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A B S T R A C T   

Background: Ovarian serous cystadenocarcinoma (OSC) is the most prevalent histological subtype 
of ovarian cancer (OV) and presents a serious threat to women’s health. Anoikis is an essential 
component of metastasis, and tumor cells can get beyond it to become viable. The impact of 
anoikis on OSC, however, has only been the topic of a few studies. 
Methods: The mRNA sequencing and clinical information of OSC came from The Cancer Genome 
Atlas Target Genotype-Tissue Expression (TCGA TARGET GTEx) dataset. Anoikis-related genes 
(ARGs) were collected by Harmonizome and GeneCards websites. Centered on these ARGs, we 
used unsupervised consensus clustering to explore potential tumor typing and filtered hub ARGs 
to create a model of predictive signature for OSC patients. Furthermore, we presented clinical 
specialists with a novel nomogram based on ARGs, revealing the underlying clinical relevance of 
this signature. Finally, we explored the immune microenvironment among various risk groups. 
Results: We identified 24 ARGs associated with the prognosis of OSC and classified OSC patients 
into three subtypes, and the subtype with the best prognosis was more enriched in immune- 
related pathways. Seven ARGs (ARHGEF7, NOTCH4, CASP2, SKP2, PAK4, LCK, CCDC80) were 
chosen to establish a risk model and a nomogram that can provide practical clinical decision 
support. Risk scores were found to be an independent and significant prognostic factor in OSC 
patients. The CIBERSORTx result revealed an inflammatory microenvironment is different for risk 
groups, and the proportion of immune infiltrates of Macrophages M1 is negatively correlated with 
risk score (rs = − 0.21, P < 0.05). Ultimately, quantitative reverse transcription polymerase chain 
reaction (RT-PCR) was utilized to validate the expression of the seven pivotal ARGs. 
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Conclusion: In this study, based on seven ARGs, a risk model and nomogram established can be 
used for risk stratification and prediction of survival outcomes in patients with OSC, providing a 
reliable reference for individualized therapy of OSC patients.   

1. Introduction 

OV is a female genital system malignancy associated with the highest mortality rate [1]. About 85%–90% of OV are of epithelial 
origin, with OSC being the most common histological type. With a lack of early typical symptoms, about 2/3 of OSC patients are 
diagnosed at stage III or IV [2], 5-year OS of only 42% and 26%, and invasion and migration are the main causes of its high mortality 
rate [3,4]. Hence, screening for new key molecules mediating ovarian cancer invasion and metastasis is essential for developing new 
treatment strategies. 

Anoikis is a programmed death caused by losing contact between the extracellular matrix (ECM) and other cells, which is indis-
pensable to maintaining homeostasis in the body. Its main role is to prevent cells from adhering to the abnormal ECM and growing 
abnormally [5]. Recent research has identified anoikis resistance as the bases for tumor cell metastasis [6,7]. The ability of tumor cells 
and associated endothelial cells to surmount anoikis and survive after detachment from the ECM has an important effect on tumor 
migration [8]. Research has demonstrated that the loss of apoptotic resistance is strongly linked to the metastatic invasion and 
prognosis of various tumor types, such as breast cancer [9], hepatocellular [10], and lung cancers [11]. However, studies on the impact 
of anoikis on OSC aggressiveness and their roles in predicting OSC prognosis are scarce. 

In this study, we focus on the potential value of ARGs in forecasting prognosis in OSC and the construction of a model for prognosis. 
And investigate further the immune landscape between different risk classifications, which will facilitate individualized treatment of 
OSC patients. 

2. Materials and methods 

2.1. Downloading of data 

Downloading the mRNA sequencing and clinical data of OSC patients in the TCGA TARGET GTEx dataset at UCSC Xena (http:// 
xena.ucsc.edu). Aberrant expression values and deletions were removed by principal component analysis (PCA), resulting in 424 
tumor samples and 88 normal samples. Moreover, the 424 OSC samples (TCGA-OV set) were randomly generated into 300 OSC 
samples (Test set) for internal validation. Furthermore, complete clinical information on the 424 OSC patients was downloaded from 
the TCGA database, including vital status, age, chemotherapy, grade, residue size, and so on. In addition, 734 anoikis-related genes 
(ARGs) were downloaded from GeneCards (https://www.genecards.org/) and Harmonizome (https://maayanlab.cloud/ 
Harmonizome/). 

