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Background:Multiple Sclerosis (MS) is a chronic inflammatory disease and a leading cause of progressive neuro-
logical disability among young adults. DNAmethylation, which intersects genes and environment to control cel-
lular functions on a molecular level, may provide insights into MS pathogenesis.
Methods: We measured DNA methylation in CD4+ T cells (n = 31), CD8+ T cells (n = 28), CD14+ monocytes
(n= 35) and CD19+ B cells (n= 27) from relapsing-remitting (RRMS), secondary progressive (SPMS) patients
and healthy controls (HC) using Infinium HumanMethylation450 arrays. Monocyte (n = 25) and whole blood
(n = 275) cohorts were used for validations.
Findings: B cells fromMSpatients displayedmost significant differentiallymethylatedpositions (DMPs), followed
by monocytes, while only few DMPs were detected in T cells. We implemented a non-parametric combination
framework (omicsNPC) to increase discovery power by combining evidence from all four cell types. Identified
sharedDMPs co-localized atMS risk loci and clustered into distinct groups. Functional exploration of changes dis-
criminating RRMS and SPMS from HC implicated lymphocyte signaling, T cell activation and migration. SPMS-
specific changes, on the other hand, implicated myeloid cell functions and metabolism. Interestingly, neuronal
and neurodegenerative genes and pathways were also specifically enriched in the SPMS cluster.
Interpretation:Weutilized a statistical framework (omicsNPC) that combinesmultiple layers of evidence to iden-
tify DNA methylation changes that provide new insights into MS pathogenesis in general, and disease progres-
sion, in particular.
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Research in context

Evidence before this study

While previous studies implicatedDNAmethylation changes in im-
mune cells fromMS patients, there was a very limited overlap be-
tween the findings. These studies predominantly focused on the
RRMS stage of disease and changes in T cells.

Added value of this study

We investigated DNA methylation changes in both RRMS and
SPMS stages and in four immune cell types implicated inMS path-
ogenesis, i.e. CD4+ and CD8+ T cells, CD14+ monocytes and
CD19+B cells.We observed evidence of sharedDNAmethylation
changes across all cell types and we implemented a non-
parametric combination framework (omicsNPC) to identify such
differences taking advantage of increased power when multiple
layers of evidence are combined. Notably, omicsNPC is applicable
in any context where omics from multiple cell types (or multiple
omics from the same cell type) are available. Shared disease-
associated differences clustered individuals into distinct func-
tional groups suggesting both known and novel pathways in MS
pathogenesis.

Implications of all the available evidence

DNA methylation changes, similar to multiple other lines of evi-
dence, implicate dysregulation of adaptive immune mechanisms
in the pathogenesis of MS. Additionally, SPMS-specific DNA
methylation changes suggest the involvement of myeloid cells,
phagocytosis and metabolism, adding to a growing evidence of
these mechanisms being important for disease progression. Fi-
nally, an intriguing ‘brain signature’ of neurodegeneration was

sive disease.
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found for the first time in peripheral immune cells during progres- 2. Methods
1. Introduction

Multiple Sclerosis (MS) is a leading cause of progressive disability in
young adults caused by inflammation, demyelination and axonal loss in
the central nervous system (CNS) [1,2]. Patients are typically diagnosed
between 20 and 40 years of agewithwomen being affected nearly three
times as often as men [3]. The immune response causes the breakdown
of the blood-brain barrier, infiltration of immune cells into the CNS and
subsequent development of inflammatory and demyelinating lesions in
both brain and spinal cord [4]. Most MS patients (85–90%) are initially
diagnosed with the relapsing-remitting form of MS (RRMS), which is
characterized with recurring episodes of acute neurological symptoms
(relapses) followed by recovery (remission). The majority of RRMS pa-
tients eventually convert to a progressive formofMS, i.e. secondary pro-
gressive MS (SPMS) with accumulating axonal damage and neuronal
loss and persistent increase in neurological disability. Current disease
modulatory treatments (DMT) are mainly effective in controlling the
early inflammatory stage of the disease, while the therapeutic efficacy
in progressive stages is poor, likely due to a shift from mainly adaptive
immune mechanism to more complex and currently less defined pro-
cesses also involving innate and local tissue reactions [2].

Although the exact cause of MS remains unknown, N200 genomic
loci have been associated with the risk of developing the disease with
the genes in the HLA class II locus (in particular HLA-DRB1) exerting
the strongest influence [5–7]. The risk loci collectively support the
immune cause of MS and particularly the role of adaptive immunity
and CD4+ T cell pathways in triggering the disease. While genetic and
environmental factors independently confer modest effects, their com-
bined impact conveys a dramatic increase in the risk of developing MS,
suggesting interactions on a molecular level [8]. Thus, studying the epi-
genetic mechanisms, that integrate instructions from genes and envi-
ronment to control cellular function on the molecular level, represents
one avenue to uncover processes of importance for diseases as complex
as MS.

