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A B S T R A C T

This study examines the effect of UV irradiation on the oxidation stability of Linum usitatissimum oil, presenting 
possible changes in the phytochemical profile due to photo-oxidation. GC–MS analysis of the oils identified 11 
fatty acid compounds with a high percentage of unsaturated fatty acids, the most important of which is 
α-linolenic acid (ALA), known as omega-3 (48.88 %), also significant profiles of phytosterol and tcocopherol 
isomers rich in β-Sitosterol and γ-tocopherols respectively. As well as physicochemical properties such as free 
fatty acids (FFA %), peroxide value (PV) and iodine value (IV), and nutritional indexes that determine the sig
nificant changes observed during the oxidation process, the most important of which is the progressive increase 
in acidity, peroxide, conjugated dienes and trienes and degrees of unsaturation over 8 h of UV exposure. High 
levels of carotenoids and phenolic compounds (TPC) protect and enhance oil quality in the face of irradiation, so 
a significantly small difference is observed between irradiated and non-irradiated oil during photo-oxidation.

1. Introduction

Light radiation, temperature and atmospheric oxygen are factors that 
induce lipid oxidation and generate free radicals (Kchaou, Jridi, Nasri, & 
Debeaufort, 2020) leading to the formation of harmful primary oxida
tion products, such as peroxides, which then decompose into toxic sec
ondary oxidation products, such as carbonyl compounds, conjugated 
dienes and furans (Rajeev, Sanjiv, & Mahender, 2012), as mentioned 
previously (Kato, 2008; Miraliakbari, Shahidi, & Chemistry, 2008) fats 

and oils are susceptible to photooxidation when exposed to UV light at 
wavelengths below 300 nm, contributing to the loss of nutritional and 
organoleptic properties of foods and also generating radical oxygen 
species that can cause irreversible damage when they react with bio
logical molecules such as DNA, proteins or lipids (Choe & Min, 2006; 
Kchaou et al., 2020; Prescha, Grajzer, Dedyk, & Grajeta, 2014), this 
oxidative damage induces adverse effects on human health, such as the 
induction of metabolic diseases like diabetes and obesity (Zu-Man et al., 
2024). The deterioration in the quality of some oils is caused mainly by 
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their oxidation during storage and even the high sensitivity of poly
unsaturated fatty acids, such as n-3 fatty acids (Frankel, 1984; Frueh
wirth et al., 2020) and Several compounds, such as hexanal or nonanal, 
are used as markers of the lipid oxidation process (Azarbad & Jeleń, 
2015; Kalua et al., 2007).

Cold-pressed and refined oils differ in taste, aroma and colour, and 
are abundant in polyunsaturated fatty acids (PUFA), phenolic com
pounds, sterols and carotenoids, which are recommended for human 
consumption (Gunstone, 1994; Ramadan, 2013; Wei et al., 2015) 
Consequently, they should be consumed within 6 to 12 months of pro
duction (Frankel, 1984). Reviews summarize the qualitative properties 
of flaxseed oil for food use, presenting factors influencing quality and 
discussing the negative influence of oxidation on oil taste, colour and 
odour, reporting detailed agronomic, chemical, biotechnological and 
microbiological methods to determine the effects of storage on compo
sition and methods to promote its quality (Nykter, Kymäläinen, Gates, & 
Science, 2006). Also the positive aspects for human health of poly
unsaturated fatty acids, highlighting however their high sensitivity to 
oxidation, resulting in a loss of shelf life, consumer acceptability, func
tionality, nutritional value and safety (Arab-Tehrany et al., 2012). Then 
flaxseed oil, which is generally cold-pressed, necessarily stored in dark 
glass bottles (Łukaszewicz, Szopa, & Krasowska, 2004) and because of 
its short shelf life, it is often enriched with vitamins A and E or synthetic 
antioxidants (Hasiewicz-Derkacz et al., 2015; Łukaszewicz et al., 2004; 
Makahleh, Saad, & Bari, 2015).

Linum usitatissimum (Flaxseed) mainly consists of ω-3 fatty acids, 
sterols, antioxidants, phytoestrogenic lignans, phenols, flavonoids, 
proteins, as well as soluble and insoluble fibers, such as secoisolaricir
esinol (SDG) diglucosides are the main bioactive compounds with po
tential pharmacological realizations.(Akter et al., 2021). L. usitatissimum 
shows antioxidant, antimicrobial, anti-inflammatory, anticancer, anti- 
obesity, antidiabetic, antimalarial, anti-diarrheal, hepatoprotective, 
immunosuppressive, antiarrhythmic, cognitively significant, and reno
protective effects. In addition, it is known as an analgesic, anti-fibrosis, 
blood sugar stabilizer, antiviral, antiatherosclerotic, and bactericide 
(Akter et al., 2021; Elrahman, Ahmed, Ibrahim, Seed, & Babiker, 2023).

In this study, cold-pressed flaxseed oil is exposed to UV irradiation, 
and samples are taken after specific exposure times. Irradiated and 
control oils are identified by their chemical compositions of fatty acids, 
phytosterols and tocopherols, and analyzed by nutritional and unsatu
ration indexes and physicochemical properties to determine their degree 
of unsaturation and oxidative stability during UV irradiation.

2. Materials and methods

2.1. Materials

Brown flax seeds come from the Khemisset region (33◦ 49′ 00″ Nord, 
6◦ 04′ 00″ Ouest) of Morocco. The flax seeds are harvested towards the 
end of May 2022, then separated from the packaged capsules and sent to 
the laboratory, where they are stored at 4 ◦C, for subsequent cold- 
pressing.

2.2. Chemicals and reagents

All reagents used in this study, including Folin-Ciocalteu reagent, 
phenolphthalein (C20H14O4), sodium thiosulfate (Na2S2O3), and potas
sium hydroxide (KOH), as well as solvents like cyclohexane, ethanol, 
chloroform, and acetic acid, were of analytical grade and sourced from 
local suppliers.