2.2. Pre-processing of data 

We performed a differential analysis of variance using the "limma" R package to screen differentially expressed genes (DEGs) that 
were aberrantly expressed in OSC and normal samples by a false discovery rate (FDR) < 0.05 and |log fold change|(|logFC|) > 1. 
Subsequently, 313 differentially expressed ARGs were filtered by intersecting DEGs with 734 ARGs. Finally, we obtained survival- 
associated ARGs via the “survival” R package. 

2.3. Gene ontology (GO) enrichment analysis 

We performed the “clusterProfiler” and "org.Hs.eg.db" R packages to analyze the GO functions of survival-associated ARGs. The 
GOChord function of the “Goplot” R package generated and visualized a circularly composited overview of the above ARGs and the top 
10 assigned terms. 

2.4. Consensus clustering 

The "ConsensusClusterPlus" R package was available for differentiating samples into subtypes based on ARGs expression patterns 
via the k-means method [12]. Then, Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection 
(UMAP) were employed, validating the accuracy of the clustering. 

2.5. Gene set variation analysis (GSVA) 

We were able to get "c2.cp. Kegg. V7.4. symbols. gmt" downloaded to run GSVA enrichment analyses from the Molecular Signatures 
Database (MSigDB), which ran by the "GSVA" R package [13]. 
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2.6. Construction and validation of ARGs signatures and ARGs risk model 

Initially, Applying the LASSO regression approach, we detected the most crucial survival-anoikis-related differentially expressed 
genes in OSC. Subsequently, the hub ARGs were selected via the multivariate regression method and subsequently utilized to establish 
the risk model. The risk score computation relies on the subsequent formula [14] (βi indicates the coefficients of each signature. Expi 
indicates the expression of each signature) 

Risk scores = Σ(βi × Expi). 
Using the median risk scores as the threshold, patients with OSC were divided into high-risk and low-risk groups. We conducted a 

survival analysis of OSC patients in the TCGA-OV and Test-set groups using Kaplan-Meier curves and log-rank statistical tests. 
Furthermore, we assessed the predictive capability of the ARGs. 

2.7. Correlation of risk scores with immune infiltration 

CIBERSORTx is a platform (accessible at https://cibersortx.stanford.edu) designed for estimating the abundance of 22 immune cell 
infiltrates in tumor samples [15]. We further performed a comparison of the proportions of immune infiltration and cell types in the 
high-risk and low-risk groups. The association between the risk score and the proportion of immune infiltration was analyzed using 
Spearman’s correlation analysis. 

2.8. Establishment and evaluation of a nomogram 

The Univariate Cox regression method was applied to assess the significance of risk scores and clinical characteristics. (Age, grade, 
stage, residue size chemotherapy, radiotherapy, and neoplasm subdivision) on the prognosis of OSC patients. Statistically significant 
variables were incorporated in the multivariate Cox regression model to determine factors that influence OSC survival. Finally, a 
nomogram for predicting survival was constructed based on these independent influences. In addition, we utilized Decision Curve 
Analysis (DCA) and calibration curves for validating the precision of the signature model in both the TCGA-OV set and the test set. 

2.9. Cell lines 

SKOV3 is the human ovarian plasmacytoid cystic adenocarcinoma cell line that was used as the test group. IOSE80 is the human 
normal ovarian epithelial cell line that was the negative control group. PANC1 was used as the positive control group, representing the 
human pancreatic cancer cell line. And all cell lines were purchased by Shanghai Biological Company. IOSE80 cells were grown in 
DMEM high sugar medium, which is the mixture of 10% FBS and 1% penicillin-streptomycin; SKOV3, PANC1 cells were cultivated in 
McCoy’s 5A medium, consisting of 10% FBS and 1% penicillin-streptomycin, and then incubated in a humidified CO2 incubator at 
37 ◦C. 

