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Comparison of multi-tissue aging 
between human and mouse
Jujuan Zhuang1, Lijun Zhang1, Shuang Dai1, Lingyu Cui1, Cheng Guo2, Laura Sloofman3 & 
Jialiang Yang4

With the rapid growth of the aging population, exploring the biological basis of aging and related 
molecular mechanisms has become an important topic in modern scientific research. Aging can cause 
multiple organ function attenuations, leading to the occurrence and development of various age-
related metabolic, nervous system, and cardiovascular diseases. In addition, aging is closely related 
to the occurrence and development of tumors. Although a number of studies have used various mouse 
models to study aging, further research is needed to associate mouse and human aging at the molecular 
level. In this paper, we systematically assessed the relationship between human and mouse aging by 
comparing multi-tissue age-related gene expression sets. We compared 18 human and mouse tissues, 
and found 9 significantly correlated tissue pairs. Functional analysis also revealed some terms related 
to aging in human and mouse. And we performed a crosswise comparison of homologous age-related 
genes with 18 tissues in human and mouse respectively, and found that human Brain_Cortex was 
significantly correlated with Brain_Hippocampus, which was also found in mouse. In addition, we 
focused on comparing four brain-related tissues in human and mouse, and found a gene–GFAP–related 
to aging in both human and mouse.

Aging population is a huge challenge faced by all countries around the world. Given the rapid growth of the 
global aging population, researchers are interested in identifying treatments that would delay the physiological, 
metabolic, and functional decline that gradually occurs in various systems, organs, and tissues of the body as they 
age. Additionally, it is well known that aging is closely related to a variety of complex diseases including partial 
cancer, Alzheimer’s disease, Parkinson’s disease, type 2 diabetes, multiple cardiovascular diseases, and neuro-
degenerative diseases etc.1–6. While understanding the biological basis of the aging process is a major scientific 
challenge that will require integration of molecular, cellular, genetic and physiological approaches7. We hope that 
we can use model organisms instead of humans to do some research on diseases and drugs, and ultimately achieve 
the purpose of delaying aging and reducing the occurrence of diseases related to aging. However, it is not clear 
whether the aging research done on mice is effective on humans. Therefore, in this paper we compared the aging 
mechanism of human and mouse on multiple tissues at the level of gene expression.

With the advent of various high-throughput sequencing technologies, such as RNA-seq8, the development 
and improvement of the novel gene expression databases has made it possible to define aging processes by analyz-
ing the transcriptional differences between the young and old. The Genotype-Tissue Expression (GTEx) Portal 
(https://www.gtexportal.org/home/)9,10 is a resource database generated from an analysis of RNA sequencing data 
from 1641 samples across 43 tissues from 175 individuals whose ages range from 20 to 79. This provides a data 
basis for us to study the relationship between gene expression and aging in human tissues.To elucidate the aging 
differences between humanand mouse at the molecular level, we systematically assessed the relationship between 
human and mouse aging by comparing age-related gene expression. We hope that this study, along with future 
work, will help researchers to justify the utilization of model organisms in research on aging and aging related 
diseases.

An early study of aging between species was performed by McCarroll et al. comparing transcriptional changes 
among C. elegans, D. melanogaster, Saccharomyces cerevisiae and Homosapiens, and showed that most of the 
changes associated with aging are species-specific, aging between C. elegans and D. melanogaster is highly con-
served11. Khaitovich et al. analyzed gene expression in various brain regions of human and chimpanzees, and 

1School of Science, Dalian Maritime University, Dalian, Liaoning, 116026, P. R. China. 2Center for Infection and 
immunity, Columbia University, New York City, New York, USA. 3Department of Genetics and Genomic Sciences, Icahn 
School of Medicine at Mount Sinai, New York City, New York, USA. 4Geneis (Beijing) Co. Ltd, Beijing, 100102, P. R.  
China. Jujuan Zhuang and Lijun Zhang contributed equally. Correspondence and requests for materials should be 
addressed to J.Y. (email: yangjl@geneis.cn)