2.3. Irradiation of flaxseed oil

A 500 g mass of brown flaxseed, with a moisture content of 4.03 %, 
was cold-pressed, the resulting oil was collected in a 500 mL beaker 
placed in a sealed light-proof chamber, kept in suspension by magnetic 

stirring, and placed 6 cm above an LED matrix Foton UF-LED with a 
wavelength of 310 nm for durations (1 h - 8 h) at 25 ◦C. Samples of 35 
mL were taken and immediately sent for analysis (Lashko, Chausovsky, 
Derevianko, & Brazhko, 2019).

2.4. Analysis of chemical properties

2.4.1. Fatty acid composition
Fatty acid methyl esters (FAME) were prepared and analyzed by 

flame ionization coupled to Varian CP-3800 gas chromatography (GC) 
fitted with a CP-Wax 52 CB column in accordance with the norm (ISO, 
P., 2015), the carrier gas is helium, the data are processed with Varian 
Star Workstation v 6.30 and expressed as relative percentage of each 
fatty acid, following our previously published methods (Belhoussaine 
et al., 2024).

∑
SFA = [Palmitic acid] + [Stearic acid].

∑
MUFA = [Oleic acid] + [minors monounsaturated fatty acids].

∑
PUFA = [Linoleic acid] + [α-linolenic acid]

2.4.2. Phytosterols composition
Phytosterols composition was defined according to the method of 

“ISO 6799” (ISO, E., 2014), using our previously published methods (El 
Bernoussi et al., 2024).

Analysis of the chemical composition of sterols involves converting 
sterols into trimethylsilyl ethers using the following protocol, 2.5 g of oil 
was placed in a 250 mL flask mixed with 25 mL of potassium hydroxide 
solution (1 N ethanol) and heated under reflux for 30 mins until the 
solution became clear. 25 mL of distilled water was then added to stop 
the reaction. The unsaponifiable matter was extracted using 75 mL of 
hexane. The organic phase was washed with 15 mL of a mixture (water/ 
ethanol 95◦) (90/10) in a separating funnel, and the hexane phase was 
recovered in a 100 mL flask. After evaporation of the solvent using a 
rotary evaporator, the unsaponifiable matter was recovered, and diluted 
with 300 μL of hexane, and filtered. The unsaponifiable matter was 
separated by preparative silica gel TLC. The mobile phase is: 80 mL 
hexane +20 mL ethyl acetate. TLC revelation was carried out using 
fluorescein + alcohol (0.5 fluorescein in 1 L ethanol), after which the 
sterol band was scraped off and placed in a flask containing 10 mL 
chloroform. After evaporation of the solvent, the sterols were converted 
to silyl derivatives (TMS) using a mixture of pyridine, hexamethyldisi
lizane (HMDS), and trimethylchlorosilane (TMCS), (9/1/1), (v/v/v). 
The pyridine was evaporated to dryness and the silyl derivatives were 
diluted with 60 mL of heptane. The trimethylsilylation of the crude 
sterol fraction is followed by the analysis carried out through a Varian 
3800 instrument equipped with a VF-1 ms column (30 m length, 0.25 
mm i.d.), and as carrier gas there is helium (flow rate 1.6 mL/mins) at a 
constant temperature of 270 ◦C of the column and those of the detector 
and the injector is 300 ◦C, the amount injected was 1 μL for each anal
ysis, adding the internal standard remains 5α-cholestane. The results of 
the sterol analysis are expressed in (mg/kg).

2.4.3. Tocopherols composition
The tocopherol composition was determined according to the “ISO 

9936” method (ISO, I. J. I. O. f. S. G., Switzerland, 2016) by means of 
high performance liquid chromatography (HPLC) using a solution of 
250 mg of oil in 25 mL of n-heptane, via Shimadzu CR8A instruments 
connected to a C18-Varian column, and then Detection is carried out 
using a fluorescence detector (excitation wavelength 290nm − emission 
wavelength 330nm) on a silica column (25cm × 4mm). The mixture of 
isooctane/isopropanol (99:1) (V/V) occupies the eluent and α-tocoph
erol acts as the external standard, using our previously published 
methods (Belhoussaine et al., 2024).

2.4.4. Total phenolic contents (TPC)
Polyphenol content is determined based on the Folin-Cio-calteu 

method referring to gallic acid. This method was performed 
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accordingly to (Hrncirik & Fritsche, 2004) with minor modifications.

2.5. Physicochemical properties

The oxidative stability of cold-pressed oils throughout their exposure 
to UV light was determined using the American Oil Chemists’ Society 
(AOCS, O. S. I., 1998), by the free fatty acids (FFA) (Animal, 2009), 
peroxide value (PV) (ISO, 2012), iodine value (IV) (ISO, 1996), specific 
extinction coefficients (K232 and K270) (ISO, I. S. O., 2011), and colour 
value (CV) (15305, I, 1998), also determination of chlorophylls and 
carotenoids pigments after (1–8 h) of irradiation (Gharby et al., 2018).

FFA (% of oleic acid); Peroxide value (meq O2/kg oil); Iodine value 
(mg I2/ Kg oil); specific extinction coefficients (K232 and K270); ca
rotenoids and chlorophylls were expressed as in our previously pub
lished methods (Belhoussaine et al., 2024). The colour index is 
determined by the spectrophotometric absorbance at 420 nm of a 2.5 % 
w/v oil solution in isooctane using a Shimadzu spectrophotometer.

2.6. Nutritional indexes

Nutritional properties were evaluated using different indexes: the 
atherogenic index (AI), the thrombogenic index (TI), oxidazability value 
(Cox), also the oxidative susceptibility (OS), and the hypocholester
olemic: hypercholesterolemic ratio (HH).