The most commonly studied epigenetic mechanism is DNA methyl-
ation,which is the covalent addition of amethyl group to the 5th carbon
of cytosine, known as 5-methylcytosine (5mC) in a CpG dinucleotide
context [9]. Generally, DNA methylation within CpG rich promoters of
genes is associated with transcriptional repression, while higher meth-
ylation in gene bodies has been shown to positively correlate with ex-
pression [10]. We have recently demonstrated that DNA methylation
mediates risk of developing MS [11]. Several studies have compared
DNA methylation changes between MS patients and controls in CD4+,
CD8+, CD14+, CD19+ cells and bulk peripheral blood mononuclear
cells using the same methodology to measure DNA methylation
genome-wide, i.e. Illumina methylation arrays [11–18]. While each
study reports potentially interesting candidates, changes in HLA-DRB1
seem most reproducible likely owing to the strong genetic regulation
of methylation in the locus. This lack of reproducibility is caused by
the fact that MS is a heterogeneous disease, thus warranting larger co-
horts of sorted cells, which is typically challenging, and new analytical
methods.

Here we analyzed DNA methylation in four cell types implicated in
MS immunopathology [19–21] that were sorted from peripheral blood
of RRMS and SPMS patients and healthy controls. We show that im-
mune cells from MS patients share epigenetic changes and we demon-
strate a statistical framework to identify such changes, thus increasing
the power of identifying disease-associated methylation patterns in
complex heterogeneous diseases.

2.1. Cohorts

A discovery cohort comprising persons affected with RRMS and
SPMS and HC, and an independent validation cohort, comprising per-
sons affected with RRMS (n = 14) and healthy controls (n = 11),
were recruited at the Neurology clinic at Karolinska University Hospital
in Stockholm. The RRMS patients were primarily selected based on re-
cent evidence of disease activity, either manifested as relapses or con-
trast enhancing Magnetic Resonance Imaging (MRI) lesions, and the
majority (87.5%) of the RRMS patients have not been treated at the
time of sampling. Cohort details, with the exact number of RRMS,
SPMS and HC individuals profiled for each cell type, are provided in
Table 1, and detailed patient information, including treatment history
and disease activity, is supplied in Supplementary Table 1. The Regional
Ethical Review Board in Stockholm approved the study and methods
were carried out in accordance with institutional guidelines for experi-
ments with human subjects. Informed consent was obtained from all
subjects.

The whole blood cohort used to replicate functional pathways in
SPMS, consisting of RRMS (n = 119), SPMS (n = 17) and HC (n =
139), was described in detail elsewhere [11,22].

2.2. Sample preparation

Peripheral bloodmononuclear cells (PBMCs) from the discovery and
validation cohortwere isolated directly after collection using a standard
Ficoll (GE Healthcare) and sodium citrate-containing preparation tubes
(Becton Dickinson) procedures, respectively. Monocytes were isolated
using CD14+ positive selection on MACS microbeads magnetic
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separation (Miltenyi), according to manufacturer's instructions (N 95%
purity). Sorting of CD4+ and CD8+ T cells and CD19+ B cells was per-
formed from the negative fraction obtained after sorting of monocytes
by adding fluorochrome-conjugated antibodies against human CD4
(clone SK3, APC-conjugated, Becton Dickinson), CD8 (clone SK1, FITC-
conjugated, Becton Dickinson), CD3 (clone UCHT1, PE-conjugated, BD
Bioscience) and CD19 (clone SJ25C1, APC-Cy7-conjugated, Becton Dick-
inson) using high-speed MoFlo™ cell sorter (Beckman Coulter, Inc., N
99% purity). Extraction of genomic DNA was performed using Gen
Elute Mammalian Genomic DNA Miniprep kit (Sigma-Aldrich). The
amount and quality of DNA were assessed with a NanoDrop ND-1000
Spectrophotometer (NanoDrop Technologies Inc). The four cells types
were sorted from all individuals in the discovery cohort and samples
with sufficient DNA amounts were used in further analysis. The num-
bers of RRMS, SPMS and HC used for each cell type are provided in
Table 1 and details of individuals are given in Supplementary Table 1.
Processing of the discovery cohort samples for Infinium
HumanMethylation450 arrays (Illumina, hereafter referred to as
450k), including bisulfite conversion, was done at the Bioinformatics
and Expression Analysis core facility (BEA), Karolinska Institutet
(Stockholm) for CD14+ monocytes and CD4+ T cells, and at Johns Hop-
kins University School of Medicine (Baltimore) for CD8+ T cells and
CD19+ B cells. Processing of the validation cohort samples for Infinium
MethylationEPIC arrays (Illumina, hereafter referred to as EPIC) was
done at the SNP&SEQ Technology platform (Uppsala). Cases and con-
trols were randomized on the arrays.

2.3. DNA methylation analysis

Methylation profiles for every cell type were analyzed individually
in R using theMinfi [23] and ChAMPpackage [24] following the pipeline
according to Marabita el al [25]. Briefly, type 1 and type 2 probes were
normalized using quantile normalization and BMIQ. Sex of the samples
was confirmed using the GetSex function from the Minfi package and
the cell type identity was confirmed using the cell type deconvolution
method fromMinfi based on the Houseman algorithm [26]. The follow-
ing probes were filtered out: i) probes not passing the detection p-value
cutoff of 0.01, ii) probeswith known SNPs, and iii) X and Y chromosome
probes. Batch effects were identified using principal component analy-
sis (PCA) and corrected using ComBat from the SVA package [27]. The
loading of methylation profiles was performed in this manner for each
cohort used in this study. Differentially methylated positions (DMPs)
were determined with linear modeling using the limma package [28]
in a model that included age and sex as covariates. The influence of
treatment has been investigated using both PCA and covariate regres-
sion and potential confounding effects of the treatment status in this co-
hort have been excluded. Differences were calculated between RRMS
and HC, RRMS and SPMS, SPMS andHC. In addition, the eBayes function
was used to find differences in at least one of the comparisons.

