
fphys-12-694940 August 3, 2021 Time: 20:18 # 1

ORIGINAL RESEARCH
published: 09 August 2021

doi: 10.3389/fphys.2021.694940

Edited by:
Linwei Wang,

Rochester Institute of Technology,
United States

Reviewed by:
Ken C. L. Wong,

IBM Research Almaden,
United States

Vicky Y. Wang,
The University of Auckland,

New Zealand
Joakim Sundnes,

Simula Research Laboratory, Norway

*Correspondence:
Ellen T. Roche

etr@mit.edu
Christopher T. Nguyen
Christopher.Nguyen@

mgh.harvard.edu

Specialty section:
This article was submitted to

Computational Physiology
and Medicine,

a section of the journal
Frontiers in Physiology

Received: 14 April 2021
Accepted: 19 July 2021

Published: 09 August 2021

Citation:
Fan Y, Coll-Font J,

van den Boomen M, Kim JH, Chen S,
Eder RA, Roche ET and Nguyen CT

(2021) Characterization
of Exercise-Induced Myocardium

Growth Using Finite Element
Modeling and Bayesian Optimization.

Front. Physiol. 12:694940.
doi: 10.3389/fphys.2021.694940

Characterization of Exercise-Induced
Myocardium Growth Using Finite
Element Modeling and Bayesian
Optimization
Yiling Fan1,2,3, Jaume Coll-Font1,4,5, Maaike van den Boomen1,4,5, Joan H. Kim1,
Shi Chen1, Robert Alan Eder1, Ellen T. Roche2,3,5* and Christopher T. Nguyen1,4,5*

1 Cardiovascular Bioengineering and Imaging Laboratory, Cardiology Division, Massachusetts General Hospital,
Charlestown, MA, United States, 2 Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA, United States, 3 Institute for Medical Engineering and Science, Massachusetts Institute of Technology,
Cambridge, MA, United States, 4 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States,
5 Harvard Medical School, Boston, MA, United States

Cardiomyocyte growth can occur in both physiological (exercised-induced) and
pathological (e.g., volume overload and pressure overload) conditions leading to
left ventricular (LV) hypertrophy. Studies using animal models and histology have
demonstrated the growth and remodeling process at the organ level and tissue–cellular
level, respectively. However, the driving factors of growth and the mechanistic link
between organ, tissue, and cellular growth remains poorly understood. Computational
models have the potential to bridge this gap by using constitutive models that describe
the growth and remodeling process of the myocardium coupled with finite element (FE)
analysis to model the biomechanics of the heart at the organ level. Using subject-
specific imaging data of the LV geometry at two different time points, an FE model
can be created with the inverse method to characterize the growth parameters of
each subject. In this study, we developed a framework that takes in vivo cardiac
magnetic resonance (CMR) imaging data of exercised porcine model and uses FE
and Bayesian optimization to characterize myocardium growth in the transverse and
longitudinal directions. The efficacy of this framework was demonstrated by successfully
predicting growth parameters of 18 synthetic LV targeted masks which were generated
from three LV porcine geometries. The framework was further used to characterize
growth parameters in 4 swine subjects that had been exercised. The study suggested
that exercise-induced growth in swine is prone to longitudinal cardiomyocyte growth
(58.0± 19.6% after 6 weeks and 79.3± 15.6% after 12 weeks) compared to transverse
growth (4.0 ± 8.0% after 6 weeks and 7.8 ± 9.4% after 12 weeks). This framework can
be used to characterize myocardial growth in different phenotypes of LV hypertrophy and
can be incorporated with other growth constitutive models to study different hypothetical
growth mechanisms.
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INTRODUCTION

is known to lead to chronic physiological changes in the
cardiovascular system such as an increase in contractility and a
decrease in vascular resistance, heart rate, and blood pressure
as a results of parasympathetic mediation (Fernandes et al.,
2011). In addition, it induces morphological changes to the
heart, which are typically referred to as cardiac growth or
hypertrophy. Cardiac growth can be categorized into two
types at the macroscopic level: eccentric growth – where the
ventricular volume increases, and concentric growth – where
the ventricular wall thickness increases. At the microscopic level,
growth is the result of increasing size of the cardiomyocytes
and, similarly to the macroscopic observations, in vitro studies
have shown that cardiomyocytes have two growth phenotypes:
longitudinal and transverse sarcomerogenesis (Yang et al.,
2016). Moreover, it has been hypothesized that longitudinal
and transverse growth at the microscopic level, result in
eccentric and concentric growth at the macroscopic level
(Göktepe et al., 2010). These distinctions in growth types are
important since different types of exercise produce different
types of macroscopic growth – anaerobic exercise is typically
associated with concentric growth, while aerobic exercise leads
to eccentric growth (Mihl et al., 2008; Fernandes et al.,
2011) – and, more importantly, growth can also be triggered
by pathologic causes such as pressure-overload, with similar
hypertrophic phenotypes, but leading to heart failure instead of
improved cardiac function. The root cause of the discrepancy
between physiologic and pathologic growth remains unclear
except for histology studies showing that the latter is also
accompanied by microstructure remodeling (e.g., interstitial
fibrosis, non-uniform cardiomyocyte alignment, and excessive
collagen deposition) (Vega et al., 2017).

