has several processed

pseudogenes. Indeed, over 2,400 RP-processed pseudo-
genes have been identified in the human genome, in con-

trast to only 79 functional copies (Zhang et al. 2002).

Consistent with our observations, multiple processed

RPS6 pseudogenes have been described in both the human

and the mouse genomes (Antoine and Fried 1992; Feo et al.

1992; Pata and Metspalu 1996; Zhang et al. 2002).

Sixty (out of 72) genes have putative functional copies in

every genome, and all paralogous groups have at least one
nonpseudogenic copy in each genome. Therefore, the func-

tion of missing genes may be undertaken by some of their

functional paralogs. Consequently, our results suggest that

all genomes encode a complete IT pathway.

Impact of Natural Selection on Gene Sequence
Evolution

Estimates of x under the M0 model range from 0.002 (for

GSK3B and RPS6 genes) to 0.140 (TSC1) with a median

value of 0.116 (supplementary table S3, Supplementary

Material online). These values indicate that the IT pathway
genes are under relatively strong purifying selection, sug-

gesting that all genes are functional. We performed two

maximum likelihood tests for positive selection (supple-

mentary table S6, Supplementary Material online). Al-

though there were no significant results in the M2a

versus M1a comparison, the M8 versus M7 test identified

three genes with the molecular signature of positive selec-

tion: IRS4, AKT3, and PRKCD (P , 0.05). However, after
controlling for the FDR, none of these results remain

significant.

Relationship between the Selective Constraints of
Interacting Proteins

We used a Monte Carlo approach to determine whether

genes that encode physically interacting proteins (fig. 1B)

evolve under similar selective constraints (Fraser et al.

2002). Because current knowledge of the interactions

among proteins encoded by different paralogous copies

is very incomplete, we restricted the analysis to data sets
2 (which contains a single gene per paralogous group;

table 1) and 3 (where values were averaged across paralogs;

supplementary table S4, Supplementary Material online).

We found that x values of genes encoding physically inter-

acting proteins are more similar than expected from a

random network (data set 2: Xx 5 0.024, P 5 0.003; data

set 3: Xx 5 0.024, P5 0.012; supplementary table S7, Sup-

plementary Material online). Separate analysis conducted
for dN and dS yielded significant results for dN (data set 2:

XN 5 0.079, P 5 0.005; data set 3: XN 5 0.084, P 5

0.029; supplementary table S7, Supplementary Material on-

line) but not for dS (data set 2: XS 5 1.983, P5 0.872; data

set 3: XS 5 1.316, P5 0.703; supplementary table S7, Sup-

plementary Material online). These results indicate that

FIG. 3.—Path analysis for data set 2. Single- and double-headed arrows represent assumed causal dependencies and correlations, respectively.

Numbers in each arrow represent the standardized path coefficients (b). None of the associations was significant. The analyses conducted using

expression breadth instead of expression level yielded equivalent results. (A) Analysis for x. (B) Analysis for dN.
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amino acid changes are the main contributors to the
similarity in selective constraint values between interacting

proteins.

Levels of Selective Constraint along the IT
Pathway

We tested whether a polarity exists in the selective con-

straint levels along the upstream/downstream IT pathway
axis. Though not significant, a negative correlation between

pathway position and x was found for all three data sets

(data set 1: Spearman’s rank correlation coefficient, q 5

�0.073, P 5 0.312; data set 2: q 5 �0.136, P 5 0.279;

data set 3: q 5 �0.134, P 5 0.281; table 2 and fig. 4; sup-

plementary tables S8 and S9, Supplementary Material on-

line). A similar, nonsignificant, trend was observed for dN

(table 2; supplementary tables S8 and S9, Supplementary
Material online).

We conducted a separate correlation analysis for each

of the nine phylogenetic branches (fig. 5 and table 3;

supplementary tables S10 and S11, Supplementary Material

online). For data sets 2 and 3, the correlation between x or

dN and pathway position is negative in all nine branches

(a number significantly higher than the 50% expected at

random; binomial test, P 5 0.002; supplementary table S12,
Supplementary Material online). For data set 1, the correla-

tion between x and pathway position is negative for seven

branches, which does not represent a significant departure

from 50% (binomial test, P 5 0.090; supplementary table

S12, Supplementary Material online), whereas the correla-

tion between dN and pathway position is negative in eight

branches (binomial test, P 5 0.020; supplementary table

S12, Supplementary Material online). Furthermore, the cor-
relation between pathway position and x is significant for

two branches regardless of the data set, whereas for dN, the

correlation is significant for either two (data sets 1 and 3) or

four branches (data set 2). The direction of the correlation

between pathway position and dS is negative in either seven

(data sets 1 and 2) or six branches (data set 3), which does

not represent a significant departure from 50% (binomial

test, P 5 0.090, P 5 0.254, respectively; supplementary ta-
ble S12, Supplementary Material online). This correlation is

significantly negative for either one (data set 1) or two

branches (data sets 2 and 3). The results of the Monte Carlo

simulation analysis also support the overall association be-

tween pathway position and selective constraint (supple-

mentary table S12, Supplementary Material online).