2.4. Non-parametric combination methodology (omicsNPC)

In order to increase statistical power by using multiple layers of ev-
idence, we applied the non-parametric combination (NPC) [29–31]
Table 1
Characteristics of Multiple Sclerosis (MS) patients and healthy controls used for 450 K methyla

CD4+

Healthy controls N (female/male) 11 (7/4)
Mean age (range) 43 (28–62)

Relapsing-remitting MS N (female/male) 12 (9/3)
Mean age (range) 38 (26–57)

Secondary progressive MS N (female/male) 8 (4/4)
Mean age (range) 50 (35–63)

All four cell types were available from 11 individuals, while between any two cell types the ove
between CD4+ and CD14+ cells (details can be found in Supplementary Table 1). Patients had
methodology as implemented in the omicsNPC [32] function of the
STATegRa R package. The omicsNPC procedure combines results from
a series of statistical tests in order to produce a single global p-value
that summarizes evidence from all tests. In this study, our goal was to
identify probes whose differential methylation is detected in multiple
cell types.

In short, for each probe i the limma results from the individual cell
types j = 1, … , n were combined by omicsNPC using the Liptak-
Stouffer function: Ti = ∑jΦ−1(1 − λi

j), where Φ−1 is the normal in-
verse cumulative distribution function, andλij is thep-value correspond-
ing to probe i and cell type j. The global statistic Ti is then transformed in
a shared p-value pi by using a permutation approach. Notably, permuta-
tions are performed by randomly re-arranging the patients' status infor-
mation (RRMS, SPMS, HC) across all cell types in a coordinated way. In
this way the association between each measurement and the patients'
status is disrupted,while the correlation structure acrossmeasurements
from different cell types is left unaltered and accounted for. Neglecting
such correlations would possibly lead to false positive associations. By
using the Liptak-Stouffer function, significant global p-values are pro-
duced for probes that are differentially methylated, evenmildly, inmul-
tiple cell types, thus supported by multiple evidences.

Finally, in our analysis omicsNPC was run with 10.000 permutations
on all probes with a nominal p-value b.05 in individual cell type analy-
ses. Statistical significance for the omicsNPC results was defined as
Liptak p-value b.0001 and Liptak FDR b 0.2.

2.5. Clustering

Significant omicsNPC probes were individually transformed from
beta values to cell specific Z-scores by subtracting the mean and divid-
ing by the standard deviation. The matrix was clustered into distinct
groups using MClust [33]. Based on the direction of change within
each cluster, the clusters were merged and assigned to one of the fol-
lowing groups: Unk, MS and SP.

2.6. Functional annotations

Genes associated with DMP probe IDs from the Illumina manifest
were uploaded to Ingenuity Pathway Analysis (IPA) database (Qiagen)
and core expression analysis was performed to identify affected ca-
nonical pathways and functional annotations. Immune tissues, includ-
ing primary immune cells and cell lines, were used. Right-tailed
Fisher's exact test was used to calculate a p-value determining the
probability that each biological function assigned to that data set is
due to chance alone. Canonical pathways/functional annotations
were grouped into clusters by calculating the similarity of pathways/
annotations using the relative risk (RR) of each pathway appearing
with each pathway based on the genes enriched within the pathway.
Only pathways representing a minimum of 5 differentially methylated
genes were selected for functional exploration. RR scores were clus-
tered into groups using kmeans. Genes associated with DMPs with ab-
solute Δβ N 5%, p-value b.001 were used for pathway analysis of
changes identified in individual cell types. Genes associated with
DMPs defined as significant in omicsNPC and clustered in specific
tion analysis.

CD8+ CD14+ CD19+

14 (9/5) 13 (9/4) 10 (6/4)
37 (20–65) 41 (28–62) 39 (28–60)
10 (5/5) 10 (7/3) 12 (7/5)
35 (26–44) 40 (29–57) 37 (26–57)
4 (0/4) 12 (7/5) 5 (2/3)
44 (38–50) 49 (35–60) 47 (35–56)

rlap of individuals ranged from the average of 45% between CD8+ and CD14+ cells to 79%
not been treated within 6 months prior to sample collection.
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groups were used for canonical pathways and functional annotation
analysis of shared changes. Over-representation analysis (ORA) as im-
plemented in webgestalt [34] was used to identify cluster labels. ORA
was also used in the analysis of the whole blood data genes and visu-
alized using REVIGO [35].
2.7. Meta-analysis

Meta-analysis of CD14+ cells for the comparison of RRMS and
healthy controls in the discovery and validation cohort on the 377,607
probes shared between 450 K and EPIC platforms was conducted with
a random effects model (REML) using the metap and metafor R-
package [36]. Directionality was determined using the Metal pipeline.
2.8. Overlap with disease-associated loci and meQTLs

To determine if there is an overlap of the top-ranked shared DMPs
from omicsNPC with MS-associated genetic variants, we used a set of
234 recently reportedMS-associated SNPs [7]. The Genomic Association
Test (GAT) tool [37]was applied to estimate the significance of the over-
lap betweenMS-associated SNPs and omicsNPC DMPs. The analysis was
run for bins of 2 kb windows based on the average distance between
SNPs and CpGs taken from GeMes [38]. For a comparison, the overlap
was tested for other diseases matched for the number of SNPs with
MS as well as for common control SNPs which were matched in the
CpG probe density for the bins run.