2.10. RT-PCR 

Total intracellular RNA was isolated using TRIzol reagent, and cDNA was generated through reverse transcription for RT-PCR. 
Finally, PCR was performed using the designated kit. The amplification process involved pre-denaturation at 95 ◦C lasting 15 min, 
denaturation at 94 ◦C for 30 s, annealing for 30 s, extension at 72 ◦C for 30 s, and a total of 40 cycles. The primer sequences can be 
found in Table 1. 

Table 1 
RT-PCR primers used in this study.  

Primer name Primer type Primer sequence (5′→3′) 

GAPDH Forward GGAGCGAGATCCCTCCAAAAT 
Reverse GGCTGTTGTCATACTTCTCATGG 

ARHGEF7 Forward TGCTTTCAACGTACCTACGGC 
Reverse GGCAACTTGGTGCATTCTTCTAA 

CCDC80 Forward TCCCTGGAGAACTTCCTATCC 
Reverse AGCAGAGATCACCAGCAACC 

CASP2 Forward GCAAACCTCAGGGAAACATT 
Reverse TGTCGGCATACTGTTTCAGCA 

PAK4 Forward ATCTGGTCGCTGGGGATAATG 
Reverse CAGGTTGTCCCGAATCATCTTC 

SKP2 Forward CACGGAAACGGCTGAAGA 
Reverse AGCAACCGACCAGTCACAT 

NOTCH4 Forward CCAACCCTGCGATAATGCGAG 
Reverse AGTCATCCGTTGAGACCCTGC  
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Fig. 1. Differences and characteristics of ARGs in OSC. (A) Heatmap and (B) volcano plot of gene expression in OSC and normal ovarian samples. 
(C) Differential expression of 313 ARGs in OSC and normal ovarian samples. (D) The forest plot suggested that 24 ARGs were associated with OSC 
prognosis. (E) The circle plot suggested GO analysis of 24 ARGs. 
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Fig. 2. Subtypes of OSC related by 24 ARGs. (A) The consensus matrix for k = 3 was derived by consensus clustering. (B) OS for three subtypes. (C) 
UMAP and (D) tSNE differentiate three subtypes. (E) GSVA analyses focused on KEGG differences between Cluster A and Cluster C. (F) GSVA 
analyses focused on KEGG differences between Cluster B and Cluster C. 
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2.11. Statistical analysis 

When examining differential genes between OSC and normal patients, An FDR q-value of <0.05 was considered to be a significant 
threshold. Group comparisons were conducted using the rank-sum test. For the analysis of overall survival (OS), OSC patients who 
passed away were defined as clinical endpoints and their survival time and outcomes were compared. The Kaplan-Meier method was 
utilized for calculating the survival rate of OSC patients, and the log-rank test was applied to compare the survival curves among the 
groups. Univariate Cox regression was performed to evaluate individual hazard ratios (HRs) for OS. HRs with 95% confidence intervals 
(CIs) were determined, assessing the hazard risks of individual factors. Variables with a significance level of P < 0.05 in univariate 
analyses were entered into multivariate analyses. The study was statistically analyzed using R software (version 4.2.1), and A P value 
< 0.05 was considered to indicate significance. 

3. Results 

3.1. Identification of ARGs associated with prognosis 

After initial processing, there were 11,926 mRNA-expressing sequences in the TCGA-OSC cohort. We filtered 5187 DEGs with the 
"limma" R package, and the heatmap, as well as the volcano plot, showed upregulated and downregulated DEGs (Fig. 1A and B). We 
obtained 313 differentially expressed ARGs by intersecting DEGs with 734 ARGs on a Venn diagram (Fig. 1C). Subsequently, the 
univariate Cox regression analysis indicated that 24 ARGs showed significant associations with OSC prognosis. (p < 0.05). The forest 
plot revealed that there were 12 ARGs relevant to poor prognosis, such as NOTCH4, CASP2 SKP2, LCK, BIRC5, KIF18A, PBK, CXCR4, 
and IF127.IF16, STAT1, GZMB, and 12 additional ARGs were protective factors for OSC, such as JUP, ARHGEF7, BTRC, PAK4, 
CCDC80, SYDE1, ACTN4, LATS2, EPHA2, SFRP1, ERBB2, ICF2 (Fig. 1D). Our subsequent GO analysis demonstrated that the 24 
identified ARGs were significantly linked to angiogenesis, vasculature development, and positive regulation of cell adhesion pathways. 
And the circle diagram showed a linkage between 24 ARGs and the top 10 pathways (Fig. 1E). 