Because the available genome sequence data for O. ana-
tinus is highly fragmented, we reevaluated the correlations
without this species. This involved an average increase of

11.13% in the number of analyzed codons (supplementary

table S3, Supplementary Material online). Remarkably,

this analysis uncovered a significant correlation between

dN and pathway position for data set 2 (q 5 �0.441,Ta
b
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P5 0.023; table 2). The correlation between pathway posi-

tion and x is negative in either all seven (data sets 2 and 3;

binomial test, P5 0.008; supplementary table S12, Supple-

mentary Material online) or six branches (data set 1; binomial
test, P 5 0.063; supplementary table S12, Supplementary

Material online) and is significant for either two (data sets

1 and 3) or four branches (data set 2). Furthermore, the cor-

relation between pathway position and dN is negative for all

sevenbranches ineachdataset (binomial test,P50.008;sup-

plementary table S12, Supplementary Material online) and

significant foreither two(datasets1and3)orsixphylogenetic

branches (data set 2).

Effect of Expression Patterns, Codon Bias, Protein
Length, and Connectivity on Gene Sequence
Evolution

We evaluated whether gene expression level and breadth,

codon bias, protein length, and connectivity correlate 1)

with pathway position, 2) with the x, dN, and dS values,

or 3) among them. As shown in table 2 and supplementary
tables S8 and S9 (Supplementary Material online), we found

that 1) only protein length significantly correlates with path-

way position, regardless of the data set used (q � �0.365,

P � 0.026); 2) dS correlates significantly with ENC for data

sets 1 and 2 (q � �0.473, P � 0.030), x and dN correlate

with expression level for data set 3 (q � 0.498, P � 0.026),

and dN correlates with protein length for data set 2 (q 5

0.438, P 5 0.047); and 3) gene expression breadth corre-
lates with expression level in all data sets (q � 0.606, P �
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FIG. 5.—Correlation between pathway position and dN (under the FR model) in all nine phylogenetic branches (data set 2). Panels A–I correspond

to branches a–i in figure 2. Continuous lines represent regression lines.

FIG. 4.—Correlation between pathway position andx and dN under

the M0 model (data set 2) including (six species) and excluding (five

species) Ornithorhynchus anatinus. Continuous lines represent regression

lines. An extended version of this figure is provided as Supplementary

Material (supplementary fig. S1, Supplementary Material online).
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0.005) and with ENC (q � 0.650, P � 0.002) and connec-
tivity (q � 0.631, P � 0.003) in data set 3.

We applied two multivariate analysis techniques (path

analysis and partial correlation analysis) to evaluate the as-

sociation between the pathway position and the x, dN, and

dS values controlling for the factors discussed above. Both

analyses showed that the association between pathway po-

sition andx and dN is always negative, regardless of the data

set used and whether O. anatinus was included or not in the
analysis (supplementary tables S13 and S14, Supplementary

Material online). In addition, the path analysis revealed a sig-

nificant association between pathway position and dN for

data set 1 (standardized path coefficient, b 5 �0.246; P 5

0.041; supplementary table S13, Supplementary Material

online). Moreover, this analysis showed a significant associ-

ation between pathway position and x and dN for data set 3

when O. anatinus was not considered. Analysis conducted
separately for each of the nine phylogenetic branches

showed that the association between pathway position

and both x and dN (but not dS) is negative in a number

of branches higher than the 50% expected by chance

(table 4; supplementary tables S15 and S16, Supplementary

Material online).

Connections between IT Pathway Elements and
Other Pathways

We studied the pattern of signaling interactions across the IT

pathway proteins using the data set reported by Cui et al.
(2007). This manually curated data set consists of a directed

graph with 1,634 elements (nodes) connected by 5,089 in-

teractions (arcs), of which 2,403 are activatory, 741 are

inhibitory, 1,915 are undirected, and 30 are unspecified.

Three hundred and fifty-six of these interactions (215 acti-

vatory, 74 inhibitory, and 67 undirected; supplementary

table S17, Supplementary Material online) connect an IT

pathway component with a non-IT pathway component.
For each element, the number of inputs received from other

pathways was computed as the number of arcs connecting

an upstream (in the tail of the arc) IT pathway protein with

a downstream (head) non-IT pathway protein; conversely,

the number of outputs was computed as the number of in-

teractions between a downstream IT pathway protein and

an upstream non-IT pathway protein. In total, the IT path-

way proteins receive 130 inputs (100 activatory and 30 in-
hibitory) and have 159 outputs (115 activatory and 44

inhibitory; supplementary table S17, Supplementary Mate-

rial online).

Discussion

We have characterized the evolutionary forces acting on the

vertebrate IT pathway genes. All x estimates are lower than

1, with a maximum of 0.140 (supplementary table S3, Sup-

plementary Material online), indicating that purifying selec-

tion is a major force acting on the IT pathway gene sequence

evolution. This result, together with the fact that all ge-

nomes appear to encode at least one isoform of each IT

pathway component, strongly supports that all organisms
in this study have a complete and functional IT pathway.