Furthermore, omicsNPC probes were investigated for potential
meQTLs using the Blueprint data [39]. OmicsNPC probes were extracted
from the full Blueprint dataset comprising monocytes and T cells.
MeQTLs were considered significant if Bonferroni-corrected p-value
b.05.
3. Results

3.1. Disease-associated DNAmethylation patterns in four immune cell types

We have profiled DNA methylation in CD4+ T cells, CD8+ T cells,
CD14+ monocytes and CD19+ B cells from MS patients and HC
(Table 1, Table S1) using Infinium HumanMethylation450 arrays
(450 K). All four cell types have been implicated in the pathogenesis
of MS [19–21]. After adjustment for confounders, we found 1511, 666,
and 30 significant differentially methylated positions (DMPs, adj. p-
value b.05) in CD19+, CD14+ and CD8+ cells, respectively, between
RRMS, SPMS and HC individuals (Fig. 1A, Table S2). B cells displayed
more differences between RRMS and HC (3904 DMPs, abs. Δβ N 5%,
adj. p-value b.05) compared to any other cell type (0, 1, 124 in CD4+,
CD8+, CD14+ cells, respectively). In total, ~70% (2662/3904) of DMPs
between RRMS and HC in CD19+ B cells displayed hypomethylation in
RRMS (Table S2), which was also reflected on the level of the most var-
iable DMPs (Fig. 1A). The opposite pattern was observed in CD14+

monocytes (Fig. 1B), which bear the second highest number of signifi-
cant differences, where ~90% (110/124) of DMPs between RRMS and
HC (abs. Δβ N 5%, adj. p-value b.05) displayed hypermethylation in
RRMS (Table S2). The significant methylation changes identified in B
cells and monocytes were particularly enriched in open sea regions
and depleted from TSS1500, 5’ UTRs and shores (Fig. S1). Unlike B
cells and monocytes, T cells displayed very little methylation difference
between RRMS, SPMS and HC. Only one CpG was significant between
RRMS and HC in CD8+ T cells (Table S2) although the most variable
DMPs displayed predominant hypermethylation in RRMS, which is con-
sistentwith previous findings [13]. Notably, none of the CpGs in CD4+ T
cells passed the significance threshold (Fig. 1A, Table S2), despite previ-
ous reports [12,16].
In order to identify biological functions that are affected by the dif-
ferences in methylation patterns, we performed functional IPA analysis
on genes associated with DMPs identified in the different cell types. We
focused on candidate differences between RRMS and HC (abs. Δβ N 5%,
unadjusted p-valueb.001) as these groupshad similar size in all four cell
types (Table 1). IPA analysis revealed over-representation of immune-
related processes, with an enrichment of genes involved in antigen pre-
sentation, OX40 signaling, T helper cell differentiation, T lymphocyte
apoptosis, and B cell development, among others, and biological func-
tions reflecting immune cell migration and inflammatory response
(Table S3). Interestingly, themajority of canonical pathways and biolog-
ical functions overlapped between the four cell types (Fig. 2A), implying
that similar functionsmay be affected by methylation changes in CD4+,
CD8+, CD14+ and CD19+ cells in RRMS patients compared to controls.
This is further supported by the strong correlation of changes (Δβ) be-
tween cells types (Fig. 2B), i.e. a large fraction of CpGs exhibited the
same direction of the change between RRMS and HC in all four cell
types.

These findings indicate that in addition to cell type-specific effects
there is a substantial fraction of DNA methylation changes that may be
shared across the immune cell types implicated in MS pathogenesis.
3.2. Combining multiple immune cell types increases power to identify
disease-associated DNA methylation patterns

In order to increase statistical power by using multiple layers of
evidence, i.e. from CD4+, CD8+, CD14+ and CD19+ cells, we applied
the non-parametric combination methodology as implemented in
the omicsNPC function [32] (Fig. 3A). This stepwise approach builds
on permutations of the moderated F-statistics from all probes passing
nominal p-value b.05 in any of the comparisons (clinical groups or cell
types), which were combined using the Liptak-Stouffer function. This
function requires support from most of the individual analyses in
order to provide a significant overall p-value (i.e., probes with a low
p-value only in one single cell type are unlikely to achieve a significant
overall p-value). OmicsNPC analysis for different combinations of the
cell types resulted in 1976 DMPs for all four cell types, 1273 DMPs
for lymphocytes (CD4+, CD8+ and CD19+ cells), 423 DMPs for T
cells (CD4+ and CD8+ cells) and 2782 DMPs for cells with the
antigen-presenting potential (CD14+ and CD19+ cells) (Fig. 3B,
Table S4).

Interestingly, the directionality of the significant omicsNPC DMPs
was shared across different cells types significantly more than expected
by chance (χ2-test p-value b .05). For example, the majority of the
omicsNPC hypomethylated DMPs in the CD19+ B cells were found
hypomethylated in the three other cell types as well (Fig. 4A). Further-
more, the shared directionality was also seen when comparing the T-
statistics from Liptak significant probes, which displayed a high correla-
tion between cell types within each comparison (Fig. 4B). Overall,
omicsNPC methodology allowed robust identification of a substantial
number of DMPs with evidence of a DNA methylation change across
multiple cell types.