There is a long history of studying myocardial growth
experimentally, both in vitro and in vivo (Aboelkassem et al.,
2019; Niestrawska et al., 2020). In vitro studies apply static
loads on isolated cardiomyocytes in the longitudinal (Mansour
et al., 2004) or transverse direction (Yang et al., 2016) to
mimic the conditions of volume overload or pressure overload,
respectively. These studies showed sarcomerogenesis in series or
in parallel corroborates the current understanding of longitudinal
or transverse growth in response to these pathological loadings.
In vivo studies on cardiac growth rely on small and large
animal models of pathological growth resulting from volume
overload or pressure overload (Aboelkassem et al., 2019). Volume
overload models, associated with eccentric hypertrophy, have
been generated by either cutting the chordae tendineae to
induce mitral regurgitation (Sahli Costabal et al., 2019; Li et al.,
2020) or by implanting a pacemaker to repeatedly introduce
premature ventricular contraction (PVC) (Torrado et al., 2021).
Pressure overload models, which are usually linked to concentric
hypertrophy, have been created by aortic banding (Olver et al.,
2019; Torres et al., 2020), diet modification (Holzem et al.,
2015; Olver et al., 2019), or genetic modification (LeGrice
et al., 2012; Wilson et al., 2017). On the other hand, exercised-
induced hypertrophic models have also been created in both

small and large animals by swim training, wheel running, or
treadmill running (Wang et al., 2010). Most of these in vivo
studies evaluate the effects of growth on the cardiac function
(e.g., ejection fraction, cardiac output, hemodynamics) as well as
morphological changes of the left ventricular (LV) (e.g., relative
wall thickness). A few studies have used histology, acquired
either ex vivo at the end of the study or through invasive
biopsy, to quantify the level of cardiomyocyte growth (Olver
et al., 2019; Sahli Costabal et al., 2019; Li et al., 2020) or
the changes in collagen fiber orientation (Torres et al., 2020).
Due to the limitations associated with ex vivo analysis and
the added complexity and risks of in vivo biopsies, there is
a profound paucity of data on the microstructural changes of
the myocardium during LV growth and remodeling. Thus, the
mechanistic link of growth between the organ level and tissue–
cellular level remains poorly understood.

Computational models that try to develop quantitative links
between growth observations at the organ level and tissue–
cellular level are promising tools to give better insights into
growth mechanisms (Niestrawska et al., 2020). Currently, there
are two main types of growth constitutive models: kinematic
growth and constrained mixture growth. Kinematic growth is
a phenomenon-based model which has been used to create
finite element (FE) models for both concentric (Göktepe et al.,
2010; Rausch et al., 2011; Genet et al., 2016) and eccentric
hypertrophy (Göktepe et al., 2010; Genet et al., 2016; Sahli
Costabal et al., 2019). Both stress-driven and strain-driven
growth laws have been tested in these studies. Constrained
mixture growth is a microstructure-based model. It has been
used mostly in the context of vascular growth which involves
simpler geometry and isotropic properties due to the associated
complexity of implementation and high computational cost
(Niestrawska et al., 2020).

Although computational models provide a powerful platform
to test different hypothetical growth mechanisms, large amounts
of experimental data either at the tissue level (for kinematic
growth) or at the cellular level (for constrained mixture growth)
are required to facilitate the simulations and validate the models.
To date, histology is the most commonly used approach that
can provide details about the microstructural changes of the
myocardium. However, histology is typically limited to in vitro
or ex vivo studies. Moreover, it is typically evaluated in a small
number of regions with a reduced field of view. Consequently,
it requires researchers to identify which areas are to be sampled
beforehand and, more crucially, it is challenging to repeat
longitudinally on the same subject without invasive biopsy.
On the other hand, non-invasive imaging techniques such as
cardiac magnetic resonance (CMR) can provide information
about the macrostructural and functional changes of the heart in
multiple pathological and physiological states, including cardiac
remodeling (Anand et al., 2002; Sipola et al., 2011; Alkema et al.,
2016). Moreover, the non-invasive nature of CMR allows imaging
of the same subject at multiple time points, hence, enabling
longitudinal studies. The main limitation of CMR compared to
histology is its relatively low resolution, on the order of mm,
which impedes the direct observation of cellular shape changes
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in the heart.1 In order to perform in vivo assessments of the
microstructural changes occurring during diseases or exercise,
it is necessary to bridge the gap between the macrostructural
changes observed with CMR and the underlying microstructural
changes in the myocardium.

With CMR data, FE can be used as a forward model to
build subject-specific growth simulations and predict the LV
morphological changes for given growth parameters. Assuming
the governing laws of growth are valid, it is possible to estimate a
set of growth parameters that predict the LV geometry observed
post-growth from CMR using iterative optimization approaches.
Such a technique would provide a quantitative link between
growth in myocardial microstructure and morphological changes
in the LV geometry. However, subject-specific FE models are
computationally expensive and consequently running a large
number of iterations within an optimization algorithm becomes
prohibitive. In this context, Bayesian optimization (BO) was
developed as a gradient-free optimization technique designed to
optimize cost functions that are expensive to evaluate. Hence, BO
can be used to optimize over parameterized FE models of the
heart without evaluating a grid search, which could take weeks
or months to compute per subject.

The aim of this work is to propose an optimization framework
to estimate the microstructural changes in the myocardial tissue
by combining CMR imaging with FE-based computational
models and BO. In short, our approach parameterizes the
possible myocardial growth mechanisms (e.g., transverse or
longitudinal growth) within an FE model and then estimates
the growth parameters that best describe the heart geometry
observed with CMR after growth. Since the heart is imaged
in its entirety and non-invasively, it is also possible to
assess whole-heart changes and perform longitudinal studies
to assess progression within the same subject. In this study,
we illustrated the accuracy of the FE + BO framework by
testing it on multiple synthetic and animal growth models.
In all cases, initial and final (post-growth) geometries were
obtained and the FE + BO algorithm was used to predict which
combination of transverse/longitudinal microstructural growth
occurred in the myocardium.