Polarity in the Selective Constraint Level along the
IT Pathway

In Drosophila, we detected a correlation between the

strength of purifying selection and the position along the

upstream/downstream axis of the IT pathway, with the

downstream genes being the most constrained (Alvarez-

Ponce et al. 2009). Even though this trend is not significant
in vertebrates, the sign of the correlation coefficient is al-

ways negative regardless of the metrics of selective con-

straint (x or dN) or the data set used (table 2 and fig. 4;

supplementary fig. S1 and tables S8 and S9, Supplementary

Material online). When the correlation was analyzed in each

phylogenetic branch separately (fig. 5), the correlation co-

efficient is negative in a number of branches significantly

greater than the number expected by chance (i.e., 50%),
independent of the data set used for dN and for data sets

2 and 3 for x. This consistency in the direction of the

Table 3

Correlations between Pathway Position and x, dN, and dS for Each

Phylogenetic Branch (Data Set 2)

#

Species Brancha n

v dN dS

r Pb r Pb r Pc

6 Alld 21�0.136 0.279 �0.294 0.098 �0.229 0.318

a 21�0.252 0.136 �0.255 0.133 �0.108 0.642

b 21�0.116 0.309 �0.314 0.083 �0.505 0.020*

c 21�0.382 0.044* �0.422 0.028* �0.409 0.065

d 20�0.115 0.315 �0.278 0.118 �0.190 0.422

e 20�0.198 0.201 �0.331 0.077 �0.183 0.439

f 21�0.101 0.332 �0.096 0.339 �0.190 0.409

g 13�0.828,0.001***�0.824 0.001*** 0.030 0.922

h 21�0.316 0.082 �0.394 0.039* �0.144 0.534

i 16�0.392 0.067 �0.439 0.045* 0.071 0.794

5e Alld 21�0.304 0.090 �0.441 0.023* �0.164 0.477

a 21�0.434 0.025* �0.455 0.019* �0.254 0.267

b 21�0.279 0.111 �0.395 0.038* �0.408 0.066

c 21�0.500 0.011* �0.482 0.014* �0.389 0.081

d 20�0.339 0.072 �0.426 0.031* �0.080 0.739

f þ i 21�0.196 0.197 �0.214 0.176 �0.193 0.402

g 13�0.797 0.001***�0.766 0.001** 0.011 0.971

h 21�0.446 0.022* �0.549 0.005* �0.307 0.175

NOTE.—Unless noticed otherwise, all correlations are based on values estimated

under the FR model.
a

Branch codes according to figure 2.
b

One-tailed P values.
c

Two-tailed P values.
d

Using overall x, dN, and dS values (M0 model).
e

Excluding Ornithorhynchus anatinus.

*P , 0.05, **P , 0.01, and ***P , 0.001.
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association between selective constraint and pathway posi-
tion across the vertebrate phylogeny is not compatible with

a random distribution of selective constraint levels along the

IT pathway. Furthermore, after removing O. anatinus se-

quences from the analysis, the correlation between the

pathway position and the overall dN values is significantly

negative for data set 2 (table 2).

Taken together, vertebrate results, as those in Drosophila,

show a polarity in the level of selective constraint along the IT
pathway, with downstream elements evolving under stron-

ger purifying selection. Therefore, this feature is neither in-

cidental nor specific to the Drosophila genus, but rather, it

may indicate a more general mechanism. This observation

indicates that the molecular evolution of the IT pathway

components is affected by their specific position in the path-

way. A correlation between the pathway position and the

strength of purifying selection has also been observed in
other pathways, including the anthocyanin, isoprene, terpe-

noid, and carotenoid biosynthetic pathways in plants

(Rausher et al. 1999; Sharkey et al. 2005; Livingstone and

Anderson 2009; Ramsay et al. 2009) and the Ras signal

transduction pathway in Drosophila (Riley et al. 2003). How-

ever, the selective constraint polarity observed in these stud-

ies occurs in the opposite direction than in the IT pathway.

Therefore, our results support the idea that the higher se-
lective constraint observed in the upstream portion of mo-

lecular pathways is not universal.

The observed polarity of the selective constraint along the

IT pathway might be due to a putative polarity in a number

of factors affecting evolutionary rate. For instance, if positive

selection acted preferentially in the upstream portion of the

pathway, higher x and dN values would be expected at this

part. However, we identified the footprint of positive selec-
tion in only three genes, IRS4, AKT3, and PRKCD (at path-

way positions 1 and 5), and the significance was lost after

correcting for multiple testing (supplementary table S6, Sup-

plementary Material online). Therefore, positive selection

would not account for the x and dN polarity along the IT

pathway.

Genes with higher expression level or breadth, more bi-

ased codon usage, higher connectivity, or encoding shorter
proteins tend to evolve under stronger purifying selection

(Sharp 1991; Duret and Mouchiroud 2000; Pál et al.

2001; Fraser et al. 2002; Subramanian and Kumar 2004).