To address whether omicsNPC increases the discovery power, we
used a validation cohort comprising methylation data from CD14+

cells isolated from RRMS (n = 14) and HC (n = 11) generated using
EPIC arrays. After selecting for the shared probes between the two
Illumina platforms (n=377,607, Table S5), we performed a random ef-
fect meta-analysis between CD14+ methylation profiles from the two
cohorts. As expected, the meta-analysis resulted in the identification
of a larger number of DMPs between RRMS and HC individuals
(Table S5). Comparison with omicsNPC showed that most of the addi-
tional DMPs identified in CD14+ cells after conducting a meta-analysis
of the two cohorts ranked in the top of the omicsNPC DMPs, however
these probes did not rank in the top of the DMPs identified in the
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original 450 K CD14+ cohort alone (Fig. 4C). Among top 10,000 ranked
DMPs, up to 27% of the top ranking omicsNPC DMPswere also top rank-
ing in the meta-analysis, especially when considering omicsNPC com-
parisons containing CD14+ cells (e.g. shared between CD14+ and
CD19+, or shared across all four cells types).

Collectively, these data indicate that the omicsNPC methodology
combines evidence from distinct yet disease-relevant cell types to in-
crease the discovery power.
Fig. 1. Methylation changes in cells sorted from peripheral blood of Multiple Sclerosis (MS) p
arrays in CD4+, CD8+, CD14+ and CD19+ cells sorted from peripheral blood of untreated re
provided in Table 1 and Table S1). (A) Volcano plots illustrate differences in DNA methyl
methylation change and p-value b.001 are indicated in light red and light blue, respectively, w
p-value b.05. (B) Heat maps were generated using 1000 most significant differentially methyla
3.3. Co-localization of disease-associated omicsNPC CpGs withMS suscepti-
bility loci

We examined the possible mechanisms underlying omicsNPC DMPs
with evidence in CD4+, CD8+, CD14+ and CD19+ cells. Given the over-
lap of individuals between the cell type cohorts, ranging from 45% to
79% between two cell types, shared methylation changes could reflect
genetically-controlled methylation changes known as meQTLs [38,39].
atients and healthy controls (HC). DNA methylation was measured using Illumina 450 K
lapsing-remitting (RR) and secondary progressive (SP) MS patients and HC (details are
ation between RRMS, SPMS and HC. Hyper- and hypo-methylated CpGs with min 5%
hile darker red and darker blue indicate CpGs with min 5% methylation change and adj.
ted CpG sites between the conditions (the scale represents Z-score).



Fig. 2.DNAmethylation changes overlap between different cell types. (A) Selected canonical pathways and functional annotations from Ingenuity Pathway analysis (Fisher's p-value b.05)
generated using genes associatedwith candidate differentially methylated positions between relapsing-remittingMultiple Sclerosis (RRMS) patients and healthy controls (HC) (absolute
Δβ N 5%, p-value b.001) in each cell type separately. In total, 54, 87, 362, 1966 genes were used in analysis in CD4+, CD8+, CD14+ and CD19+ cells, respectively. (B) Correlation of effect
sizes (Δβ for the RRMS-HC comparison) between cell types was tested for all probes that displayed p-value b.001 in at least one comparison using the Spearman's rank test.
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Thus, we compared our omicsNPC DMPs from the combination of all
four cell types with meQTL data detected in naïve CD4+ T cells and
CD14+ monocytes from 197 individuals. Of 1976 omicsNPC DMPs,
only 261 (13.2%) displayed significant (Bonferroni adj.p b .05) meQTLs
with the same SNPs in both cell types.

Moreover, genetic influences from the MS susceptibility loci could
provide another biological explanation for the observed sharedmethyl-
ation changes in functionally distinct cell types. To test this hypothesis,
we investigated the co-localization of omicsNPC probes and MS-
associated genetic loci [7]. Significant CpGs from different omicsNPC
combinations were tested for enrichment in genetic regions associated
with MS as well as other inflammatory and non-inflammatory diseases
that have their genetic architecture similar to that of MS. In total, 234
MS-associated SNPs were taken from the most recent association
study [7], while SNPs associated with other diseases were taken from
the GWAS catalog (https://www.ebi.ac.uk/gwas/). There was a signifi-
cant co-localization of omicsNPC CpGs with the MS associated SNPs,
while no overlap could be found with the SNPs that associate with
asthma, bone mineral density, major depressive disorder, psoriasis, as
well as common control SNPs (Fig. 4D).

These data imply that at least a fraction of methylation changes that
are shared across distinct immune cell types may be driven by genetic
variants that predispose for MS development.

3.4. DNA methylation patterns at omicsNPC DMPs implicate functionally
distinct pathways during MS progression

To explore if DNAmethylation patterns can inform about distinctMS
features, we first performed unbiased clustering of individuals based on
z-score transformed omicsNPC CpGs derived from a combination of all
four cells types. The optimal clustering revealed a grouping of individ-
uals into seven different clusters (Fig. 5A, Table S6). Based on average
methylation levels for each cell type, MS status and stage, these seven
clusters were further assigned to three biological groups. The first
group (SP) comprised changes that primarily related to the SPMS
stage, i.e. most of the differences were related to the SPMS vs HC or

https://www.ebi.ac.uk/gwas/
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RRMS. This group comprised two clusters with 370 hypermethylated
and 319 hypomethylated omicsNPC CpGs in SPMS compared to both
HC and RRMS (Fig. 5A). The second group (MS) reflected MS-
specific changes present in both RRMS and SPMS compared to HC
and comprised four clusters, one cluster of 341 hypomethylated
omicsNPC CpGs and three clusters with 338, 156 and 8
hypermethylated omicsNPC CpGs in RRMS, and to a lesser extent
SPMS, compared to HC (Fig. 5A). The third group (Unk, from un-
known) comprised one cluster of 444 omicsNPC CpGs where the dif-
ferences could not be unambiguously attributed to a specific clinical
group and did not always share directionality across cells types
(Fig. 5A).