MATERIALS AND METHODS

We developed an inverse-problem approach to non-invasively
characterize cardiomyocyte growth from CMR and FE models,
as described in Figure 1. Specifically, we acquired two CMR
volumes of the LV at two time points – pre-growth (before
starting exercise) and post-growth (after the exercise regime).
Next, we built FE models of both LV geometries and applied
hemodynamic loading and pericardial constraints to each.
Finally, we applied cardiac growth to the pre-growth model and
used it to estimate the microstructural cardiac growth parameters
that best describes the macrostructural cardiac shape observed
in the post-growth model. The overall method is composed

1There exist MRI-based technologies, such as T1, T2, or diffusion CMR, which can
provide microstructural information of the tissue, but not direct observations of
the shape of the myocytes.

of three main components, the myocyte growth model, the
computational FE model and the estimation of the growth
parameters performed with BO.

Myocardium Growth Model
Since we used MRI data as the input information, kinematic
growth was chosen instead of constrained mixture growth as
the resolution of MRI is better suited for imaging at the
macrostructural/tissue level. Kinematic growth theory introduces
volumetric deformation to a continuum formulation with an
approach similar to thermal-elastic coupling. In other words, the
growth resulting from cardiomyocyte hypertrophy is modeled
as volume increase in the myocardium. Under the kinematic
growth framework, the total deformation gradient (F) can be
multiplicatively decomposed into an elastic response (Fe) and
a growth multiplier (Fg) as shown in Eq. 1. The former is
used to determine the stress in the stress-strain constitutive
model and the latter defines the growth magnitude in the three
local orthogonal directions of the cardiac microstructure (fiber,
sheetlet, and sheet-normal).

F = Fe Fg (1)

As discussed earlier, cardiomyocyte has two main modes of
growth, longitudinal and transverse growth, which correspond
to series and parallel sarcomerogenesis, respectively. Therefore,
we modeled the growth as transversely isotropic, where growth
in the fiber direction is associated with longitudinal growth and
growth in the sheetlet and sheet-normal directions are associated
with transverse growth. The growth multiplier has the form:

Fg
= (1 + αf)f⊗ f + (1 + αn)(n⊗ n + s⊗ s), (2)

where f, s, and n are unit vectors corresponding to the fiber,
sheetlet, and sheet-normal directions that are orthogonal to each
other. Similarly, αf and αn are the longitudinal and transverse
growth coefficients.

For the elastic response of myocardium, the invariant-based
hyperelastic model purposed by Holzapfel and Ogden (2009) was
used. The strain energy density function of the model is shown in
Eq. 3, where Ie

1, Ie
4f , Ie

4s, and Ie
8fs are invariants of the right Cauchy

green tensor (Ce
= FeTFe) and a, b, af , bf , as, bs, afs, and bfs

are material parameters (Holzapfel and Ogden, 2009). The “a”
parameters have units of MPa and “b” parameters correspond
to an exponential constant that is dimensionless. We adopted
the material parameters characterized by Sack et al. (2018) from
swine models, where a = 1.05 kPa, b = 7.542, af = 3.465 kPa,
bf = 14.472, as = 0.481 kPa, bs = 12.548, afs = 0.283 kPa, and
bfs = 3.088.

ψ =
a

2b
exp

(
b(Ie

1 − 3)
)
+

∑
i=f,s

ai

2bi
{exp(bi(Ie

4i−1)
2
− 1)}

+
afs

2bfs
[exp(bfsIe

8fs
2)− 1] (3)

In the FE models which will be described in the next section,
all the elastic material properties are kept constant while growth
parameters αf and αn are varied from model to model in
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FIGURE 1 | Overview of the workflow used to characterize cardiomyocyte growth. The workflow contains three modules: (1) in vivo data collection, (2) building finite
element model (FEM) of the pre-growth and post-growth LV geometries with idealized fiber orientation and boundary conditions (BCs) such as end-diastolic pressure
and pericardium constraint, and (3) growth optimization.

the workflow. With the kinematic growth frame work (Eq. 1),
Fe can be derived from F and Fg , in which the former is
computed as the gradient of the continuous deformation map
and the latter is explicitly defined as in Eq. 2. The second
Piola–Kirchhoff stress can then be computed from Fe and strain
energy density function (Eq. 3) as S = ∂ψ

∂Ce . More details of the
kinematic growth in the continuum mechanics framework are
described in Genet et al. (2016).

Finite Element Model
Finite element models (FEM) apply constitutive models that
describe the growth behavior at the tissue level into each element
and enable the evaluation of deformation and morphology
changes at the organ level. To start building a FEM of the
LV, a 3D volumetric model of its geometry is required. In this
study, the LV geometries at end-diastole were generated from
in vivo CMR imaging using semi-automatic segmentation tool
Segment (Medviso) (Heiberg et al., 2010). In order to avoid
through-slice discontinuities, the epicardium and endocardium
contours from each slice were further smoothed by fitting a
smoothing B-spline to the mask control points along the slice
direction (Prakosa et al., 2014). The contours were used to
create the 3D shape of the LV in FE software Abaqus 2018
(Dassault Systèmes, Providence, RI, United States) (Dassault
Systèmes, 2018). The LV was meshed with hexahedron elements
(C3D8) with element edge length of approximately 1.5 mm
(i.e., a 1.5 mm × 1.5 mm × 1.5 mm element), resulting in
4–5 layers of elements across the myocardial wall. An idealized

fiber orientation was applied using the Laplace–Dirichlet Rule-
Based (LDRB) algorithm (Bayer et al., 2012) with epicardial–
endocardial helix angle of −60◦ to 60◦. Standard Abaqus user
subroutines VUHYPER and VUEXPAN (Dassault Systèmes,
2018) were used to implement the Holzapfel–Ogden hyperelastic
model and transversely isotropic growth model in Abaqus. To
create pericardial constraints at the epicardium, a 3D shell
geometry was obtained from the epicardial surface to model the
geometry of the pericardium explicitly. The pericardium was
meshed with quadrilateral shell elements (S4) and modeled as
a linear elastic material with a Young’s modulus of 10 MPa
(Lin et al., 2013). A frictionless contact interaction was applied
between the epicardium surface (0epi) and the pericardium
surface (0epri) using the penalty contact algorithm (Dassault
Systèmes, 2018). A penalty pressure, which is linearly dependent
on the overclosure distance (h), was applied on the two surfaces
(Eqs 4a–c). A Dirichlet BC was applied at the basal plane
(0base) and the basal ring of the pericardium ({base−ring) to
prevent movement of body in the longitudinal direction (Eq. 4d).
A preload step followed by a growth step was implemented into
the model. Assuming that the segmented LV geometry is closed
to the stress-free configuration, an end-diastolic pressure (ped) of
10 mmHg was applied on the endocardial surface to obtain the
preloaded LV shape in the preload step. The LV pressure was
kept constant in the growth step while kinematic growth in the
transverse and longitudinal directions were implemented. All the
BCs of the model are summarized in Eqs 4a–f.