Therefore, a putative polarity in any of these factors might

contribute to the observed selective constraint polarity

along the pathway. Indeed, we detected a negative corre-

lation between protein length and pathway position, and dN

Table 4

Partial Correlation and Path Analysis (Data Set 2)

# Species Brancha n

Partial Correlation Analysis Path Analysis

x dN dS x dN dS

q Pb q Pb q Pc b Pb b Pb b Pc

6 Alld 20 �0.144 0.299 �0.117 0.335 0.084 0.762 �0.138 0.276 �0.189 0.213 �0.156 0.380

a 20 �0.252 0.174 �0.173 0.264 0.457 0.064 �0.121 0.313 �0.076 0.379 �0.098 0.486

b 20 �0.172 0.264 �0.210 0.219 �0.399 0.117 �0.102 0.330 �0.208 0.179 �0.276 0.122

c 20 �0.121 0.330 �0.163 0.276 �0.118 0.667 �0.049 0.414 �0.071 0.379 �0.276 0.127

d 19 �0.203 0.236 �0.102 0.361 0.141 0.622 �0.134 0.284 �0.106 0.317 0.047 0.834

e 19 �0.141 0.310 �0.098 0.367 0.103 0.720 �0.126 0.301 �0.107 0.322 0.142 0.483

f 20 �0.081 0.385 0.014 0.520 0.197 0.470 �0.015 0.476 0.003 0.505 0.020 0.934

g 13 �0.817 ,0.001*** �0.812 ,0.001*** �0.124 0.760 �0.587 0.004** �0.649 ,0.001*** �0.265 0.370

h 20 �0.190 0.243 �0.173 0.263 0.226 0.404 �0.184 0.200 �0.302 0.092 �0.154 0.487

i 15 �0.025 0.472 �0.164 0.319 �0.007 0.984 �0.189 0.079 �0.381 0.041* 0.012 0.963

5e Alld 20 �0.408 0.054 �0.321 0.111 0.236 0.381 �0.307 0.074 �0.307 0.090 �0.033 0.847

a 20 �0.449 0.035* �0.349 0.090 0.299 0.259 �0.315 0.085 �0.294 0.097 �0.085 0.566

b 20 �0.393 0.062 �0.339 0.097 �0.085 0.759 �0.277 0.100 �0.366 0.042* �0.255 0.144

c 20 �0.414 0.051 �0.273 0.153 �0.121 0.659 �0.197 0.169 �0.214 0.164 �0.177 0.338

d 19 �0.381 0.077 �0.256 0.180 0.242 0.388 �0.369 0.046* �0.276 0.102 0.051 0.819

f þ i 20 �0.309 0.121 �0.145 0.298 0.025 0.929 �0.218 0.171 �0.135 0.293 �0.003 0.987

g 13 �0.721 0.005** �0.739 0.004** �0.081 0.843 �0.561 0.018* �0.736 0.001** �0.164 0.492

h 20 �0.263 0.163 �0.346 0.092 �0.097 0.726 �0.221 0.150 �0.358 0.039* �0.165 0.407

NOTE.—Association between pathway position and x, dN, and dS values after controlling for expression level and breadth, codon bias, protein length, and connectivity. Unless

noticed otherwise, all correlations are based on values estimated under the FR model.
a

Branch codes according to figure 2.
b

One-tailed P values.
c

Two-tailed P values.
d

Using overall x, dN, and dS values (M0 model).
e

Excluding Ornithorhynchus anatinus.
* P , 0.05, **P , 0.01, and ***P , 0.001.
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positively correlates with protein length for data set 2. How-
ever, both partial correlation and path analysis show that the

departure from 50% in the number of phylogenetic

branches with negative sign in the association between

pathway position and x and dN remains significant after

controlling for the above factors (table 4; supplementary

tables S15 and S16, Supplementary Material online). These

factors, therefore, are unlikely to explain the correlation be-

tween selective constraint and pathway position.
Given that mutations in genes involved in a large number

of pathways likely have important pleiotropic effects, these

genes may be under strong selective constraint. Accordingly,

in a pathway that is able to modulate the activation of other

pathways (i.e., with signaling outputs along the pathway),

upstream genes will be involved in a higher number of path-

ways and, hence, will evolve under stronger purifying selec-

tion. Conversely, a pathway that receives signaling inputs
from other pathways is expected to be more constrained

in the downstream portion. The direction of the selective

constraint polarity observed along the anthocyanin biosyn-

thetic pathway (Rausher et al. 1999) is consistent with this

model because upstream genes participate in the biosynthe-

sis of a greater array of compounds than downstream

genes, which are only involved in anthocyanins biosynthesis.

The same reasoning applies to other biosynthetic pathways
with a similar distribution of selective constraints (Sharkey

et al. 2005; Livingstone and Anderson 2009; Ramsay

et al. 2009).