Received: 21 January 2019

Accepted: 20 March 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42485-3
https://www.gtexportal.org/home/
mailto:yangjl@geneis.cn


2Scientific Reports |          (2019) 9:6220  | https://doi.org/10.1038/s41598-019-42485-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

clarified that human and chimpanzee have significant differences in aging12. Zahn et al. provided the AGEMAP 
gene expression database and explored similar age-regulated genes and gene sets in different species: M. muscu-
lus, H. sapiens, D. melanogaster, and C. elegans, and it was eventually found that there was no overall correlation 
between mouse and human aging- related expression changes, similarity was only found in several specific gene 
sets13. And Yang et al. also showed that the aging genes were significantly different between human and mouse14. 
The results were not ideal since the datasets they used with small size of samples or with poor data quality.

In this work, we studied age-related genes in 18 tissues of human and mouse (see Fig. 1). We applied Deseq2 
to perform differential expression analysis on the young and the old samples of 15 human tissues collected from 
GTEx database, and compared the results with DEGs of 15 mouse tissues studied by Wang et al. with CD algo-
rithm15 from Gene Expression Omnibus(GEO) data16 (see Table 1), we also compared the DEGs of 3 pairs of 
human and mouse tissues studied by Wang et al. from GEO data15 (see Table 2). Then we performed functional 

Figure 1.  Workflow of the aging project.

Human (GTEx) Mouse(GEO)

Adipose_Subcutaneous peripheral adipocyte

Adipose_Visceral bone marrow adipocyte

Artery_Aorta thoracicaorta

Brain_Cerebellum cerebellum

Brain_Cortex neocortex

Brain_Hippocampus hippocampus

Heart_Atrial heart

Heart_Left_Ventricle cardiac ventricle

Kidney_Cortex kidney

Liver liver

Lung Lung

Muscle_Skeletal skeletal muscle

Ovary ovary

Spleen spleen

Small_Intestine_Terminal_Ileum Small_Intestine_Terminal_Ileum

Table 1.  The 15 tissues of human and mouse from GTEx database and GEO database respectively.
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analysis on these DEGs. Furthermore, we compared the aging DEGs in 18 tissues crosswise for human and 
mouse respectively, especially contrasted the four tissues associated with the brain. Since human and mouse 
DEGs are obtained by different algorithms, we applied CD and DESeq2 to analyze the DEGs of human Adipose_
Subcutaneous respectively in order to compare the two algorithms.

Results
DEGs between young and old human samples from GTEx.  GTEx Portal is a resource database gen-
erated from an analysis of RNA sequencing data of 1641 samples across 43 tissues from 175 individuals, built to 
help researchers study the relationship between genetic variation and gene expression in human tissues. In this 
paper, we used 15 human tissues RNA-seq datasets in GTEx for differential analysis (see Table 1). There are many 
methods for differential expression analysis of RNA-Seq data so far17–23. Anders et al. have proved that DESeq is 
the most conservative method among edgeR, DESeq, ShrinkSeq, NBPSeq, TSPM, voom + limma, vst + limma, 
baySeq, EBSeq and SAMseq20. But Love et al. clarified that DESeq2 is better than DESeq24. So, in this paper, for 15 
human tissues from GTEx9, we used edgeR25,26, DESeq27 and DESeq224 to call differential genes in the young and 
old samples, and we call these DEGs as “age-related genes”. We found that DESeq2 is more sensitive than the other 
two methods and the number of age-related genes obtained by DESeq2 is the largest.

We summarized the number of age-related genes in 15 human tissues in Table 3. And these genes can be found 
in the Supplementary Dataset 1.

DEGs between the young and the old samples from GEO data.  GEO28–30 is a database provided by 
the National Center for Biotechnology Information (NCBI). In the study, in order to compare gene expression dif-
ferences in young and old mice, we downloaded age-related genes expression profiles of multiple tissues in mouse 
from the GEO database29. Since these data are microarray data31, we used limma algorithm to perform differential 
expression analysis. However, the numbers of age-related genes were smaller than those derived by Wang et al.15, 
so we directly used the results of the DEGs they obtained. For the corresponding GSE (Series) information of 
each tissue, see Supplementary Table S1 and Supplementary Dataset 2 shows the detailed summary of DEGs in 15 
mouse tissues (matching the tissues obtained from GTEx) from GEO database obtained by Wang Z et al.