FSn = pepin on Γepi (4a)
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FSn = −pepin on Γperi (4b)

pepi = 2h (4c)

(where h is the overclosure distance between the two contacted
surfaces)

uz= 0 on Γbase, {base−ring (4d)

FSn = pendon on Γendo (4e)

pendo =

{
pedt t ∈ [0, 1] (preload step)

ped t ∈ [1, 2] (growth step)
(4f)

Due to non-linearities (large deformation, non-linear material
model, and contact) in the model, the Abaqus/Explicit solver
was used to conduct a quasi-static analysis (Dassault Systèmes,
2018). The Explicit Dynamic Analysis in Abaqus is designed
to solve the dynamic equilibrium (Eq. 5). When the inertial
force (Mü) is small enough, the equation reduces to the
static form of equilibrium and therefore leads to a quasi-static
problem. The explicit solver uses the forward Euler method,
in which the equations of motion are updated using previous
information as shown in Eqs 6, 7. Preload and growth step
time periods were set to 1 using a mass scaling technique and
small stable time increments of 5 × 10−6 to ensure that the
kinetic energy was negligible (<5%) compared to the total energy,
as suggested in the Abaqus manual for quasi-static analysis
(Dassault Systèmes, 2018). Hence, the “time” is an arbitrary
value that indicates the loading magnitude but does not reflect
the actual loading rate. For example, a growth simulation that
linearly increases the transverse growth magnitude from 0 to
α0 can provide intermediate outputs at time t ∈ [0, 1] as the
solution of growth with transverse growth magnitude equals
α0t. Figure 2 illustrates the macroscopic growth produced by
three types of microscopic growth: transverse, longitudinal, and
isotropic. Transverse growth increased the wall thickness of the
LV, longitudinal growth dilated the LV chamber and isotropic
growth resulted in both wall-thickening and LV chamber dilation.
Both the transverse and longitudinal results agree with clinical
observations and histological findings of eccentric and concentric
hypertrophy (Gerdes, 2002).

Mü = P− I (5)

(where M is the lumped element mass matrix, ü is acceleration, P
is the external force vector, and I is the internal force vector)

u̇(i + 1
2 )
= u̇(i− 1

2 )
+
4t(i + 1)

+ 4t(i)

2
ü(i) (6)

u(i + 1)
= u(i)

+ 4t(i + 1)u̇(i + 1
2 ) (7)

FIGURE 2 | Different types of growth evolution predicted by the FE model, (A)
transverse growth, (B) longitudinal growth, (C) isotropic growth.
(D) Demonstration of transverse and longitudinal growth directions in a block
of myocardium from endocardium to epicardium.

(where u is displacement and u̇ is velocity, the superscript (i)
indicates the increment number and i− 1

2 and i + 1
2 refer to

mid-increment values)

Growth Parameter Estimation With
Bayesian Optimization
The cardiac growth parameters (αf , αn) were estimated by
maximizing the similarity between the LV geometries obtained
from the growth FE model and from the LV geometry imaged
with the second scan. Specifically, we maximized the DICE score
(Dice, 1945) between the masks of the FE and CMR geometries
(MFE(αf , αn) andMCMR, respectively):

max
αf ,αn

2
∣∣MFE(αf , αn) ∩ MCMR

∣∣∣∣MFE(αf , αn)
∣∣+ |MCMR|

(8)

Unfortunately, the cost function in this maximization problem
requires solving an FE growth model over the parameters
(αf , αn) numerically. Hence, it is non-linear, does not have
an analytical expression and each iteration is computationally
expensive (around 2 h per iteration). These limitations impede
using gradient-descent methods (Nocedal and Wright, 2000;
Boyd and Vandenberghe, 2004) and is computationally infeasible
for classical gradient-free methods (Nelder and Mead, 1965;
Powell, 2009). Instead, we used BO, which is a gradient-
free optimization method designed for problems whose cost
function can only be evaluated at discrete points and which are
expensive to compute (Jones et al., 1998; Osborne et al., 2009;
Hutter et al., 2011). At each iteration, BO interpolates the cost
function with a Gaussian process (Rasmussen and Williams,
2006) using the samples evaluated in previous iterations and
then proposes a new point to evaluate within a bounded search
space. The optimization is effectively performed in the process
of proposing new points to evaluate. These are generated by
maximizing an analytical acquisition function that balances
the exploration of the search space against the exploitation of
current local maxima to further improve the current best result.
There have been multiple acquisition functions proposed in the
literature, each providing different balances between exploration
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and exploitation (Kushner, 1964; Srinivas et al., 2010; Hoffman
et al., 2011; Hernández-Lobato et al., 2015), and allowing for
the introduction of non-linear constraints to the optimization
(Hernández-Lobato et al., 2015; Ariafar et al., 2019). In this work,
we used the Upper Confidence Bound (Srinivas et al., 2010),
which maximizes the following trade-off between the mean µ(x)
and variance σ(x) of the Gaussian Process, balanced by the scalar
parameter β:

max
x

µ(x)+β · σ(x) (9)

As discussed, the cost function used in BO was the DICE score
(DSC) between the masks of the predicted and imaged LV
geometries. Evaluation of this cost function requires generating
a 3D mask of the LV using the 3D coordinates of the nodes
that constitute the FE mesh. In order to generate such mask, we
determined which voxels in the 3D volume belong within the
LV by interpolating a binary function in each voxel. Specifically,
we used kernel density estimation with B-spline interpolation
(kernel width of 4 voxels) and interpolated values of “1” at the
position of the FE nodes. Finally, we implanted a threshold
for the interpolated values at >0.25 and further filtered the
resulting binary mask with a morphological closing filter with
an element size of 6 voxels to avoid holes in the LV. To ensure
that both the FE and CMR masks were aligned, we registered
them with a rigid registration algorithm of their nodes in 3D
(Myronenko and Song, 2009).