Our results showing that downstream IT pathway genes

evolve under stronger purifying selection than upstream

genes might therefore be explained on the grounds of the

IT pathway having more inputs than outputs. However,

our analysis of the connection pattern of the IT pathway with
other pathways shows that it in fact has more outputs than

inputs (supplementary table S17, Supplementary Material on-

line). Nevertheless, current knowledge of the IT pathway con-

nection pattern is far from complete. Furthermore, given that

the biological impact of signaling interactions are not neces-

sarily equivalent, the number of inputs and outputs is most

likely an inaccurate predictor of the distribution of selective

constraints along the pathway. A more accurate predictor
should take into account the relative biological significance

of inputs and outputs in terms of fitness effects, which is,

however, very difficult to evaluate. Consequently, it is prema-

ture to draw conclusions about the effect of the IT pathway

connection pattern on the evolution of its components.

Proteins in a pathway can contribute differentially to the

overall pathway function. Enzymes that greatly affect path-

way function are expected to be under stronger natural se-
lection than enzymes with limited effects (Hartl et al. 1985;

Eanes 1999; Watt and Dean 2000; Wright and Rausher

2010). Enzymes acting at network branch points are ex-

pected to play a key role in flux control and, hence, to be

preferentially targeted by natural selection (LaPorte et al.

1984; Stephanopoulos and Vallino 1991). Consistently, in
the pathways involved in glucose metabolism in Drosophila,

Flowers et al. (2007) observed that positive selection pref-

erentially targets genes acting on pathway branch points.

Interestingly, two of the three IT pathway genes showing

some evidence of positive selection in vertebrates, AKT3,

and PRKCD, act on major network branch points. Analysis

of the sensitivity of the IT pathway function to the kinetic

properties of each of its components may provide insight
into the distribution of negative and positive selection along

the pathway. Recent development of a mathematical model

for the IT pathway (Zielinski et al. 2009) may serve as a start-

ing point for this type of analysis.

Physically Interacting IT Pathway Proteins Tend to
Evolve under Similar Selective Constraints

We found that the level of selective constraint of physically
interacting proteins is more similar than expected from a ran-

dom network (supplementary table S7, Supplementary

Material online). Such a tendency has also been observed

in interactome-wide analyses (Fraser et al. 2002; Lemos

et al. 2005) and has been explained by a coevolution

and/or similar strength of stabilizing selection between inter-

acting proteins (Fraser et al. 2002; Lemos et al. 2005). In the IT

pathway, however, this pattern might be a by-product of the
polarity of the selective constraint along the pathway. Be-

cause proteins tend to interact with those occupying adja-

cent positions in the pathway, the detected selective

constraint polarity might determine that interacting proteins

also exhibit similar selective constraints. However, removing

the influence of the association between pathway position

and selective constraints yields equivalent results (supple-

mentary table S18, Supplementary Material online). This
similarity, therefore, is not a by-product of the selective con-

straint polarity along the pathway. Interestingly, connectiv-

ities of physically interacting IT pathway proteins are also

more similar than expected by chance (data set 3, supple-

mentary table S7, Supplementary Material online); this fea-

ture could explain the similarity in selective constraint values

among interacting proteins. However, after discounting the

effect of the association between connectivity and selective
constraint, we obtain equivalent results (supplementary

table S19, Supplementary Material online). This indicates

that the selective constraint similarity among genes encod-

ing interacting proteins is not a by-product of the similar

connectivities of interacting partners. Therefore, the similar-

ity in selective constraint levels among genes encoding

interacting proteins may have the same underlying mecha-

nism as proposed in interactome-wide analyses.
Current results contrast with our findings in Drosophila

that the similarity in selective constraints among interacting

IT pathway proteins vanishes after controlling for the asso-

ciation between pathway position and selective constraint
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(Alvarez-Ponce et al. 2009). However, the number of inter-
actions remarkably differs between both studies (32 PPIs in

vertebrates vs. only 20 in Drosophila). Hence, the lack of sig-

nificance in Drosophila may have resulted from lower statis-

tical power associated with the smaller number of

interactions. Accordingly, when the analysis of the verte-

brate IT pathway is restricted to the 20 interactions that

were analyzed in Drosophila, we obtain equivalent results:

the association is significant for x in data set 2 (supplemen-
tary table S7, Supplementary Material online), but this sig-

nificance disappears when controlling for the association

between pathway position and selective constraint (supple-

mentary table S18, Supplementary Material online).

Molecular Evolution of the Drosophila and Verte-
brate IT Pathways

Even though both Drosophila and vertebrates show a polar-

ity in selective constraints along the IT pathway, the trend

is less apparent in vertebrates. The difference might be

explained by a lower statistical power of the vertebrate anal-

ysis caused by a putative smaller number of substitutions.