Moreover, we also summarized the age-related genes of three pairs of human and mouse tissues (see Table 2) 
that are matched exactly from GEO database. Table 4 provides the numbers of age-related genes integrated in 
brain, retinal_periphery and hematopoietic_ stem_cell of human and mouse respectively. For a more detailed 
summary of age-related genes, see Supplementary Dataset 2.

Comparison of human and mouse homologous age-related genes.  To compare gene expression 
across mouse and human fairly, we restricted our genes in both species to homologous genes, or genes that are at 
least 80% similar in both species. Most homologous genes have the same or similar biological functions, and the 
regulatory pathways are similar. Homologous genes were selected using HOM_MouseHuman Sequence.rpt from 
MGI Data and Statistical Reports (http://www.informatics.jax.org/downloads/reports/index.html). More detailed 
information on these homologous genes can be found in Supplementary Dataset 3.

In column 6 of Table 3 and column 3 of Table 4, we showed homologous age-related genes in 18 human tis-
sues, the numbers of which range from 1 to 6078. The numbers of homologous age-related genes in 18 mouse 
tissues range from 493 to 5215, as shown in column 9 of Table 3 and column 6 of Table 4.

The comparative analysis of human and mouse homologous age-related genes was mainly carried out from 
three perspectives:

Quantifying the overlap of human and mouse homologous age-related genes.  The overlap of homologous 
age-related genes of 18 human and mouse tissues can be seen in column 10 of Table 3 and column 7 of Table 4 
respectively, and the numbers of which range from 0 to 820. In kidney and small intestine, there aren’t overlapping 
homologous age-related genes between human and mouse.

The Fisher’s exact test.  To get a statistically demonstration, we performed fisher’s exact test on homologous 
age-related genes of human and mouse 18 tissues. For example, in terms of human Liver and mouse liver, we 
used the total homologous genes of human and mouse as the background (14212), and made fisher’s exact test on 
aging genes of human Liver (108) and aging genes of mouse liver (4756) (Table S2). In Tables 3 and 4, we show the 
p-values of 18 pairs of tissues obtained by fisher’s exact test, and their adjusted p-values. We define tissues with 
adjusted p-value < 0.05 as tissues that are significantly correlated in human and mouse. There are 9 pairs of tissues 
that are significantly correlated, and the three pairs of tissues from GEO database are more similar. Also, we note 
that the three pairs of tissues data are all microarray data, and the same algorithm was used to analyze the DEGs.

Enriched functions of homologous age-related genes.  In this section, we performed gene functional analysis with 
David32 on homologous age-related genes obtained from 18 pairs of human and mouse tissues, and adjusted 

Human (GEO) Mouse (GEO)

brain Brain (frontal cortex)

hematopoietic stem cells hematopoietic stem cells

retinal retinal

Table 2.  The 3 tissues of human and mouse from GEO database.
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enrichment p-values using a Benjamini-Hochberg procedure. Corrected p-values were considered significant if 
pBen < 0.05. We showed the top 10 enriched terms for every pair of tissues of human and mouse in Table S3, and 
detailed results can be found in Supplementary Dataset 4. The number of overlapping GO and KEGG terms33,34 
in 18 human and mouse tissues ranges from 0 to 68 (see Table S4).

As shown in Table S3, the functional enrichment analysis revealed that homologous aging-related genes were 
significantly enriched in GO:0031012~extra cellular matrix between human Heart_Atrial_Appendage and mouse 
heart. And DR Sell et al. have proved that the extra cellular matrix undergoes progressive changes during senes-
cence35. We also see that GO:0005615~extracellular space is enriched between human spleen and mouse spleen.