Because the average age of SPMS patients is higher than the average
age of RRMS and HC individuals, we investigated if differences in age
could have resulted in the identification of changes specific for SPMS, al-
though the agewasused as a covariate in our analysis. OmicsNPCprobes
displayed aminimal correlationwith age in different cell types with e.g.
b 5% of 1976 probes showing correlation with age (Spearman r N 0.4) in
at least one cell type (Fig. S2A). Similarly, there was a limited overlap of
omicsNPCDMPswith known age-relatedDMPs identified in sorted cells
(Fig. S2B) [40] and whole blood from a large longitudinal twin cohort
(Fig. S2C) [41]. In contrast to omicsNPC DMPs, previously reported
age-related DMPs [40,41] correlated significantly with age also in our
cohort (data not shown).

We then investigated the functional relevance of the changes that
associated with the three biological groups using IPA. The enriched ca-
nonical pathways and functional annotations were grouped together
based on the RR clustering (see Methods). The pathway analysis was
based on 174 unique genes associated with differentially methylated
CpGs, of which only 11 (6%) were shared between the groups, indicat-
ing that very specific functions are affected by methylation in different
clinical groups. Although there was occasionally overlap between path-
way labels between different groups, the RR analysis demonstrated that
the majority of the genes comprising those pathways did not overlap.
We observed seven distinct clusters of canonical pathways that differed
between theMS and SP groups (Fig. 5B, Table S6). The pathways related
to MS in general encompass genes implicated in signaling downstream
T- and B-cell receptors as well as in T cell activation. As expected, these
pathways comprise many molecules involved in signaling in immune
cells such as IL1RL2, GNG4/7, IRAK2, MAPK14, NCOR2, PLCB2, PTPRJ/O,
PRKZC, RUNX3, SMAD9, STAT5A (Table S6, PRKCZ is shown in Fig. 5D).
The canonical pathways associated to SP include genes involved in
cAMP-mediated signaling, NO signaling, metabolism, respiratory burst
and phagocytosis. The Unk group showed enrichment of genes related
to actin cytoskeleton. Annotation of biological processes revealed
three major clusters, each specific for a clinical group, supporting the
functional specificity of methylation changes in clinical groups. While
the SP-specific functions included development and activation of pre-
dominantly myeloid cells, more general MS functions included chemo-
taxis of bothmyeloid and lymphoid cells (Fig. 5C, Table S7). For the Unk
group the functions included cell-to-cell signaling and interaction, in-
flammatory response, cellmorphology and function of APCs. Several ex-
amples of DMPs are shown in Fig. 5D.

Surprisingly, many genes in the SP group, despite being detected in
immune cells, have previously been involved in neurodevelopmental
and/or neurodegenerative functions. They include APAF1, ASIC2,
BAIAP2, CALB2, CDH23, CLDN14, CR1, CX3CR1, GAB1/2, GLI3, GNAO1,
GRID2, GRIN1, GRM2, ITPR2/3, JAK2, MAPK10, NTN1/GN1, TGFBR1 and
TUBB2A/6 (Table S6, GNAO1, JAK2, CALB2 and GLI3 are shown in
Fig. 5D). Indeed, in addition to immune-related processes and functions,
the SP group displayed an enrichment of changes in genes implicated in
neuronal functions, such as “Axonal Guidance Signaling”, “CREB Signal-
ing in Neurons”, “eNOS Signaling” and “Synaptic Long Term Potentia-
tion/Depression”. To examine this association of SP changes in blood
with neurodegenerative functions, we analyzed DNA methylation data
fromwhole blood in an independent cohort (n=275) [11]. GeneOntol-
ogy analyses revealed shared (Fig. 6A-B) and distinct (Fig. 6C) pathways
and biological functions associated to RRMS and SPMS patients in com-
parison to healthy individuals and confirmed enrichment of neuronal
processes in SPMS patients, specifically.

4. Discussion

We investigated genome-wide DNA methylation in four immune
cell types, implicated in the pathogenesis of MS [19–21], from healthy
individuals and MS patients in the RRMS and SPMS stage. The most
prominent changes were detected in B cells, while no significant
changes could be detected in T cells. However, we observed evidence
of shared DNA methylation changes across different cell types and we
developed a non-parametric framework to detect such changes, thus in-
creasing the power to identify disease-associated differences that can
cluster individuals into distinct functional groups and uncover known
and novel pathways in MS pathogenesis.