3.2. Classification of OSC into 3 subtypes based on 24 ARGs using consensus clustering 

To explore the potential association between 24 survival-related ARGs and OSC, we attempted to analyze the subtypes of OSC using 
the "ConsensusClusterPlus" R package. Considering heatmap, CDF, and Delt area, the best clustering effect was when k = 3, OSC was 
divided into three subtypes (Fig. 2A). Fig. 2B showed that the prognosis of the three subtypes differed, with the best survival outcome 
in cluster C. (P < 0.0001). In Fig. 2C, D, Umap and tSNE revealed the high accuracy of the clustering analysis. To investigate the 
possible reasons for the excellent prognosis in cluster C, differences in the Kyoto Genome Encyclopedia (KEGG) pathway among 
clusters A, B and C were analyzed using the "GSVA" R package. We were surprised to find that cluster C was richer in immune-related 
pathways (Fig. 2E), for instance, rig_I_like receptor, antigen processing, natural killer cell-mediated cytotoxicity, presentation. By 
contrast, Clusters A and B exhibited a higher enrichment in pathogenic pathways, such as the proteasome pathway, TGF BETA, 
Hedgehog, WNT, and NOTCH (Fig. 2F). 

3.3. Construction and validation of hub ARGs signatures and ARGs risk model 

After performing univariate Cox regression analysis, we obtained 24 ARGs meaningfully associated with OSC survival outcomes. 
Then 12 ARGs were filtered by LASSO regression analysis (Fig. 3 A, B). Ultimately, the seven hub ARGs were identified through 
multivariate Cox regression analyses. ARHGEF7, PAK4, and CCDC80 independently influenced poor prognosis. while NOTCH4, 
CASP2, SKP2, and LCK were relevant to a good prognosis for OSC patients (Table 2). The risk score of ARGs was accordingly 
formulated as Risk Score = 0.403030211 × ARHGEF7 + (- 0.314885395) × NOTCH4 + (- 0.383007581) × CASP2 +(- 0.170540833) 
× SKP2 + 0.184375008 × PAK4 + (− 0.161770924) × LCK + 0.113686217 × CCDC80. Since then, the ARGs risk model was 

Fig. 3. Identify ARGs. (A) Lasso coefficient values were calculated regarding 24 ARGs in OSC. (B) The overview of Lasso coefficients. (C) OS of risk 
groups in TCGA OV set (p < 0.0001). (D) OS of risk groups in the Test set. (E, F) The ROC curves of OS at 1-, 3-, 5-, and 7-year intervals. (G) Risk 
score in 3 clusters. (H) The Sankey diagram demonstrates clusters, risk scores, and life status. 

Table 2 
Multivariable Cox regression of TCGA-OSC (N = 424).   

Coefficient HR 95CI P-value 

ARHGEF7 0.403030211 1.50 1.19–1.88 <0.001 
NOTCH4 − 0.314885395 0.73 0.59–0.90 0.003 
CASP2 − 0.383007581 0.68 0.53–0.88 0.003 
SKP2 − 0.170540833 0.84 0.71–1.00 0.048 
PAK4 0.184375008 1.20 1.02–1.41 0.026 
LCK − 0.161770924 0.85 0.76–0.95 0.004 
CCDC80 0.113686217 1.12 1.02–1.23 0.015  
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established by seven hub ARGs successfully. Based on the median risk scores, 424 OSC patients were categorized into ’high-risk’ and 
’low-risk’ groups. It was clear to see that not only in the TCGA-OV set but also in the Test set low-risk OSC patients had significantly 
better survival outcomes (Fig. 3C and D). More importantly, the ROC curves indicated that the ARGs risk model provided excellent 
prediction for 1-, 3-, 5-, and 7-year survival in both OSC patient groups. (Fig. 3E and F). In addition, patients in cluster C with the best 
prognosis for OSC had the lowest risk scores (Fig. 3G). The Sankey diagram demonstrated the changes in ARGclusters, risk stratifi-
cation, and life status of the OSC patients (Fig. 3H). 