Experiments
We tested our method with a series of synthetic experiments and
further illustrated its application in a real scenario with animal
models of exercise-induced cardiac growth. All experiments were
done under IACUC-approved protocols at the Massachusetts
General Hospital. Four Yucatan swine (2 months old) underwent
treadmill exercise training for 12 weeks and were imaged in vivo
at weeks 0, 6, and 12 after onset of exercise (one swine could
not finish exercise before the submission). Cardiac imaging was
performed on a 3T clinical MRI system (MAGNETOM Prisma
or a Connectome, Siemens Healthineers, Erlangen, Germany) set
at max 80 mT/m gradient strength and a standard 32-channel
anterior–posterior surface coil. The animals were anesthetized,
placed on a ventilator, and then imaged with a retrospectively
ECG gated CINE MRI flow compensated gradient echo sequence
(repetition time = 5.8 ms, echo time = 3.2 ms, flip angle = 20◦, 4
averages, 1.4 mm× 1.4 mm× 2.5 mm, 25 cardiac phases).

After imaging, the LV at end-diastole was segmented to
generate an FE model as described in the previous section. The
FE model and the LV masks at weeks 6 and 12 were then
introduced into the optimization framework to estimate the
transverse (αn) and longitudinal (αf ) growth of the myocardium.
The optimization was performed in python using the BO
implementation in the BoTorch package (Balandat et al., 2020)
with UCB as the acquisition function. The parameter β, which
balances exploration and exploitation in UCB, was somewhat
arbitrarily set to 10 since it provided balance between the mean
and variance of the Gaussian Process estimate after initialization.
The maximum growth was set to 1 (equivalent to doubling of

size), resulting into a search space bounded between 0 and 1
for both growth parameters. The optimization was initialized
with 3 samples of growth parameters set to [0, 1], [1, 0], and
[1, 1] and BO was run for 10 iterations. Given the numerical
nature of the quasi-static FE model, it provided intermediate
outputs of growth that could be used as additional samples
within the Gaussian Process fitting in BO. Consequently, each
growth simulation provided five valid cost-function evaluations
between zero-growth and the selected combination of transverse
and longitudinal growth parameters, and these were introduced
into each iteration of the BO algorithm to improve the estimate
of the Gaussian Process.

In order to evaluate the results, synthetic growth was applied
to three LV geometries from the previously described swine
models. For each LV geometry, the ventricle was modified with
six randomly prescribed transverse and longitudinal growth
parameters. The growth parameters were set to be equal across
geometries to reliably compare the results across subjects.
Hence, the resulting synthetic dataset consisted of a total of 18
simulations (3 geometries × 6 growth realizations), each with
known ground truth for their respective growth parameters. In
order to avoid committing an inverse crime “noise” was added in
the form of forward model differences between the generation of
the synthetic data and the model used within the optimization.
Specifically, the synthetic data were generated with increased
spatial resolution in the FE meshes (element size reduced to 1 mm
from 1.5 mm) and smaller increment step size in the quasi-static
growth model (reduced from 5 × 10−6 to 1 × 10−6) in the
Abaqus/Explicit solver.

We evaluated the parameter estimation error in the synthetic
experiments with the normalized prediction error between
the ground truth (αGT

f , αGT
s ) and predicted (α

p
s , α

p
f ) growth

parameters:

Error =

√√√√√ (αGT
f −α

p
f )

2
+(αGT

s −α
p
s )

2

αGT
f

2
+αGT

s
2

(10)

For all experiments, including the real-case examples, we report
the final DICE score (DSC) between the predicted growth model
and the true LV geometry, and illustrate the similarity between
LV geometries with 3D plots, as well as contour plots of the LV
masks in short and long axis views.

RESULTS

An overview of the outputs generated with the FE + BO
framework is shown in Figure 3. The heatmap in Figure 3A
shows the DICE score distribution across two axes of transverse
and longitudinal growth parameters. Regions with high DICE
score were indicative of good alignment between the predicted
and true geometries and the parameters with the highest DICE
score (typically >90%) were identified as the final prediction
(indicated with a blue star). The LV geometries that correspond
to several iterations in the BO optimization are shown in
Figures 3B,C. The 3D views (B) provide clear morphology of the
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FIGURE 3 | An overview of the results. (A) Heatmap of DICE scores (DSC) for different sets of growth parameters. (B) 3D views comparing predicted and targeted
geometries at three different scenarios indicated on the heatmap. (C) 2D contour comparison of predicted and targeted geometries from the long and short axis
views. (1) to (3) indicate three different sets of growth parameters that were tested during the optimization process. From (1) to (3), the BO method increasingly finds
solutions that improve the DICE score.

predicted and imaged LVs and the yellow intersection illustrates
the volume overlap between them after registration. Similarly, the
2D contours (C), provide a more detailed comparison between
target and prediction in two planes. Figure 3 illustrates three
samples obtained along the optimization and sorted from low to
high DICE scores.2 The first example (top row) with parameters
αf = 0.1 and αn = 1 showed a thickened LV wall and an
elongated chamber, compared to the target LV. The second
example (middle row) presented lower transverse growth but
higher longitudinal growth (αf = 0.4 and αn = 0.4). In this
case, the geometry was more similar to the target one and was
characterized by smaller wall thickness and smaller apex-to-base
distance. Due to larger longitudinal growth, the chamber was
more dilated in the radial direction, compared to the targeted
LV. The best example (bottom row) was found for parameters
αf = 0.17 and αn = 0.33. Both the 2D contours and the
3D plots show improved similarity with the target LV than that
obtained with the previous examples, albeit the LV size was
slightly under-predicted.