Several studies investigated DNA methylation in immune cells
sorted fromMSpatients using the same Illumina array-basedmethodol-
ogy, with negligible overlap between the findings [11–14,16,18]. Like-
wise, our cell type-specific analyses demonstrated none and one
significant DMP in CD4+ and CD8+ T cells between RRMS and controls,
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Fig. 5. Pathways and functions implicated by DNA methylation patterns in Multiple Sclerosis (MS) patients. (A) A heat map of 1976 differentially methylated positions (DMPs) between
relapsing-remittingMS (RRMS), secondary progressiveMS (SPMS) and healthy controls (HC) shared by CD4+ T cells, CD8+ T cells, CD14+monocytes and CD19+ B cells, identified using
the omicsNPC framework (significance was defined as Liptak-Stouffer p-value b.0001 and FDR b 0.2). Themethylation β-values were Z-score transformed and clustered usingMclust into
theMS-specific (MS, 843 CpGs), SPMS-specific (SP, 689 CpGs) and the Unknown (Unk, 444 CpGs) group. The boxplots indicate average Z-score transformed β-values in RRMS, SPMS and
HC groups for each cluster and cell type. (B) A heatmap with significant Ingenuity Pathway Analysis (IPA) canonical pathways (Fisher's p-value b.05, min 5 molecules) generated from
genes that associate with shared DMPs. Pathways were grouped into clusters using the relative risk (RR) between different pathways, whichwas calculated based on the number of over-
lapping genes per pathway. Distinct functional clusters are highlighted. (C) A heatmapwith significant IPA functional annotations (Fisher's p-value b.05,min 5molecules) generated from
genes that associate with shared DMPs. Annotations were grouped into clusters using the RR between different annotations. Distinct functional annotations are highlighted. (D) The
boxplots showmethylation β-value distribution in HC, RRMS and SPMS in each cell type for several exemplified DMPs.
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respectively, and no overlap with previous findings [12–14,16]. How-
ever, we corroborated previously reported overall higher methylation
in CD8+ T cells of RRMS patients [13,42]. Moreover, the top most var-
iable positions, particularly in CD4+ T cells, segregated MS patients
from controls, suggesting a lack of power to identify true underlying
differences. Indeed, a recent meta-analysis in CD4+ and CD8+ T cells
demonstrated two significant DMRs mapping to HLA-DRB1 and
SLFN12 genes [42], the same genes that displayed changes in multiple
cell types in our study (Table S8). Nevertheless, general difficulties to
identify methylation changes in CD4+ T cells, despite important role of
this cell type in MS pathogenesis [5-7], suggest that future analysis
need to be carried out in a sub-population of T cells, i.e. more relevant
rare pathogenic sub-types. Our analysis further suggests that most
methylation changes can be detected in bulk B cells and monocytes,
although their reproducibility remains to be tested in independent
cohorts.

Despite limited power to detect significant differences, the func-
tional immunological pathways associated with the top candidate
DMPs appeared enriched in all cell types and therewas a significant cor-
relation in DNA methylation changes between different cell types. We,
therefore, hypothesized that we can increase the power to identify
disease-relevant changes by combining evidence from multiple cell
types. For that purpose, we extended the application of the non-
parametric combinationmethodology in the omicsNPC [32] and applied
the Liptak-Stouffer function to combine p-values. This function pro-
duces significant DMPs supported by multiple evidence, i.e. probes
that are differentiallymethylated, evenmildly, inmultiple cell types. In-
deed, omicsNPC approach enabled identification of more DMPs than
analyses in the individual cell types. Furthermore, the directionality of
the change for the omicsNPCDMPswas also often shared among thedif-
ferent cell types. As the omicsNPC pipeline uses absolute values for ef-
fect size, the shared directionality was not enforced by the
methodology but was a result of the analysis. This suggests that the ap-
proach increases the discovery power, whichwe confirmed using an in-
dependent cohort of CD14+ cells from RRMS and HC. In addition, a
number of omicsNPC significant DMPs, e.g. in SAMD11 (multiple
CpGs), HLA class II locus (multiple CpGs) CASZ, TMEM48 and FSCN2
genes displayed at least nominal significancewith the same directional-
ity of the change in previous independent studies of CD4+ and CD8+ T
cells or CD19+ B cells (Table S8).
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MeQTLs could provide one explanation for the shared methylation
changes in cells with distinct functions, and it was recently suggested
that changes detected in case-control cohorts largely reflect meQTL ef-
fects [43]. Therefore, we compared our omicsNPC DMPs with signifi-
cant meQTL detected in CD4+ T cells and monocytes [39]. In total,
261/1976 (13%) omicsNPC DMPs were shown to be genetically regu-
lated by the same SNP in both cell types, implying a potential that
some of these CpGs are identified due to a varying genetic background
between patients and controls, but these are only a minor fraction of
the identified changes. On the other hand, we discovered significant
co-localization of the omicsNPC CpGs with the loci involved in MS sus-
ceptibility [7]. This suggests that shared methylation changes may be
under the regulation of disease-predisposing genetic factors in im-
mune cells involved in the pathogenesis. Accordingly, we have re-
cently shown that methylation in the HLA-DRB1, the major genetic
risk factor, and the most reproducible methylation differences across
studies, can mediate the risk of developing MS [11]. Moreover, no sig-
nificant co-localization with genetic factors of other tested inflamma-
tory (psoriasis) or neuropsychiatric diseases (MDD) was observed,
indicating that the identified shared changes show specificity for MS.
Another explanation for shared changes could be exposure to the
same environmental conditions, be it external (e.g. infections,
smoking, sun exposure, vitamin D levels) or internal (e.g. chronic in-
flammation). However, the relative contribution of these mechanisms
warrants further studies.