The formulas for calculating (AI) and (TI) appear to be 
(Hashempour-Baltork, Torbati, Azadmard-Damirchi, & Savage, 2018): 

AI =
[
((4×C14 : 0)+C16 : 0+C18

: 0 )
/(∑

MUFA+
∑

�6 ×PUFA+
∑

�3×PUFA
) ]

(1) 

and the Cox’s equation is (Fatemi & Hammond, 1980): 

Cox[C181103C182216C183]/100 (3) 

Oxidative susceptibility (OS) was calculated using the formula ac
cording to (Cecchi, Passamonti, Alfei, & Cecchi, 2011): 

OS = [MUFA+(45×C18 : 2)+ (100×C18 : 3) ] (4) 

The degree of unsaturation of lipids was analyzed in term of oleyl- 
(ODR), and linoleyl- (LDR) desaturation ratios: 

ODR = [(C18 : 2+C18 : 3)/(C18 : 1+C18 : 2+C18 : 3) ]×100 (5) 

LDR = [(C18 : 3)/(C18 : 2+C18 : 3) ]×100 (6) 

2.7. Statistical analysis

Each variable was studied in triplicate, and results were expressed as 
the mean of the three independent one-sample measurements (n = 3) ±
SD (n = 3). Statistical analyses were performed using GraphPad Prism 
software version 10.1.2 (324). An analysis of variance (ANOVA) was 
performed using a two-way followed by Tukey’s significant difference 
test (p < 0.05). An analysis of correlation was performed by Pearson’s 
test.

3. Results and discussions

3.1. Extraction yield of L. usitatissimum oil

Extraction of brown flaxseed by cold pressing revealed a high oil 
yield of 36.18 %, with similar contents ranging from 35 to 44 %, 32.56 
and 39.98 % (Klein, Zikeli, Claupein, & Gruber, 2017; Yaqoob, Bhatti, 
Anwar, Mushtaq, & Artz, 2016), which was close to the oil yield re
ported respectively 26.0–27.4 % (Suri, Singh, Kaur, & Yadav, 2023; 
Zanqui et al., 2015), also in comparison with other vegetable oils such as 
Helianthus annuus L. (21.4 %) (Nadeem et al., 2015), Carthamus tinctorius 
L. (38 and 48 %) (Aydeniz, Güneşer, & Yılmaz, 2014), Glycine max merilli 
(18 and 20 %) (Moses, 2014), and Arachis hypogea L. (41.5 %) 
(Abdelghany et al., 2022).

3.2. Fatty acids composition changes in irradiated oils

Table 1 shows the changes in fatty acid composition under UV irra
diation. In all the oils tested, the unsaturated fatty acid content tended to 
increase with increasing UV exposure time, with remarkable changes 
observed in oleic, linoleic and α-linolenic acids.

The Flax Council of Canada reports that flaxseed oil typically con
tains about 9 % saturated fatty acids, 18 % monounsaturated fatty acids, 
and 73 % polyunsaturated fatty acids (da Silva Moura, da Silva, & Braga, 
2023). In comparison, the control flaxseed oil has a fatty acid compo
sition of 10.90 % saturated fatty acids (SFA), 22.03 % monounsaturated 
fatty acids (MUFA), and 66.721 % polyunsaturated fatty acids (PUFA). It 
is particularly rich in α-linolenic acid (51.83 %), oleic acid (21.51 %), 
and linoleic acid (14.88 %), with lower concentrations of palmitic acid 
and stearic acid, thereby meeting Canadian Flax standards (Canada & o., 
2009; Morris, 2007). In the flaxseed oil bibliography, 30 samples of cold- 
pressed flaxseed oil were analyzed and identified by maximum and 

minimum values of stearic fatty acid 2.55 % and 4.72 %, palmitic fatty 
acid 4.83 % and 6.23 %, linoleic fatty acid 11.72 % and 21.87 %, oleic 
fatty acid 15.16 % and 26.08 %, and linolenic fatty acid 48.68 % and 
62.76 % (Kouamé et al., 2021; Mikołajczak & Tańska, 2022; Pointner 
et al., 2024). The α-linolenic acid content in the oil increased gradually 
after the first hour of UV exposure, from 51.83 % in the control oil to 
52.13 %, and rose significantly to 55.49 % after 8 h. In contrast, other 
fatty acids did not exhibit significant changes, resulting in an overall 
increase in the percentage of polyunsaturated fatty acids (PUFA).

On the other hand, a decrease in percentages of fatty acids in irra
diated flaxseed oil, perilla oil and green nut oil between 5 h and 15 h is 
considered, such that for flaxseed oil the concentration of C18:3 initially 
decreases from 395.7 mg/g oil to 349.3 mg/g oil after 5 h irradiation and 
down to 333.3 mg/g oil after 15 h. Similarly, C18:2 acid initially 
decreased from 101.2 to 87.4 and 63.8 during 5 h and 15 h UV exposure 
respectively, and the same applies to the other fatty acids in the study 
(Takeyama, Fukushima, & Research, 2013), in a similar manner, sesame 
oil irradiated for 12 days exhibited a gradual decrease in fatty acid 
content (Al-Bachir, Koudsi, & International, 2021). Other studies have 
attempted to expose flaxseed oil to different doses of irradiation, and the 
results obtained show no significant difference between control and 
irradiated oils respectively total SFA varies from 11.24 to 11.09 %, total 
PUFA varies from 68.04 to 67.96 % (Yalcin et al., 2011).

3.3. Nutritional indexes changes in irradiated oils

The nutritional quality of oils has been assessed by nutritional 

TI = [(C14 : 0+C16 : 0+C18 : 0)]/[(0.5×MUFA)+ (0.5×�6 ×PUFA)+ (3×�3 ×PUFA)+ (�3/�6 ×PUFA) ] (2) 
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indices such as AI, TI, HH, Cox, OS, these indices evaluate the nutritional 
quality of oils according to their fatty acid composition and are pre
sented in Table 2.

AI and TI are indicators of cardiovascular disease risk, and it is rec
ommended to keep these indices at low levels as part of a healthy diet, AI 
value should be less than 1.0 and TI value should be less than 0.5 
(Hashempour-Baltork et al., 2018). In our study AI and TI seem stable in 
irradiated oils for 8 h, although for the control oil, such as AI = 0.002 <
0.5 and TI = 0.001 < 1. 0, similar to sweet cherry, pomegranate, 
pumpkin and sunflower oils with AI values (0.15, 0.42, 0.34 and 0.05 <
0.5) and TI values (0.30, 0.75, 0.65 and 0.16 < 1.0) respectively 
(Machate et al., 2022; Siano, Straccia, Paolucci, Fasulo, Boscaino, Volpe, 
et al., 2016) indicate better nutritional quality due to the car
dioprotective effect of the high PUFA content (Bielecka, Ziajka, Sta
niewski, & Nowak, 2023; da Silva Moura et al., 2023).