The DICE score heatmaps of the synthetic experiments are
shown in Figure 4. These illustrate how the FE+ BO framework
was capable of estimating growth parameters in the synthetic
models. In all cases, the DICE score heatmaps resulted in

2Note that, given the exploration–exploitation nature of BO, there is no guarantee
that the scores obtained along consecutive iterations are monotonically increasing.

a single local maximum with a peak in the vicinity of the
true parameters. Consequently, the estimated growth parameters
were similar to those of the ground truths across different LV
geometries and growth scenarios. Figures 5B,C shows a scatter
plot with the estimated and true growth parameters. Both the
estimated transverse and longitudinal growth resulted in good
alignment with the ground truth (points are near the identity
line), although these were, respectively, underestimated and
overestimated (below and above the identity line). Quantitatively,
the normalized error of the growth parameters, shown in
Figure 5A, was 5.5± 5.8% and there was no significant difference
in error across different LV geometries. The 2D contours of the
predicted and true masks are shown in Figure 6. These resulted
in good subjective alignment of the predicted LV geometry and
that of the ground truth.

An example of the true end-diastolic LV geometries segmented
from MRI along different time points during the exercise training
(weeks 0, 6, and 12) is shown in Figure 7. Figures 7A–
C show examples of the epicardial and endocardial contours
identified from short-axis CINE slices under different training
time points. From Figures 7D,E, the long-axis view comparisons
after rigid registration between the two geometries show LV
chamber elongation and dilation is relatively minimum at week
6 but substantial at week 12. Similarly, the short-axis views
(Figures 7F,G) show that wall thickening effect is more evident in
week 12 than week 6. Quantitative evaluation of LV shape changes
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FIGURE 4 | DICE score heatmap results of the synthetic experiments. The top row shows the three LV geometries that were used in the synthetic experiments. The
final prediction and ground truth are indicated in each heatmap as a blue star and red dot, respectively. For each LV geometry, two out of all six cases are shown.
The middle row includes examples of growth that is largely dominated by longitudinal growth (αf = 0.9, αn = 0.3) and the bottom shows examples of growth that
is largely dominated by transverse growth (αf = 0.1, αn = 0.3).

FIGURE 5 | Quantitative analysis of the results from 18 synthetic experiments. (A) Boxplot of normalized error across different subjects. (Boxplots show median,
interquartile ranges, and whiskers show range. P-values were calculated using standard t-test). (B) Scatter plot of predicted longitudinal growth vs. ground truth
longitudinal growth. (C) Scatter plot of predicted transverse growth vs. ground truth longitudinal growth. Dash lines in panels (B,C) indicate the identity line where
predictions with zero error should locate on.

during exercise training are shown in Figure 8. The LV (n = 4)
shows an increased end-diastolic (ED) volume (Figure 8A), and
a significant increase in myocardial volume (Figure 8B) as the
exercise program progresses. These results are consistent with
eccentric hypertrophy.

The results of growth characterization on these four exercised
animals are shown in Figure 9. As reported in the synthetic
experiments, all DICE score heatmaps resulted in a single local
maximum within the search space. Since this data was obtained

in vivo, there is no ground truth for the growth parameters.
However, the estimated parameters consistently resulted in larger
longitudinal growth than transverse growth. In fact, transverse
growth values were almost negligible for most of the cases
while a continuous increase in longitudinal growth was observed
between weeks 6 and 12, except for Swine 1. On average, all
animals (n = 4) that underwent exercise training resulted in
growth parameters (αf = 0.580± 0.196 and αn = 0.040± 0.080) at
week 6 and (αf = 0.793 ± 0.156 and αn = 0.078 ± 0.094) at week
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FIGURE 6 | Contour plots comparing the predicted and target LV geometry from the short axis and long axis views. The top row (A) includes the longitudinal growth
examples (αf = 0.9, αn = 0.3) and the bottom row (B) includes the transverse growth examples (αf = 0.1, αn = 0.3).

FIGURE 7 | A comparison of the LV geometries before and after exercise-induced growth. (A–C) MRI short-axis views of the LVs at weeks 0, 6, and 12 during
exercise training. (D,E) Long-axis views comparing weeks 0–6 and 12 LV geometries. (F,G) Short-axis views comparing weeks 0–12 LV geometries. Rigid
registrations were performed between the two geometries in panels (D–G).

FIGURE 8 | Quantitative comparisons of LV end-diastolic volume (A) and myocardium volume (B) between weeks 0, 6, and 12 during exercise training. (Boxplots
show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test).

12. The estimated growth parameters for each swine and session
are reported in Table 1.

Both the 3D plots and 2D contours of the predicted and target
LV geometries are compared in Figure 10 for all four animals

at week 12. Both visualizations of the LV geometries show that
the FE + BO framework was able to find growth parameters that
resulted in similar predicted LV geometries to those observed in
the in vivo data. The 2D long-axis views show that the method
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FIGURE 9 | DICE score heatmaps of growth parameter prediction for four exercised animals at two different time points (weeks 6 and 12).

tends to underpredict chamber elongation, except for Swine 2.
On the contrary, overprediction on wall thickening is shown
in the short-axis views. From the 3D overlapping views, it is
clear that rigid registration realigned the two geometries before
calculating the DSC. ED volume and myocardial volume of the
preloaded LVs and growth model predicted LVs at weeks 6 and
12 are shown in Figure 11. The optimized growth simulations
predicted a continuous increase of myocardium volume at weeks
6 and 12 similar to experimental measurements in Figure 8B.
However, the trend for ED volume elevation, which is shown
in the experimental data, was not reproduced in the growth
simulations. This indicates that the pericardium constraint may
have been over-estimated in the FE model such that longitudinal
growth did not provide a sufficient level of LV chamber dilation.
Overall, the method shows that exercise growth is more prone to
longitudinal growth than transverse growth.