3.4. Establishment and evaluation of a nomogram for OSC 

Taking into account the impact of clinical characteristics on OSC survival, we included some significant clinical characteristics in 
the establishment of the prognostic nomogram. We found that age, stage, residue size, chemotherapy, and risk score were statistically 
associated with outcomes in OSC, through univariate Cox regression method (Table 3). Moreover, they were put into multivariate Cox 
analysis to ascertain independent factors affecting the prognosis of OSC patients, factors which included risk score, age, residual size 
(>20 mm), and chemotherapy were used to establish a new nomogram for predicting prognosis in OSC (Fig. 4A). It was easy to see that 
a 52-year-old OSC patient with a residual size >20 mm received standardized post-operative chemotherapy with a risk score of − 0.417 
in Fig. 4B. Here, 1-, 3-, 5-, and 7-year survival rates were 95.4%, 78.3%, 52.7%, and 39%, respectively. Calibration plots showed 
nomogram had great predictive value in two sets (Fig. 4C and D). The 1- and 3-year DCA also indicated that a higher clinical benefit 
provided by the nomogram compared to the single ARGs risk model. (Fig. 4E and F). 

3.5. Association between immune infiltration and risk score 

The tumor immune microenvironment (TIME), a critical environment that regulates tumor development, infiltration, and 
metastasis, consists mainly of infiltrating immune cells, chemokines, and cytokines. CIBERSORTx analysis was utilized to assess the 
levels of 22 immune cell infiltrates in the ovarian tissue in 424 OSC patients. Trends in immune cell infiltration were observed by 
ranking OSC patients in descending order of risk score (Fig. 5 A). Fig. 5B and C have clearly shown that the infiltration of macrophage 
M0, macrophage M1, naive CD4 T cells, memory CD4 T cells and CD8 T cells was statistically significant within the risk groups. Risk 
score showed a negative correlation with macrophage M1 immune infiltration. (rs = − 0.21, P < 0.05)，but positively associated with 
resting memory CD4 T cells (rs = 0.21, P < 0.05). The relevance between immune cells in OSC may provide insights to understand 
better the composition and interactions of the TIME. Fig. 5D suggested that Macrophages M1 may have synergistic effects with T cells 
CD8 and Plasma Cells in OSC. 

3.6. Correlation between the ARGs signatures and immune infiltration 

Fig. 6A showed that the seven ARGs genes have different patterns of expression between the normal and tumor groups. ARHGEF7, 
NOTCH, and CCDC80 were down-regulated in OSC, while CASP2, LCK, PAK4, and SKP2 were up-regulated in OSC. Fig. 6B showed that 
CCDC80 and LCK were the primary ARGs involved in immune infiltration, mainly in CD8 T cells, Macrophages M1, and Macrophages 
M2. What’s more, e used the GDSC database to predict the drug sensitivity responses. A significant variation in the half-maximal 
inhibitory concentration (IC50) for 70 drugs was found between the two risk groups. (Supplementary Fig. S1). 

3.7. The RT-PCR results of three tumor-promoting ARGs in cell lines 

We examined the expression of seven hub ARGs in cell lines by RT-PCR. The results revealed that ARHGEF7 and CCDC80 were 
expressed in SKOV3 and PANC1 cell lines at lower levels than in the IOSE80 cell line. (Fig. 7A, G). Instead, the expression of NOTCH4, 
CASP2, SKP2, PAK4, and LCK were significantly higher in SKOV3 and PANC1 than in IOSE80 cell lines (Fig. 7B–F). Comparison of the 
PCR results with the bioinformatic analysis of the public sequencing data, and the agreement was 6/7, with a match rate of 85.7%. 