The oxidizability (Cox) and oxidative susceptibility (OS) indices 
determine the oxidative stability of the oil, so the OS index and the Cox 
index should be as low as possible to indicate that the fatty acids are less 
likely to oxidize and therefore the oil is stable against oxidation. Cox and 
OS values increase in parallel with the increase in unsaturated fatty 
acids, and the longer the exposure, the more important the UFAs become 
in the oil, as shown by the difference between the control oil and the oil 
after 8 h of UV exposure rising from 12.944 to 13.841, indicating low 
oxidative stability of the oil against UV radiation (Hassanein et al., 
2022), In contrast to the oxidizability values of 1.56 for palm oil, 6.53 
for maize oil, and 4.82 for rapeseed oil, which indicate greater stability, 
flaxseed oil appears to be less stable (Athanasiadis, Kalompatsios, 
Mantiniotou, & Lalas, 2024).

The significant variation in the percentages of oleic and linoleic acids 
(Table 1) also appears for the LDR and ODR ratios, with all oils con
taining high levels of both acids and showing no difference in the lino
leic (LDR) and oleic (ODR) desaturation ratios during the hours of 
exposure. The relatively high ODR (75–76) and LDR (77) values account 
for the increase in the high C18:3 content, as recently demonstrated by 

the ODR (73–82) and LDR (77–80) (Mengistu, Abu, & Amsalu, 2022) 
ratios, while sesame oil shows low ODR and LDR ratios (Mondal, Bhat, & 
Srivastava, 2010), overall, low ratios were observed for sesame oils 
(ODR = 0.5 and LDR = 0.01) and false flaxseed (Camelina) oils (ODR =
0.74 and 0.82; LDR = 0.56 and 0.66) (Blume & Rakhmetov, 2017).

The ratios (�3/�6) and (U/S) do not show changes during the hours 
of exposure, such that the ratio (U/S) varies between 6.11 and 5.91, and 
(�3/�6) varies from 3.48 to 3.50. In human nutrition, the (�3/�6) 
ratio should be less than 0.02 (Jankowska, Zakęś, Żmijewski, & 
Szczepkowski, 2010), and a low (UFAs/SFA) ratio indicates better sta
bility of blended oils (Karupaiah & Sundram, 2013), and thus an in
crease in postprandial HDLC (Bhatnagar, Prasanth Kumar, Hemavathy, 
Gopala Krishna, & o. t. A. O. C. S., 2009).

3.4. Phytosterols contents changes in irradiated oils

Six phytosterols were identified by GC analysis of the oil samples: 1, 
β-sitosterol; 2, campesterol; 3, stigmasterol; 4, Δ-5-avenasterol; 5, 
cholesterol; 6, Δ-7-Avenosterol.

Although the phytosterols in flaxseed were primarily composed of 
β-sitosterol and campesterol, the total phytosterol content varied from 
4344.1 mg/kg in the control oil to 3786.53 mg/kg after eight hours of 
UV exposure. These results are consistent with those found in similar oils 
from other sources, where total contents were reported as follows: 
3308.9–3494.1-4344.1 mg/kg (Matthäus, Özcan, & Engineering, 2017), 
and 2888.1–3277.6-3475.6 mg/kg (Zeng et al., 2022a).

β-Sitosterol remained the predominant sterol in all flaxseed oil 
samples (Table 3), ranging from 1911.24 mg/kg in the control to 
1815.65 mg/kg after 8 h of UV exposure. Campesterol levels varied from 
1147.25 mg/kg (control) to 1047.82 mg/kg (after 8 h), stigmasterol 
levels ranged from 454.05 mg/kg (control) to 400.02 mg/kg (after 8 h), 
while, similarly, Δ-5-avenasterol levels decreased from 438.17 mg/kg 
(control) to 374.56 mg/kg (after 8 h). The observed differences were 
statistically significant (p < 0.05). The phytosterol content in irradiated 

Table 1 
Fatty acids composition during UV irradiation.

Irradiation time (h)

Fatty acid (%) Control 1H 2H 4H 6H 8H

Palmitic acid C16.0 5.59 ± 0.02 a 5.62 ± 0.03 b 5.63 ± 0.01 b 5.67 ± 0.0 c 5.71 ± 0.03 d 5.92 ± 0.09 e

Stearic acid C18.0 4.78 ± 0.01 a 4.83 ± 0.06 b 4.95 ± 0.09 c 4.97 ± 0.02 d 5.11 ± 0.13 e 5.22 ± 0.01 f

Oleic acid C18.1 21.51 ± 0.01 a 21.53 ± 0.02 a 21.53 ± 0.02 a 21.65 ± 0.05b 21.71 ± 0.05c 22.00 ± 0.03d

Linoleic acid C18.2 14.88 ± 0.02a 14.87 ± 0.02 a 14.95 ± 0.04b 14.95 ± 0.02b 15.14 ± 0.04c 15.87 ± 0.07c

Linolenic acid C18.3 51.83 ± 0.02a 52.14 ± 0.02 b 52.14 ± 0.02b 52.17 ± 0.05c 52.31 ± 0.06d 55.49 ± 0.04e

Arachidic acid C20.0 0.44 ± 0.01 a 0.52 ± 0.01 b 0.42 ± 0.01 c 0.54 ± 0.0 d 0.57 ± 0.01 e 0.60 ± 0.09 f
∑

SFA 10.90 ± 0.02a 10.97 ± 0.07 a 11.10 ± 0.00b 11.19 ± 0.02c 11.40 ± 0.13d 11.75 ± 0.06e
∑

MUFA 22,03 ± 0.014a 22,05 ± 0.01 a 22,32 ± 0.01b 22,48 ± 0.04c 22,61 ± 0.08d 23,23 ± 0.02e
∑

PUFA 66.72 ± 0.04a 67.00 ± 0.02 b 67.06 ± 0.04 b 67.12 ± 0.02c 67.46 ± 0.11d 71.36 ± 0.07e

Each replicate is represented as the mean of three (n = 3 e ± SEM). Values in the same row with different superscript letters are significantly different (p < 0.05).
∑

SFA; satured fatty acids.;
∑

MUFA; monounsaturated fatty acids;
∑

PUFA; polyunsaturated fatty acids;

Table 2 
Nutritional indexes of oil during UV irradiation.