However, the number of synonymous changes across the

phylogeny (and the dS values) is, in fact, higher in verte-

brates than in Drosophila (paired t-test, P 5 0.004 for
the number of synonymous changes; P, 0.001 for dS [data

set 2]). The lower effective population size of vertebrates, as

compared with Drosophila (Lynch 2007), may also explain

this difference. Indeed, the nearly neutral theory of molec-

ular evolution predicts that natural selection will be more

relaxed in populations with a small effective population size

(Ohta 1973) and, in fact, purifying selection has been shown

to be stronger in Drosophila than in mammals (e.g., Petit
and Barbadilla 2009). Therefore, the putative biological

mechanism maintaining the polarity of functional con-

straints along the IT pathway may be less efficient in verte-

brates. However, we did not observe any reduction in

the selective constraint levels among vertebrate genes

(the x values do not differ significantly between the IT path-

way genes of vertebrates and Drosophila; paired t-test,

P 5 0.999 for data set 2).
Whereas in Drosophila most IT pathway genes are single

copy (Alvarez-Ponce et al. 2009), most pathway genes exist

in multiple copies in vertebrates (supplementary table S4,

Supplementary Material online). Because the strength of pu-

rifying selection depends on the number of duplicates (Lynch

and Conery 2000; Jordanet al. 2004), the polarity of selective

constraints along the IT pathway in vertebrates may result

fromagradient in thenumberofduplicates.Nevertheless,be-
cause the number of copies per paralogous group correlates

with neither pathway position (q5 �0.201, P5 0.383) nor

the averagex (q5�0.021, P5 0.923) or dN (q5 0.010, P5
0.963), this factor would not account for the selective con-

straint polarity.

Concluding Remarks

In summary, we provide evidence that the IT pathway archi-

tecture impacts the pattern of molecular evolution of its

components. We found a gradient in selective constraint

levels along the vertebrate IT pathway, with the downstream

genes being the most constrained. This selective constraint
polarity mirrors that observed in Drosophila (Alvarez-Ponce

et al. 2009). Therefore, although the biological mechanism

underlying this gradient distribution of selective constraints

remains elusive, it is likely to be similar between Drosophila
and vertebrates. The direction of the selective constraint po-

larity, however, differs from studies in a number of pathways

showing that purifying selection is stronger in the upstream

part (Rausher et al. 1999; Riley et al. 2003; Sharkey et al.
2005; Livingstone and Anderson 2009; Ramsay et al.

2009). Further understanding of the connection pattern

of the IT pathway with other pathways and of how pathway

function depends on the properties of each of its compo-

nents will provide insight into the factors underlying the mo-

lecular evolution of the IT pathway genes. Furthermore,

comprehensive analysis of pathways with different topolo-

gies will likely enhance our understanding of the effect
of pathway architecture on the molecular evolution of its

components.

Supplementary Material

Supplementary figure S1 and tables S1–S19 are available at

Genome Biology and Evolution online (http://www.oxford-

journals.org/our_journals/gbe/).
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Alvarez-Ponce D, Aguadé M, Rozas J. 2009. Network-level molecular

evolutionary analysis of the insulin/TOR signal transduction pathway

across 12 Drosophila genomes. Genome Res. 19:234–242.

Antoine M, Fried M. 1992. The organization of the intron-containing

human S6 ribosomal protein (rpS6) gene and determination of

its location at chromosome 9p21. Hum Mol Genet. 1:565–570.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate:

a practical and powerful approach to multiple testing. J R Stat Soc

Ser B Stat Methodol. 57:289–300.

Bossi A, Lehner B. 2009. Tissue specificity and the human protein

interaction network. Mol Syst Biol. 5:260.

Castillo-Davis CI, Kondrashov FA, Hartl DL, Kulathinal RJ. 2004. The

functional genomic distribution of protein divergence in two animal

phyla: coevolution, genomic conflict, and constraint. Genome Res.

14:802–811.

Comparative Genomics of the Vertebrate Insulin/TOR Pathway GBE

Genome Biol. Evol. 3:87–101. doi:10.1093/gbe/evq084 Advance Access publication December 13, 2010 99

http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://gbe.oxfordjournals.org/cgi/content/full/evq084/DC1
http://www.oxfordjournals.org/our_journals/gbe/
http://www.oxfordjournals.org/our_journals/gbe/


Cork JM, Purugganan MD. 2004. The evolution of molecular genetic

pathways and networks. Bioessays 26:479–484.

Cui Q, et al. 2007. A map of human cancer signaling. Mol Syst Biol. 3:152.

Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. 2005. ProbCons:

probabilistic consistency-based multiple sequence alignment. Ge-

nome Res. 15:330–340.

Duret L, Mouchiroud D. 2000. Determinants of substitution rates in

mammalian genes: expression pattern affects selection intensity but

not mutation rate. Mol Biol Evol. 17:68–74.

Eanes WF. 1999. Analysis of selection on enzyme polymorphisms. Annu

Rev Ecol Syst. 30:301–326.

Feo S, Davies B, Fried M. 1992. The mapping of seven intron-containing

ribosomal protein genes shows they are unlinked in the human

genome. Genomics 13:201–207.

Flicek P, et al. 2008. Ensembl 2008. Nucleic Acids Res. 36:D707–D714.

Flowers JM, et al. 2007. Adaptive evolution of metabolic pathways in

Drosophila. Mol Biol Evol. 24:1347–1354.

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW. 2002.

Evolutionary rate in the protein interaction network. Science

296:750–752.

Fryxell KJ. 1996. The coevolution of gene family trees. Trends Genet.

12:364–369.