4. Discussion 

Multiple signaling pathways contribute to anoikis resistance in OSC, emphasizing the significance of targeting associated genes to 

Table 3 
Univariate Cox regression of TCGA-OSC (N = 424).   

HR HR.95L HR.95H P-value 

Age 1.021 1.009 1.032 <0.0001 
Grade 1.186 0.835 1.687 0.3 
Stage 1.333 1.020 1.74 0.04 
Residue.size 1.314 1.159 1.489 <0.0001 
Chemotherapy 0.2612 0.156 0.436 <0.0001 
Radiotherapy 0.7757 0.491 1.228 0.3 
Neoplasm subdivision 1.019 0.769 1.352 0.9 
Risk Score 3.135 2.359 4.165 <0.0001  
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ig. 4. Establishment and validation of prognostic nomogram. (A) Multivariate Cox regression forest plot of risk scores and clinical features in OSC 
patients. (B) Nomogram plot. (C, D) Calibration plot for the nomogram in TCGA OV set and Test set. (E, F) DCA curves of the nomogram and risk 
score for 1-,3-year OS in OSC. 
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Fig. 5. Immunological microenvironment of OSC in risk groups. (A) Proportions of infiltrating immune cells in 424 OSC patients. (B) Correlation 
analysis between risk scores and the abundance of five immune cells. (C) Disparities in immune infiltrate proportions between risk groups.(D) 
Correlation among 22 immune cell types. 
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combat OSC progression and metastasis [16]. Multigene analyses reflect the complex interactions among the various parameters that 
influence antitumor resistance in tumor pathology. Therefore, this multigene approach can be used in characterizing tumor biology 
and supporting clinical decision-making. 

Seven hub ARGs were identified, and risk models were successfully constructed during this research, of which ARHGEF7, NOTCH, 
and CCDC80 were down-regulated in OSC, while CASP2, LCK, PAK4, and SKP2 were up-regulated in OSC. A review of the reports 
revealed that these genes are critical molecules in several tumors’ development, progression, and metastasis. ARHGEF7 was relevant to 
cytoskeletal remodeling [17]. In colorectal adenocarcinoma, high ARHGEF7 expression was an independent risk factor impacting 
overall survival (OS) and disease-free survival (DFS). It was significantly associated with distant metastasis from lymph nodes and 
mesentery [18,19]. CASP2 is a cysteine protease family member. Reports have shown that CASP2 exhibits tumor-suppressive effects 
[20]. SKP2 is a type of F-box protein. Studies have reported that up-regulated SKP2 is one of the critical targets for tumor therapy, 
which affects tumor formation, metastasis, cell cycle development, and cellular senescence [21,22]. PAK4 is a typical class II repre-
sentative within the PAK family. It reports that PAK4 is amplified and overexpressed in various tumors, such as bladder cancer and 
osteosarcoma, and is considered one of the key factors in tumor cell signaling [23,24]. LCK, also known as T-lymphocyte tyrosine 
kinase, is essential for forming effector T cells and T cell-mediated immune responses. In cholangiocarcinoma, LCK regulates YAP 
tyrosine phosphorylation and nuclear localization to promote tumor development, and its expression level is associated with early 
tumor recurrence [25]. T The CCDC80 (DRO1) is lowly expressed in the thyroid, papillary, pancreatic, and colon cancer cell lines [26]. 
Recent research has revealed that CCDC80 is a tumor suppressor in the tumor microenvironment [27]. The Notch signaling pathway is 
an evolutionarily conserved mechanism crucial for fetal development, organ formation, and tissue homeostasis. NOTCH4 is a NOTCH 