Irradiation time (h)

Control 1H 2H 4H 6H 8H

AI 0.002 ± 0.00 a 0.002 ± 0.00 a 0.002 ± 0.00 a 0.002 ± 0.00 a 0.002 ± 0.00 a 0.002 ± 0.00 a

TI 0.001 ± 0.00 a 0.001 ± 0.00 a 0.001 ± 0.00 a 0.001 ± 0.00 a 0.001 ± 0.00 a 0.001 ± 0.00 a

Cox 12.94 ± 5.35a 13.00 ± 2.22b 13.01 ± 5.19c 13.02 ± 7.94d 13.07 ± 1.94e 13.84 ± 6.74f

OS 5875.49 ± 0.30a 5904.57 ±1.06b 5908.49 ±2.16 c 5912.49 ±0.31d 5935.65 ±0.86e 6286.91 ±3.07f

ODR 75.62 ± 0.01a 75.67 ± 0.02 b 75.70 ± 0.012c 75.61 ± 0.05d 75.64 ± 0.02 e 76.43 ± 0.04 f

LDR 77.69 ± 0.02a 77.79 ± 0.02 b 77.75 ± 0.05 c 77.72 ± 0.04d 77.54 ± 0.02 e 77.75 ± 0.00 f

PUFAs/SFAs 6.11 ± 0.00 a 6.10 ± 0.03 b 6.03 ± 0.00 c 6.05 ± 0.01 d 5.91 ± 0.07 e 6.07 ± 0.02 f

�3/�6 3.48a 3.50 b 3.54 c 3.48 d 3.45 d 3.49 d

Each replicate is represented as the mean of three (n = 3 e ± SEM). Values in the same row with different superscript letters are significantly different (p < 0.05).
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flaxseed oils remains reliable and aligns with the percentage reported in 
previous studies, therefore, it preserves a beneficial phytosterol profile 
(Gandova, Teneva, Petkova, Iliev, & Stoyanova, 2023; Matthäus et al., 
2017; Zeng et al., 2022b).

3.5. Tocopherol contents changes in irradiated oils

Table 4 presents the tocopherol content of the sampled oils in com
parison to the control flaxseed oil during UV exposure. Specifically, 
γ-tocopherols are the most abundant at 647.514 mg/kg, followed by 
δ-tocopherols at 12.938 mg/kg, α-tocopherols at 5.039 mg/kg, resulting 
in a total tocopherol content of 668.548 mg/kg. Similar to other 
research, the total tocopherol content is approximately 614.9 mg/kg, 
with γ-tocopherols at 601.0 ± 0.32 mg/kg, α-tocopherol at 8.6 ± 0.06 
mg/kg, and δ-tocopherols at 5.4 ± 0.01 mg/kg (da Silva Moura, da Silva, 
& Braga, 2023), consistent with this, the results reported (Shadyro et al., 
2020) indicated γ-tocopherol levels ranging from 494 to 586 mg/kg, 
δ-tocopherol levels from 23 to 26 mg/kg, α -tocopherol levels from 14 to 
17 mg/kg, and total tocopherol content ranging from 537 to 623 mg/kg, 
while lower levels of γ-tocopherol were recently found, at 328 mg/Kg 
(Pointner et al., 2024).

A decrease in total tocopherol content is clearly observed between 
the sampled oils and the control oil. Initially, a total of 668.548 mg/Kg, 
which degrades with increasing UV exposure, reaching 323.124 mg/Kg 
at the end of the experiment. γ-tocopherols, the majority isomer, showed 
a pre-exposure content of 647.514 mg/Kg, which declined significantly 
after 2 h under UV radiation to 610.072 mg/Kg, then 555.123 at (4 h), 
then 453.415 at (6 h), and finally 317.472 mg/Kg. The oil’s δ-tocopherol 
content in turn is sharply reduced throughout the duration of UV 
exposure, arriving proximately at 50 % (7.862 mg/Kg) of its loss after 6 
h and ending at a concentration of 5.386 mg/Kg. The observed 

degradation of tocopherols is due to their high sensitivity to light, as 
they tend to protect unsaturated oils and fatty acids during the oxidation 
process (Musakhanian, Rodier, & Dave, 2022). In terms of irradiation 
doses, exposure of the oil to various gamma doses shows reductions in 
γ-tocopherol content of 17 % at 5 kiloGray (kGy), and 15 % at 3 kiloGray 
(KGy) respectively (Beheshti Moghadam, Rezaei, Behgar, Kermanshahi, 
& Chemistry, 2019; Lakritz et al., 1995).

3.6. Phenolic, chlorophylls and carotenoids contents in irradiated oils

Table 5 shows the progression of carotenoid and chlorophyll pigment 
concentrations, as well as phenolic compound content in oils during the 
hours of UV exposure. The loss of carotenoid concentration and the in
crease in chlorophyll concentration demonstrate the influence of UV 
radiation on oil quality, while the decrease in phenolic compounds in 
the oils sampled demonstrates the low oxidative stability of flaxseed oil 
against UV radiation.

The control flaxseed oil showed an average carotenoid content of 
0.12 mg/kg and after 8 h of UV exposure, the oil saw a 58.33 % decrease 
in its carotenoid content. Similar to the value of 0.16 mg/kg reported by 
(da Silva Moura, da Silva, & Braga, 2023), higher levels were observed, 
ranging from 2.89 to 43.6 mg/kg, and reaching up to 57.3 mg/kg 
(Mikołajczak & Tańska, 2022; Mohanan, Nickerson, & Ghosh, 2018; 
Suri, Singh, Kaur, Yadav, & Singh, 2020), However, this content is lower 
than that in some almond oil varieties, which is 0.58 mg/kg, and higher 
than in others, which is 0.07 mg/kg (El Bernoussi et al., 2024).