DISCUSSION

The results of synthetic experiments suggest that the proposed
FE + BO framework is capable of estimating the growth
parameters of the myocardium with inputs of pre- and post-
growth LV geometries. The overall normalized error was
5.5 ± 5.8% and there were no significant differences across heart

TABLE 1 | Predictions of growth parameters in four exercised animals at two time
points (weeks 6 and 12).

Swine 1 Swine 2 Swine 3 Swine 4

αf αn αf αn αf αn αf αn

Week 6 0.86 0.16 0.54 0.00 0.40 0.00 0.52 0.00

Week 12 0.65 0.19 0.70 0.00 0.82 0.12 1.00 0.00

geometries. In the cases with lower level of growth, especially
in the longitudinal direction, the predictions have higher errors.
This indicates that the DSC score is more sensitive to transverse
growth than longitudinal growth. All DICE scores at the optimal
parameters were higher than 90%, presented a single global
maxima and the optimized LV geometries were similar to their
corresponding ground truths (Figure 6), providing confidence on
the stability of the estimated parameters.

Moreover, the results from the animal model predicted
significantly higher levels of longitudinal growth (58% for week
6 and 79.3% for week 12) than transverse growth (4% for week
6 and 7.8% for week 12). Longitudinally, all animals show an
increase of growth level in the longitudinal direction from weeks
6 to 12, expect for Swine 1 in which the predicted level of
longitudinal growth reduces from 86% at week 6 to 65% at
week 12. Although minimal, the transverse growth level predicted
in Swine 1 and 3 also increases over time during the exercise
training process. Performing such longitudinal analysis without
the FE+ BO framework would only be possible with invasive and
potentially hazardous biopsies of the heart. Overall, the growth
characterization results suggest that exercise-induced myocardial
growth is more prone to longitudinal growth. This is not only
consistent with the qualitative LV imaging comparisons showing
LV elongation and dilation (Figures 7, 8), but also agrees with the
literature where running – categorized as aerobic exercise – has
been reported to lead to eccentric hypertrophy with longitudinal
growth at the cardiomyocyte level in different species (Mihl
et al., 2008; Fernandes et al., 2011). However, the predicted level
of growth in the longitudinal direction is much higher than
reported cardiomyocyte dimensional increase (15–35%) from
literature (Wang et al., 2010). This discrepancy is likely due to the
over-simplified FE model with generalized material properties,
fiber orientation and hemodynamic BCs such that it cannot
simultaneously represent concentric and eccentric hypertrophy.
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FIGURE 10 | Plots of 3D geometries and 2D LV contours to compare the predicted and targeted LV geometries of exercised animals at week 12.

FIGURE 11 | Quantitative comparison of end-diastolic volume (A) and myocardium volume (B) between the preloaded LVs at week 0 and the predicted growth LVs
at weeks 6 and 12. (Boxplots show median, interquartile ranges, and whiskers show range. P-values were calculated using standard t-test).

In order to refine the subject-specific model, myocardium
properties can be characterized using CINE data and dynamic LV
models and more realistic fiber orientation can be assigned using
cardiac structural information from diffusion tensor imaging data
(Sack et al., 2016). While LV pressure is difficult to assess non-
invasively, the preload step could be improved by using the
early-diastolic filling geometry (Zhang et al., 2018) instead of
the end-diastolic geometry as the reference configuration such
that the preloaded LV configuration is more representative of
the ED state. Despite its computational cost, an even more
rigorous approach would be to use inverse methods to identify
the stress-free LV configuration so that the subsequent preloaded
LV geometry should be equivalent to the true ED geometry
(Rausch et al., 2017; Wang et al., 2020). Moreover, the cardiac
growth process in the swine models was monitored from 2 to

6 months old during which time the animals also grow in size.
Thus, the results we are seeing may not only contain exercise-
induced growth but also physical growth where the LV mass
increases as the body weight increases. Further validation of our
results with histology is warranted.

The current growth model was designed to characterize
growth with two unique parameters for the entire geometry.
However, spatially heterogeneous growth is prevalent in
patients with hypertrophic cardiomyopathy (Maron et al.,
2009). To address spatially dependent characterizations, the
current model could be extended to include a parameterized
spatial distribution of growth and optimize those parameters.
Moreover, this framework can be further extended to more
sophisticated growth laws (e.g., stretch-driven growth and
strain-driven growth). An example of such a model is the
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work by Sahli Costabal et al. (2019), who introduced a
probabilistic model to connect sub-cellular remodeling to
strain-driven myocardium growth. Combination of this method
with our current FE + BO framework and optimization of
biologically significant parameters such as magnitude, rate, and
biomechanical driving factors of growth could yield interesting
mechanistic findings. To further improve the capability of
our framework to investigate growth at the cellular level,
a constrained mixture model can be incorporated. Despite
its complexity and high computational cost, this model can
provide a more powerful framework to reveal the mechanistic
link between biomechanics at the organ level and biological
factors at the tissue–cellular level (Niestrawska et al., 2020).
Implementing these growth models into our framework would
enable efficient in silico testing of different growth hypotheses
with multi-scale models.