Fig. 6. Association between immune infiltration and ARGs signatures. (A)The box plots depict the expression patterns of seven hub genes. (B) 
Association among seven hub genes and 22 Immune cells. 
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family member whose precise role in tumorigenesis and development is not yet clear [28]. In combination with these reports, the seven 
hub ARGs in our study could take a typical role in OSC development, progression, and metastasis. To our confusion, we found that 
NOTCH4 was lowly expressed in OSC tissue samples in the TCGA database, while RT-PCR results in SKOV3 cell lines were highly 
expressed. Similarly, the expression pattern of NOTCH4 mRNA was reported to be reversed in tissue samples and cell lines from 
non-small cell lung cancer [29,30], and hepatocellular carcinoma [31]. We suspect that there may be several following reasons for this. 
Given that sequencing and PCR are two different assays, it is customary and reasonable that a certain degree of inconsistency (about 
30–40%) will occur [32]. In addition to this, some studies have found Notch4 exerts oncogenic or oncostatic effects, often depending 
on the tissue microenvironment, gene expression, and immune infiltration [29,33], However, In certain instances, different Notch 
receptors may lead to contradictory outcomes or influence the clinical characteristics and advancement of specific tumors [34,35]. The 
influence of the tumor microenvironment on NOTCH4 expression in tissue samples of different pathological grades from OSC patients 
in TCGA is not negligible. Consequently, further studies based on larger samples and different biological levels are needed to inves-
tigate the mysteries of NOTCH4 and tumors. With a more comprehensive understanding of the variances in biological characteristics 
within distinct microenvironments and subtypes, the role of NOTCH4 in OSC is anticipated to be better elucidated. 

In the current investigation, we effectively constructed a novel ARGs signature to forecast the prognosis of OSC patients. In 
addition, there is growing evidence showing that TME performs an invaluable function in supporting tumor growth, invasion and 
protecting tumors from host immune killing [36,37]. Therefore, we discussed the possible impact of immune activity on OSC on the 
basis of the ARGs risk model. The CIBERSORTx analysis demonstrated a negative association between the risk score and macrophage 
M1, but a positive correlation with resting memory CD4 T cells. Tumor-associated macrophages (TAMs) can be classified as 
anti-tumour M1 and pro-tumour M2 [38]. M2 releases various soluble factors (TNF-α, IL-6, TGF-β, CCL18, MMPs) responsible for 
activating multiple pathways in ovarian cancer cells to stimulate viability, proliferation, metastasis, as well as aggression [39], while 
impairing the immune cell activity, causing immune escape of ovarian cancer cells [40,41] which is one of the factors leading to drug 
resistance and poor survival in ovarian cancer [42]. Macrophages M1 can also co-exist in the TME of early-stage ovarian cancer, 
promoting anti-tumor immunity and acting in immunosurveillance [43]. Previous studies have shown that in non-small cell lung, 
hepatocellular carcinomas, and colorectal, increased infiltration density of Macrophages M1 and elevated M1/M2 ratios were posi-
tively associated with 5-year survival in tumor patients [44,45]. The result was also confirmed in ovarian cancer by Zhang et al. [46]. 
Garrido-Martin identified that compared to poor prognosis in M1 low-infiltrating tumors, M1 high-infiltrating tumors had a prognosis 
associated with high infiltration of CD8+ T cells [47]. This is in accordance with our findings that the proportion of M1 infiltration was 
associated negatively with the risk score but positively with CD8+ T cells. It indicated that highly infiltrated M1 and CD8+ T cells 
inhibit anoikis resistance and suppress distant migration of OSC. Besides that, LCK had the highest coefficients of relevance to M1 and 

Fig. 7. Results of RT-PCR. The expression of ARHGEF7 (A), NOTCH4 (B), CASP2 (C), SKP2 (D), PAK4 (E), LCK (F), and CCDC80(G) in the three cell 
lines. *p < 0.05, **p < 0.01, ***p < 0.001. 
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CD8+ T-cell infiltration in ARGs, and M1/CD8+ T-cells/LCK appears to be an attractive molecular pathway. 
Despite our ARGs risk model and the nomogram constructed having superior predictive performance, it still requires a larger 

sample size to verify gene expression and to calibrate the prediction model and large multicenter clinical trials to validate the pre-
dictive models. And the potential mechanisms between anoikis genes and immune cells in OSC require additional in vivo and in vitro 
analysis. 

In a word, this research effectively identified and validated the ARGs signature of OSC, our ARGs risk model can well predict the 
outcomes with OSC patients, and a nomogram can help predict physicians develop precision medicine in OSC and further investigate 
the immune landscape between different risk classifications, which will facilitate individualized treatment of OSC patients. 
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