In the presence of light and atmospheric oxygen, the decomposition 
of chlorophylls produces pheophytins and pheophorbides, which act as 
sensitizers, accelerating oil oxidation by forming 1 O2 (Endo, Usuki, 
Kaneda, & o. t. A. O. C. S., 1984; Rahmani, Csallany, & o. t. A. O. C. S., 
1998), whereas in the dark, they are characterized by antioxidant 

Table 3 
Phytosterols content during UV irradiation.

Irradiation time (h)

Phytosterols (mg/Kg) Control 1H 2H 4H 6H 8H Loss of phytosterols (%)

Cholesterol 37.40 ± 0.01a 34.71 ± 0.02b 31.90 ± 0.09 c 30.66 ± 0.06d 29.81 ± 0.04 e 29.67 ± 0.03 f 22.66 ± 0.07 %
Campesterol 1147.25 ± 0.02a 1088.06 ± 0.01b 1082.35 ± 0.01c 1076.41 ± 0.04d 1053.22 ± 0.01e 1047.82 ± 0.0 f 8.66 ± 0.04 %
Stigmasterol 454.05 ± 0.01a 451.19 ± 0.05b 433.11 ± 0.03 c 418.30 ± 0.02d 403.16 ± 0.06 e 400.02 ± 0.01 f 11.89 ± 0.02 %
β-Sitosterol 1911.24 ± 0.01a 1902.51 ± 0.02b 1861.43 ± 0.01 c 1847.03 ± 0.02d 1823.17 ± 0.07e 1815.65 ± 0.04f 5.00 ± 0.05 %
Δ-5-Avenosterol 438.17 ± 0.08a 431.32 ± 0.05b 429.93 ± 0.01 c 414.18 ± 0.01d 387.19 ± 0.02 e 374.56 ± 0.01 f 14.51 ± 0.04 %
Δ-7-Avenosterol 27.11 ± 0.03a 25.94 ± 0.02b 23.73 ± 0.01 c 20.45 ± 0.01d 19.05 ± 0.04 e 18.63 ± 0.08 f 31.28 ± 0.06 %
Total 4344.70 ± 0.01a 4073,08 ± 0.02b 3962.83 ± 0.01c 3873,97 ± 0.07d 3795.86 ± 0.05e 3786.53 ± 0.02f 12.84 ± 0.09 %

Each replicate is represented as the mean of three (n = 3 e ± SEM). Values in the same row with different superscript letters are significantly different (p < 0.05).

Table 4 
Tocopherols content during UV irradiation.

Irradiation time (h)

Tocopherols (mg/Kg) Control 1H 2H 4H 6H 8H Loss of tocopherols (%)

α-tocopherols 5,03 ± 0.03a 2,42 ± 0.01 b 2,02 ± 0.1 c 1,93 ± 0.08d 1,91 ± 0.04 e 1,88 ± 0.06 f 62.62 ± 0.11
γ-tocopherols 647,51 ± 0.21a 645,14 ± 0.11b 610,07 ± 0.03c 555,12 ± 0.05d 453,41 ± 0.01e 317,47 ± 3.14f 50.97 ± 0.08
δ-tocopherols 12,93 ± 0.06 a 10,04 ± 0.09b 9,78 ± 0.2 c 8,5 ± 0.03 d 7,86 ± 0.06 e 5,38 ± 0.043 f 58.39 ± 0.09
Total 668,54 ± 0.87a 659,91 ± 0.42b 628,14 ± 0.71c 567,01 ± 0.57d 465,33 ± 0.53e 323,12 ± 7.36f 51.66 ± 0.81

Each replicate is represented as the mean of three (n = 3 e ± SEM). Values in the same row with different superscript letters are significantly different (p < 0.05).

Table 5 
Phenolic, Carotenoids and Chlorophylls contents during UV irradiation. PERTE.

Irradiation time (h)

Control 1H 2H 4H 6H 8H Loss of contents (%)

Carotenoids (mg/Kg) 0.12 ± 0.09 a 0.11 ± 0.08 a 0.11 ± 0.07 a 0.09 ± 0.01 a 0.08 ± 0.04 b 0.05 ± 0.04 c 58.33 ± 0.07
Chlorophylls (mg/Kg) 0.26 ± 0.01 a 0.49 ± 0.03 b 0.69 ± 0.02 c 0.71 ± 0.05 d 0.74 ± 0.02 e 0.79 ± 0.03 f –
Total polyphenols (mGAE/g oil) 5.85 ± 0.09 a 4.48 ± 0.09b 3.24 ± 0.19 c 2.97 ± 0.67 d 1.32 ± 0.09 e 0.92 ± 0.19 f 84.27 ± 0.21

Each replicate is represented as the mean of three (n = 3 e ± SEM). Values in the same row with different superscript letters are significantly different (p < 0.05).

O. Belhoussaine et al.                                                                                                                                                                                                                          Food Chemistry: X 24 (2024) 101785 

5 



properties, probably due to the transfer of hydrogen to free radicals 
(Endo, Usuki, Kaneda, & o. t. A. O. C. S., 1985; Gutiérrez-Rosales et al., 
1992). The chlorophyll content recorded for the control oil is 0.26 mg/ 
kg in its initial state, which is less than the 0.61 mg/kg previously 
determined (Pointner et al., 2024), and it more than doubled after 2 h of 
exposure, reaching 0.79 mg/kg in the final sampling. Despite these in
creases, all samples remained within the range of recent studies, which 
reported 2.34 mg/kg and 5.76 mg/kg (Choo, Birch, & Dufour, 2007; 
Herchi et al., 2014).