Goldman N, Yang Z. 1994. A codon-based model of nucleotide

substitution for protein-coding DNA sequences. Mol Biol Evol.

11:725–736.

Hafner M, et al. 2006. Inhibition of cytohesins by SecinH3 leads to

hepatic insulin resistance. Nature. 444:941–944.

Hahn MW, Kern AD. 2005. Comparative genomics of centrality and

essentiality in three eukaryotic protein-interaction networks. Mol

Biol Evol. 22:803–806.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment

editor and analysis program for Windows 95/98/NT. Nucleic Acids

Symp Ser. 41:95–98.

Hartl DL, Dykhuizen DE, Dean AM. 1985. Limits of adaptation: the

evolution of selective neutrality. Genetics 111:655–674.

Ihaka R, Gentleman R. 1996. R: a language for data analysis and

graphics. J Comput Graph Stat. 5:299–314.

Ingvarsson PK. 2007. Gene expression and protein length influence

codon usage and rates of sequence evolution in Populus tremula.

Mol Biol Evol. 24:836–844.

International Chicken Genome Sequencing Consortium. 2004. Se-

quence and comparative analysis of the chicken genome provide

unique perspectives on vertebrate evolution. Nature 432:

695–716.

International Human Genome Sequencing Consortium. 2004. Finishing

the euchromatic sequence of the human genome. Nature

431:931–945.

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of

mutation data matrices from protein sequences. Comput Appl

Biosci. 8:275–282.

Jordan IK, Wolf YI, Koonin EV. 2004. Duplicated genes evolve slower

than singletons despite the initial rate increase. BMC Evol Biol. 4:22.

Jovelin R, Dunham JP, Sung FS, Phillips PC. 2009. High nucleotide

divergence in developmental regulatory genes contrasts with the

structural elements of olfactory pathways in caenorhabditis.

Genetics 181:1387–1397.

Kacser H, Burns JA. 1973. The control of flux. Symp Soc Exp Biol.

27:65–104.

Kimura M. 1983. The neutral theory of molecular evolution. Cambridge:

Cambridge University Press.

LaPorte DC, Walsh K, Koshland DE Jr. 1984. The branch point effect.

Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem.

259:14068–14075.

Lemos B, Bettencourt BR, Meiklejohn CD, Hartl DL. 2005. Evolution of

proteins and gene expression levels are coupled in Drosophila and

are independently associated with mRNA abundance, protein

length, and number of protein-protein interactions. Mol Biol Evol.

22:1345–1354.

LeRoith D, Taylor SI, Olefsky JM. 2004. Diabetes mellitus: a fundamental

and clinical text. Philadelphia: Lippincott Williams & Wilkins.

Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive

analysis of DNA polymorphism data. Bioinformatics. 25:1451–1452.

Livingstone K, Anderson S. 2009. Patterns of variation in the evolution

of carotenoid biosynthetic pathway enzymes of higher plants.

J Hered. 100:754–761.

Lu Y, Rausher MD. 2003. Evolutionary rate variation in anthocyanin

pathway genes. Mol Biol Evol. 20:1844–1853.

Lynch M. 2007. The origins of genome architecture. Sunderland (MA):

Sinauer Associates.

Lynch M, Conery JS. 2000. The evolutionary fate and consequences of

duplicate genes. Science 290:1151–1155.

Mikkelsen TS, et al. 2007. Genome of the marsupial Monodelphis

domestica reveals innovation in non-coding sequences. Nature

447:167–177.

Mouse Genome Sequencing Consortium. 2002. Initial sequencing and

comparative analysis of the mouse genome. Nature. 420:520–562.

Ohta T. 1973. Slightly deleterious mutant substitutions in evolution.

Nature. 246:96–98.

Oldham S, Hafen E. 2003. Insulin/IGF and target of rapamycin signaling:

a TOR de force in growth control. Trends Cell Biol. 13:

79–85.

Olsen KM, Womack A, Garrett AR, Suddith JI, Purugganan MD. 2002.

Contrasting evolutionary forces in the Arabidopsis thaliana floral

developmental pathway. Genetics 160:1641–1650.

Pál C, Papp B, Hurst LD. 2001. Highly expressed genes in yeast evolve

slowly. Genetics 158:927–931.

Pata I, Metspalu A. 1996. Structural characterization of the mouse

ribosomal protein S6-encoding gene. Gene 175:241–245.

Petit N, Barbadilla A. 2009. The efficiency of purifying selection in

Mammals vs. Drosophila for metabolic genes. J Evol Biol.

22:2118–2124.

Ponting CP. 2008. The functional repertoires of metazoan genomes. Nat

Rev Genet. 9:689–698.

Puig O, Tjian R. 2005. Transcriptional feedback control of insulin

receptor by dFOXO/FOXO1. Genes Dev. 19:2435–2446.

Ramsay H, Rieseberg LH, Ritland K. 2009. The correlation of

evolutionary rate with pathway position in plant terpenoid bio-

synthesis. Mol Biol Evol. 26:1045–1053.

Rat Genome Sequencing Project Consortium. 2004. Genome sequence

of the Brown Norway rat yields insights into mammalian evolution.