Interestingly, only methylation changes in B cells, which displayed
by far the largest number of methylation changes compared to other
cell types, did not display significant co-localization with MS risk loci.
As genetic studies of susceptibility typically address factors of disease
initiation, this may suggest the involvement of B cells in events other
than triggeringMS or that the contribution of B cells toMS susceptibility
might be conveyed in a non-genetic manner to a greater extent. In that
regard, B cells are the primary targets of Epstein Barr virus (EBV) infec-
tion, which is one of the major environmental factors associated with
susceptibility to developMS [8]. It has been shown that B cell immortal-
ization by EBV results in hypomethylation that affects promoters of pro-
liferative genes and a large part of the B cell genome [44,45]. We have
also observed that nearly 70% of DMPs in B cells of RRMS patients dis-
play hypomethylation. These findings are also of interest in context of
recent experimental observations regarding the non-redundant role of
memory B cells in activatingmemory T cells in an antigen-specificman-
ner, as well as the remarkable efficacy of B cell depleting therapies, both
of which supports the notion of an important role for B cells in sustain-
ing inflammatory activity in MS [46,47].

The omicsNPC DMPs clustered individuals into distinct groups with
one group corresponding to changes occurring inMS patients in general
and another group comprising changes that are more specific for the
SPMS stage. Functional annotation analysis implicated signaling path-
ways downstream T- and B-cell receptors and T cell activation to be af-
fected by methylation changes in MS patients in general. These
pathways agree withwell-recognized role of adaptive immunity in trig-
gering MS [4–7]. SPMS patients in the MS group often showed changes
that were intermediary, i.e. less pronounced than in the RRMS stage but
not at the level of healthy individuals, which may also reflect age-
related decline in the adaptive immunity in older individuals [48]. The
genes affected by methylation changes in the MS group are often in-
volved in signaling in adaptive immune cells including transcription fac-
tors RUNX3 (Runt Related Transcription Factor 3) and STAT5A (Signal
Transducer AndActivator Of Transcription 5A) that are critical for differ-
entiation of cytotoxic T cells [49], and balance between regulatory and
effector functions [50], respectively.

Functional annotation of the SPMS-specific group, on the other hand,
suggested the involvement of myeloid cells and functions such as NO
signaling, metabolism and phagocytosis, adding to the increasing evi-
dence of the involvement of these mechanisms in the disease progres-
sion [51]. However, the most surprising finding is a significant
enrichment of pathways linked to neurological processes specifically
in the SP group. We confirmed these distinctive changes in the SPMS
stage on the pathway level in an independent cohort. The finding is in-
teresting in light of the MS paradigm that proposes that exhaustion of
CNS reserves, caused by inflammation, likely represent a breaking
point to enter progressive stage of disease [51]. Several of these genes
have been linked to neurodegenerative processes but also severity and
progression of MS, including ASIC2 (Acid Sensing Ion Channel Subunit
2) [52], CALB2 (Calbindin 2) [53], CERK (Ceramide Kinase) [54], CR1
(Complement C3b/C4b Receptor 1) [55,56], CX3CR1 (Fractalkine Recep-
tor) [57], GRIN1 (Glutamate Ionotropic Receptor NMDA Type Subunit
1) [58], LRP1 (LDL Receptor Related Protein 1) [59], NTN1 (Netrin1)
[60] and TNFRSF1A (TNF Receptor Superfamily Member 1A) [61]. Inter-
estingly, some of these neuronal genes have been shown to play key
roles outside the CNS, particularly in immune cells. This is the case for
example of the neurotransmitter glutamate signaling, displaying DNA
methylation changes at several genes encoding receptor (GluR) sub-
units (GRID2, GRIN1, GRM2) and downstream signaling molecules (e.g.
ITPR2/3, PRKC/A, CAMK2D, PRKAR1B) in SP cluster. Compelling evidence
has demonstrated that glutamate exerts potent effects on normal im-
mune cells and in the context of MS, e.g. affecting T cells activation, ad-
hesion and migration, either directly through GluRs expressed at the
surface of immune cells [62,63] or indirectly via glutamate-dependent
pathways [64]. Similarly, axonal guidance cues such as netrins (NTN1,
NTNG1 genes in our cohort), recently found altered in sera of MS pa-
tients [65], have been shown to affect crucial cellular functions of both
innate and adaptive immune cells [66–68]. This neuronal pattern in im-
mune cells suggests that processes occurring in the brain might imprint
an overlapping molecular signature on the peripheral immune cells.
Such brain signature can occur when the immune cells infiltrate the
CNS, as seen in the case of stroke [69], or via unknown mechanisms,
as suggested in other CNS pathologies [70,71]. Another explanation im-
plies external factors causing overlapping signatures between the tis-
sues. One possibility is that chronic inflammation in MS causes age
acceleration, as low-grade inflammation is one of the factors suggested
to cause aging [72]. This process may result in overlapping molecular
signatures between the tissues and lead to exhaustion of the CNS func-
tions as suggested in other CNS abnormalities [73,74] and disorders
[75]. While the functional relevance of DNA methylation changes re-
mains to be studied, this is the first report of immune cells exhibiting
a uniquemolecular signature indicative of processes in the brain during
the progressive stage of disease.

5. Conclusion

We demonstrate that four distinct immune cell types from MS pa-
tients share functionally relevant DNA methylation changes compared
to healthy individuals. Owing to a gain of discovery power, omicsNPC
methodology allows detection of such changes in complex diseases
and further enables the identification of discrete changes inMS patients,
in general, and the SPMS stage, in particular. The findings provide new
insights into the putative mechanisms underlying MS pathogenesis
and progression.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.04.042.
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