Phenolic compounds are natural secondary metabolites that present 
many biological effects, where the antioxidant capacity is the most 
important characteristic mainly for its beneficial impact on health 
(Rahman et al., 2021). The polyphenol content of the pure control oil is 
5.850 mg GAE/ g oil extract, which is considerably higher than the 2.85 
mg GAE/100 g oil extract, the 0.27 mg GAE/100 g oil extract and 15.4 
mg GAE/kg reported (Fruehwirth et al., 2020; Kostadinovik & Mitrev, 
2013; Pointner et al., 2024) compared to Cucurbita pepo oil has a similar 
polyphenol content of 5.37/g oil extract, while Argan oil has a signifi
cantly higher content of 23.44 mg GAE/g oil extract (Boujemaa et al., 
2024; El Idrissi et al., 2023). Phenolic compounds in the oil began to 
decline significantly from the second hour of UV exposure, with a con
tent of 3.246 mg GAE/100 g oil. Losses of 4.522 mg GAE/100 g oil were 
recorded after 6 h, and 4.93 mg GAE/100 g oil after 8 h resulting in a loss 
of polyphenols of up to 84.27 %.

3.7. Changes in physicochemical properties of irradiated oils

To assess the main physicochemical parameters of the oil, 6 de
scriptors were selected, at the start and end of UV exposure: acidity, 
peroxide value, iodine value, conjugated dienes and trienes (K232- 
K270), and colour value (Table 6).

3.7.1. Free fatty acid
During the eight hours the oils were exposed to UV light, the per

centage of free fatty acids in the oils increased correlatively with time. 
The control oil shows 0.18 % of fatty acids a low percentage compared to 
0.69 % and 0.595 % of recent studies (Mikołajczak, Pilarski, Gęsiński, & 
Tańska, 2023; Zeng et al., 2022b). A significant 1.3-fold increase in the 
percentage of free fatty acids, from 0.18 % to 0.24 %, and significant 
stability between 2 h and 4 h of exposure. Moreover, studies show a 2.8- 
fold increase in the acidity of an oil irradiated for 5 weeks, as well as the 
acid value of sunflower oil irradiated for 4 weeks rising from 1.29 mg 
КОН/g oil to 2.3 mg КОН/g oil (Lashko et al., 2019).

3.7.2. Peroxide value
The control flaxseed oil has a peroxide value of 2.5 meq O2/kg, 

which aligns with the range (2.24 meq O2/kg – 4.60 meq O2/kg reported 
in the literature (Suri et al., 2023; Symoniuk, Ratusz, & Krygier, 2017). 
This range spans from 1.80 meq O2/kg (Choo et al., 2007) to 3.94 meq 
O2/kg (Pan et al., 2020), extending to 5.42 meq O2/kg (Khattab & 
Zeitoun, 2013) and even up to 17.5 meq O2/kg in some cases (Pointner 
et al., 2024).

Exposure of oil to UV for 1 h reveals a twofold increase in the index at 
5 meq O2/kg, which remains stable over the following two hours of 
exposure. After 4 h, the index rose to 6.25 meq O2/kg, then to 10 meq 
O2/kg and finally to 12.5 meq O2/kg after 8 h, Therefore, PV increased 
most significantly 5.55 times, from 2.25 meq O2/kg to 12.5 meq O2/kg, 
compared to the initial high peroxide value (PV) of irradiated flaxseed 
oil, which is 25 meq O2/kg, it then increased to 174 meq O2/kg after 5 h, 
and to 325 meq O2/kg after 10 h, and to 350 meq O2/kg after 15 h of UV 
exposure, perilla oil, on the other hand, has a lower PV than flax, 
remaining at the limit of 150 meq O2/kg after 10 h of irradiation, 
whereas green nuts oil does not exceed 150 meq O2/kg after 15 h of 
irradiation (Takeyama et al., 2013), on the other hand, sunflower oil 
exposed to UV for 4 h does not show a wide variation in peroxide value 
ranging between 0.50 and 0.60 mmol ½ O/kg (Lashko et al., 2019).

During the first 2 h of the experiment under UV light, the PV 
remained virtually unchanged, thus confirming a short-wave (UV) ra
diation effect on oxidation processes, compared to that of long-wave 
radiation, an effect proven by recent studies (Lashko et al., 2019).

3.7.3. Iodine value
The iodine index measures the average degree of unsaturation of fats 

and oils and is used as a predictor of lipid oxidation, it is represented by 
the α-linolenic acid and linoleic acid contents of oils (Shahidi, Zhong, & 
Products, 2005). The high IV values of all samples prove the presence of 
unsaturated bonds, and they certainly contain more unsaturated fatty 
acids (Charef, Yousfi, Saidi, & Stocker, 2008).

UV treatment of the oil revealed an increase in the iodine value from 
188.07 g I2/100g to 200.35 g I2/100g, 1.06 times higher during 8 h. IV 
stability is marked between the control and the first oil sample (188 g I2/ 
100g), as well as between samples taken after 2 h and 4 h (189 g I2/ 
100g), and also between the samples taken after 2 h and 4 h (189 g I2/ 
100g). Other studies also found high values 97.24 g I2/100g, 118.21 g 
I2/100 g (Adam Omer Ishag et al., 2020; Jang et al., 2020).

3.7.4. Specific extinction coefficients (K232 and K270)
Conjugated dienes (CDs) appear only with an absorption peak at 

around 232 nm (Ramadan & Wahdan, 2012), which are primary 
oxidation products resulting from oxidation of PUFAs (Weber, Bochi, 
Ribeiro, Victório, & Emanuelli, 2008), to which are added conjugated 
trienes that absorb in the ultraviolet at 270 nm and designate secondary 
oxidation products (Abdulkarim et al., 2007). A high level of conjugated 
dienes gives the oil low oxidative stability (Mohdaly, Sarhan, Mahmoud, 
Ramadan, & Smetanska, 2010).

During irradiation, the production of primary oxidation compounds 
shows an evolution with a large difference between the control sample 
and the samples at each instant, as flaxseed oil shows 1.97 before the 
experiment and it ends with 2.82. A significant difference appears in the 
oil from the first hour giving an absorbance of 2.04 then going to 2.24 
after 4 h, and 2.63 after 6 h. While secondary oxidation products in
crease slowly during irradiation, ranging from 0.42 to 0.45 after 8 h. 
Previous results also demonstrate the variation of 232 values in flaxseed 
oil approximately between 1.7 and 2.8 (Choo et al., 2007; da Silva 

Table 6 
Physicochemical properties of oil during UV irradiation.