Furthermore, this framework is not limited to growth
parameter characterization. Ideally, it can be used as a generic
method to characterize material parameters as long as the
undeformed and deformed geometries of the object are given
in the application. Theoretically, it would be possible to run
a grid search parametric study to determine the optimal
parameters in these models. However, grid search quickly
becomes computationally intractable in the context of FE models
due to their expensive computationally costs (around 2 h with
10 CPUs for each evaluation). For example, for an accuracy
of 90% in the growth model presented, it would be needed
to compute a grid search with spacing of 0.05. This search
would require computing 400 simulations, resulting in 800 h
(33.3 days) of computation. Instead, the FE + BO approach
resolved the maxima within 10 iterations, corresponding to
about 20 h of computation. Similarly, classical optimization
methods (e.g., Simplex, Monte-Carlo) would not be feasible due
to the high computational costs of each FE model evaluation.
These limitations are set to increase with more complex growth
models (longer compute time) or increased dimension of the
parameterization (exponentially larger search space). Moreover,
the current FE + BO method could be further modified to
improve its accuracy and speed-to-convergence. One immediate
source of improvement is to modify the acquisition function
to incorporate knowledge of the multiple samples generated
during the quasi-static FE model evaluations. Currently, we
incorporate these samples in the Gaussian process estimation,
but the optimization of the acquisition function is done with
off-the-shelf UCB, which assumes a single evaluation of the cost
function will be provided. This modification would facilitate
more efficient sampling of the search space in each BO iteration.
Similarly, the selection of the trade-off β parameter in UCB
should be done more systematically before the first iteration to
balance the mean and variance of the Gaussian Process estimated
during initialization.

Limitations
The experimental limitations arise from two aspects: (1)
acquisition of the MRI data and (2) segmentation of the LV
geometry. The MRI data was acquired with two different scanners
with different resolutions (mostly 1.4 × 1.4 × 2.5 mm with two
exceptions of 1.3 × 1.3 × 2.5 mm and 1.8 × 1.8 × 6 mm).

Lower resolution could reduce the accuracy of segmented LV
geometry. The data was acquired along the short axis of the LV,
and the actual positions of where the first and last slices reach
the base and apex of the LV affect the length of the reconstructed
LV geometry. Slice thickness of 2.5 mm is large enough to
compare the growth magnitude, especially in the longitudinal
direction. Therefore, one or two long axis views of MRI should
be acquired and used in future segmentations. A semi-automatic
segmentation approach was used in this study and then manually
corrected to identify the LV contours in Segment (Medviso)
(Heiberg et al., 2010). Further, there are motion artifacts and
distortion around the free wall due to field homogeneity caused
by the liver. The automatic segmentation method underperforms
in these regions and manual corrections are subjective. A more
robust automatic segmentation method should be used with
minimal manual correction in order to increase reproducibility
and reduce human bias.

Another limitation of this framework is introduced by
the selection of BCs and tissue properties in the FE model.
Model mis-specification can lead to errors in the optimization
and result in unrealistic growth parameters. Identifying which
models and parameters are most important for an accurate
growth selection will be essential in future work. During the
development of this study, we found that pericardial constraints
are critical for creating realistic concentric hypertrophy in the
transverse growth model. In this context, constraints from the
pericardium and surrounding tissue at the epicardium surface
is even more difficult since there is no clear consensus in
the literature about what model to use for dynamic heart
modeling. Some studies propose explicitly creating surrounding
structures (Fritz et al., 2014), while others propose using “spring-
dashpot” surrogates (Pfaller et al., 2019) to apply the constraints
in dynamic heart modeling. Both models demonstrated the
importance of including pericardial constraints on dynamic
heart modeling. However, these models might not be applicable
in the context of cardiac growth modeling since the heart
undergoes gradual deformation at a much longer time scale.
Within these time periods, the pericardium and surrounding
tissue are likely to undergo their own remodeling, hence changing
the constraints to the LV growth. Applying a constant linear
elastic material models on the pericardium is likely to over-
constrain the epicardium resulting in severe wall-thickening and
chamber volume reduction which is shown in Figure 11. For
future work, it will be important to consider the remodeling of
pericardium and surrounding tissue so that more realistic BCs
can be applied to the FE model. In addition to the pericardial
constraints, sensitivity studies on the LV pressure BC and the
initial configuration should be conducted. In this study, the ED
state was used for the initial configuration since it is the state that
can be consistently identified with CINE MRI and is a geometry
that is relatively unaffected by external forces compared to the
end-systolic state. For future studies, the growth simulation could
be initiated from alternative configurations in the diastolic part
of the cardiac cycle (e.g., early-diastolic filling, or diastasis) with
different diastolic pressure BCs to check whether the growth
optimization results are sensitive to any of these variations.

A limitation of the synthetic experiments is the simplistic
source of “noise” added to the generated data which could
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lead to an overestimation of the accuracy of the synthetic
results. In future work more representative noise could include
segmentation variability (Tate et al., 2020), and the post-
growth geometry could be generated with a more biologically
relevant growth model (e.g., stress/strain-driven growth or
constrained mixture growth) to further evaluate the framework
performance. However, with our current implementation,
such growth models are computationally impractical for
whole LV geometries. Further validation is warranted for
the animal experiments by comparing histological imaging
results to the growth parameters estimated by the model
(Sahli Costabal et al., 2019).

CONCLUSION

In summary, this study introduces a Bayesian optimized
framework that can be used to non-invasively characterize
growth at the tissue level at multiple time points. The FE
modeling in this framework enables discernment of mechanistic
links between macrostructural imaging and microstructural
changes at the tissue level. As such, we believe that the
framework can be a powerful tool to reveal fundamental insights
into myocardial growth and remodeling mechanisms. In the
future, this framework could facilitate the longitudinal study
of multiple physiological and pathological conditions and may
have practical utility in assessing cardiac disease progression or
response to therapy.
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