Nature. 428:493–521.

Rausher MD, Lu Y, Meyer K. 2008. Variation in constraint versus positive

selection as an explanation for evolutionary rate variation among

anthocyanin genes. J Mol Evol. 67:137–144.

Rausher MD, Miller RE, Tiffin P. 1999. Patterns of evolutionary rate

variation among genes of the anthocyanin biosynthetic pathway.

Mol Biol Evol. 16:266–274.

Riley RM, Jin W, Gibson G. 2003. Contrasting selection pressures on

components of the Ras-mediated signal transduction pathway in

Drosophila. Mol Ecol. 12:1315–1323.

Alvarez-Ponce et al. GBE

100 Genome Biol. Evol. 3:87–101. doi:10.1093/gbe/evq084 Advance Access publication December 13, 2010



Sharkey TD, et al. 2005. Evolution of the isoprene biosynthetic pathway

in kudzu. Plant Physiol. 137:700–712.

Sharp PM. 1991. Determinants of DNA sequence divergence between

Escherichia coli and Salmonella typhimurium: codon usage, map

position, and concerted evolution. J Mol Evol. 33:23–33.

Stephanopoulos G, Vallino JJ. 1991. Network rigidity and metabolic

engineering in metabolite overproduction. Science. 252:

1675–1681.

Su AI, et al. 2002. Large-scale analysis of the human and mouse

transcriptomes. Proc Natl Acad Sci U S A. 99:4465–4470.

Su AI, et al. 2004. A gene atlas of the mouse and human protein-

encoding transcriptomes. Proc Natl Acad Sci U S A. 101:

6062–6067.

Subramanian S, Kumar S. 2004. Gene expression intensity shapes

evolutionary rates of the proteins encoded by the vertebrate

genome. Genetics 168:373–381.

Taguchi A, White MF. 2008. Insulin-like signaling, nutrient homeostasis,

and life span. Annu Rev Physiol. 70:191–212.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular

Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol

Biol Evol. 24:1596–1599.

Tamura K, Nei M. 1993. Estimation of the number of nucleotide

substitutions in the control region of mitochondrial DNA in humans

and chimpanzees. Mol Biol Evol. 10:512–526.

The Bovine Genome Sequencing and Analysis Consortium. 2009. The

genome sequence of taurine cattle: a window to ruminant biology

and evolution. Science. 324:522–528.

Torrents D, Suyama M, Zdobnov E, Bork P. 2003. A genome-wide survey

of human pseudogenes. Genome Res. 13:2559–2567.

Vinciguerra M, Foti M. 2006. PTEN and SHIP2 phosphoinositide

phosphatases as negative regulators of insulin signalling. Arch

Physiol Biochem. 112:89–104.

Wang D, Hsieh M, Li WH. 2005. A general tendency for conservation of

protein length across eukaryotic kingdoms. Mol Biol Evol.

22:142–147.

Warren WC, et al. 2008. Genome analysis of the platypus reveals unique

signatures of evolution. Nature 453:175–183.

Watt WB, Dean AM. 2000. Molecular-functional studies of adaptive

genetic variation in prokaryotes and eukaryotes. Annu Rev Genet.

34:593–622.

Whelan S, Goldman N. 1999. Distributions of statistics used for the

comparison of models of sequence evolution in phylogenetics. Mol Biol

Evol. 16:1292–1299.

Wong WS, Yang Z, Goldman N, Nielsen R. 2004. Accuracy and power

of statistical methods for detecting adaptive evolution in protein

coding sequences and for identifying positively selected sites.

Genetics 168:1041–1051.

Wright F. 1990. The ‘effective number of codons’ used in a gene. Gene

87:23–29.

Wright KM, Rausher MD. 2010. The evolution of control and

distribution of adaptive mutations in a metabolic pathway. Genetics

184:483–502.

Yang YH, Zhang FM, Ge S. 2009. Evolutionary rate patterns of the

gibberellin pathway genes. BMC Evol Biol. 9:206.

Yang Z. 1997. PAML: a program package for phylogenetic analysis by

maximum likelihood. Comput Appl Biosci. 13:555–556.

Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000. Codon-substitution

models for heterogeneous selection pressure at amino acid sites.

Genetics 155:431–449.

Yang Z, Wong WS, Nielsen R. 2005. Bayes empirical bayes inference of

amino acid sites under positive selection. Mol Biol Evol. 22:

1107–1118.

Zhang Z, Harrison P, Gerstein M. 2002. Identification and analysis of

over 2000 ribosomal protein pseudogenes in the human genome.

Genome Res. 12:1466–1482.

Zielinski R, et al. 2009. The crosstalk between EGF, IGF, and insulin cell

signaling pathways—computational and experimental analysis.

BMC Syst Biol. 3:88.

Associate editor: Michael Purugganan

Comparative Genomics of the Vertebrate Insulin/TOR Pathway GBE

Genome Biol. Evol. 3:87–101. doi:10.1093/gbe/evq084 Advance Access publication December 13, 2010 101