Exposition time (h)

Control 1H 2H 4H 6H 8H

FFA (% oleic) 0.18 ± 0.05a 0.19 ± 0.02b 0.20 ± 0.00c 0.20 ± 0.01 c 0.21 ± 0.08 d 0.24 ± 0.00 e

PV (meqO2/kg) 2.25 ± 0.35 a 5 ± 0.00 b 5 ± 0.00 b 6.25 ± 1.76 d 10 ± 7.07 d 12.5 ± 0.00 e

IV (g I2/100g) 188.07 ± 0.22a 188.88 ± 0.17b 189.01 ± 0.31b 189.24 ± 0.10d 190.05 ± 0.45e 200.35 ± 0.27f

K 232 1.98 ± 0.09 a 2.04 ± 0.03 b 2.13 ± 0.04 c 2.24 ± 0.02 d 2.59 ± 0.06 e 2.82 ± 0.01 f

K 270 0.42 ± 0.01 a 0.43 ± 0.01 b 0.43 ± 0.02 b 0.43 ± 0.00 b 0.44 ± 0.00 e 0.45 ± 0.01 f

CV 0.18 ± 0.00 a 0.23 ± 0.02 b 0.23 ± 0.01 b 0.25 ± 0.00 d 0.28 ± 0.00 e 0.34 ± 0.02 f

Each replicate is represented as the mean of three (n = 3 e ± SEM). Values in the same row with different superscript letters are significantly different (p < 0.05).
Free fatty acid (FFA); peroxide value (PV); iodine value (IV); specific Extinction coefficients (K 232 and K 270); Colour value (CV).
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Moura et al., 2023), as well as 270 values between 0.16 and 0.3. A 
statistically significant increase (p < 0.05) in the values of both extinc
tion coefficients was observed during the eight-hour experiments.

3.7.5. Colour value
Oleaginous seeds and fruits contain pigments that give different 

colours to vegetable oils; the presence of carotenoids is indicated by red 
and yellow hues, such as red is due to carotene and yellow one due to 
xanthophylls (Mortensen, Skibsted, Truscott, & Biophysics., 2001).

Colour is an important physical characteristic of lipids. As the UV 
light treatment progressed, the colour of the lipids gradually changed 
from yellow to brown between 1 h and 4 h exposure, then to dark brown 
after 6 h, and finally to intense brown after 8 h exposure. Under these 
exposure conditions, the colour value shown in Table 6 increased in the 
oil by a factor of 1.91. The increase in colour value is due to the 
oxidation of carotenoids by light. When the oil was stored away from 
light, this parameter did not change (Lashko et al., 2019).

4. Correlation

To explore the relationship between quality and nutritional indices 
and the fatty acid (C16:0, C18:1, C18:2 and C18:3), phytosterol and 
tocopherol contents of L. usitatissimum oils, the correlation coefficient of 
these proportions, as in our previous study (El Kourchi et al., 2024a, 
2024b), is shown in Fig. 1.

The qualitative properties of the lipid fraction of all oils (PV, IV, 
K232, K270, A420, Cox, ODR) showed a positive correlation with fatty 
acid contents (C16:0, C18:1, C18:2 and C18: 3). These indices tell us 
about the degree of unsaturation by IV similar to the high abundance of 
C18:3 and the degrees of unsaturation ODR and COX; and the degree of 
oxidation by PV, K232, K270, ODR are identical to the calculated oxi
dizability (Cox). Unlike LDR, which shows the degree of linoleyl desa
turation and is negatively correlated with FA and K232 and K270, and 
moderately correlated with C18:3 content showing the low α-linolenic 
transformation. Chlorophyll pigments also correlated positively with 
PV, K270 and A420, proving the existence of conjugated dienes and 

influencing oil colour during irradiation. The colour index declares a 
strong positive correlation with quality parameters and FA content, 
while a negative correlation is marked with tocopherols and phytos
terols and polyphenol content, the latter playing the role of antioxidants 
in the oil and interfering with its deterioration, while the transformation 
of colour to brown is due to fatty acids and chlorophylls which are oil 
pro-oxidants. Phytosterols, tocopherols and phenolic compounds are 
strongly positively correlated with carotenoid pigments, and they are oil 
protectors against degradation; they are widely present in oil samples so 
they are sufficiently protected against UV irradiation during 8 h.

5. Conclusion

UV irradiation of cold-pressed flaxseed oil revealed significant vari
ations in the phytosterol and tocopherol compound profiles, which 
showed a significant decrease during 8 h of UV exposure. In addition, a 
large loss of phenolic and carotenoid compounds was reported after 4 h 
of irradiation. While the level of polyunsaturated fatty acids remained 
stable during 6 h of exposure and then increased to 71.36 %, the chlo
rophyll concentration increased 2-fold after 2 h of irradiation compared 
to the control oil. These changes were accompanied by an increase in the 
levels of FFA, PV and conjugated diene as the exposure time was 
increased. In terms of the nutritional quality of irradiated oils, the AI, TI, 
Cox, SO, ODR and LDR indices reveal a high nutritional value 
throughout UV exposure. The correlation test between the various 
qualitative and quantitative parameters indicate that irradiation can 
affect the quality of irradiated oils, but they maintain good oxidative 
stability during 8 h of exposure, due to their high content of γ- and 
δ-tocopherols, carotenoid pigments, and polyphenols.

Availability of data and materials

not applicable.

Fig. 1. Nutritional indexes and physicochemical properties of the lipid fraction of L. usitatissimum and their chemical compositions are correlated according to 
Pearson’s correlation coefficient. 
Free fatty acid (FFA); peroxide value (PV); iodine value (IV); dienes and trines conjugated (K 232 and K 270); colour value (CV); oxidazability value (Cox); linoleyl- 
desaturation ratios (LDR); oleyl- desaturation ratios(ODR), Chlorophylls and carotenoids contents (A670 and A470); total phytosterols (ST); total tocopherols (TT); 
Total phenolic compounds (TPC).
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