We also found that Phosphoprotein was the term of the homologous age-related genes enriched in Ovary, 
Brain_Cerebellum, Adipose_Visceral_ (Omentum), Lung, Heart_Left_Ventricle, Artery_Aorta, Muscle_Skeletal, 
Brain_Cortex, Brain_Hippocampus, brain and Adipose_ Subcutaneous significantly between human and mouse. 
And Kahn A et al. have declared that changes in cellular expression of phosphoprotein are linked to insulin 
resistance, tumor cell invasion, and cellular senescence36,37. And homologous age-related genes relating to the 
cytoplasm were significantly enriched in Ovary, Adipose_Visceral_(Omentum), Lung, Heart_ Left_Ventricle, 
Artery_Aorta, Muscle_Skeletal, Brain_Cortex and Brain_Hippocampus between human and mouse. Dou Z et al.  
have discovered that the cytoplasmic chromatin-cGAS -STING pathway promotes the senescence-associated 
secretory phenotype in primary human cells and in mouse38.

Crosswise comparison of homologous age-related genes between tissues.  Here, we carried out 
pair wise comparison of homologous age-related genes of 18 tissues in human and in mouse separately. A more 
detailed summary of overlapping genes and fisher’s exact test p-values can be found in Supplementary Dataset 5.

When analyzing human homologous age-related genes, for Adipose_Visceralis, as an example, the tissue with 
the biggest overlap of homologous age-related genes is lung. Inomata et al. have found an association between 
the visceral adipose tissue level and lung function39. And excessive abdominal visceral fat contributes to increase 
plasma IL-6, which, in turn, is strongly associated with all-caused and cause-specific mortality in older persons 
with obstructive lung disease40,41. We also found that in the comparison of human 18 tissues, the two tissues with 
the highest number of overlapping DEGs are Muscle_Skeletal and Lung. This is consistent with the findings of 
Serres et al. who found that impaired skeletal muscle endurance in patients with chronic obstructive pulmonary 
disease was associated with altered lung function and reduction in associated physical activity42. Furthermore, 
the p-value obtained by fisher’s exact test indicates that the tissue most correlated with Adipose_Subcutaneous 
is Muscle_Skeletal (2.793932e-55), and Brain_Cortex is significantly correlated with Brain_Hippocampus 
(8.349845e-220).

GTEX(human) GEO(mouse)
Overlap
Homolo
DEGs

Fisher’s exact test

Tissues

Sample size DEseq2 
DEGs

Homolo 
DEGs Tissues

CD 
DEGs

Homolo 
DEGs p-value

adjusted 
p-valueyoung old overall

Adipose_Subcutaneous 36 52 88 4976 3707 peripheral adipocyte 1128 992 232 0.001176499 1.294149e-02

Adipose_Visceral 23 35 58 6101 4123 bonemarrow adipocytes 1289 1120 263 0.05009622 4.007698e-01

Artery_Aorta 34 33 67 6557 4410 thoracicaorta 1024 912 273 0.000135972 1.631664e-03

Brain_Cerebellum 7 28 35 1569 1259 cerebellum 918 675 53 0.1833056 1.000000e + 0

Brain_Cortex 5 25 30 2912 2292 neocortex 1314 1191 225 1.387631e-08 1.942683e-07

Brain_Hippocampus 5 26 31 3109 2392 hippocampus 6222 5215 820 2.203335e-13 3.525336e-12

Heart_Atrial 16 33 49 267 199 heart 1743 1559 22 0.1757766 1.000000e + 0

Heart_Left_Ventricle 28 28 56 2694 1109 cardiac ventricle 1157 1024 152 0.003899278 3.899278e-02

Kidney_Cortex 5 7 12 1 1 kidney 1775 1572 0 1 1.000000e + 0

Liver 9 19 28 130 108 liver 5512 4756 48 7.773007e-06 1.010491e-04

Lung 36 48 84 8785 6078 lung 1904 1715 503 0.9896731 1.000000e + 0

Muscle_Skeletal 58 67 125 6329 4586 skeletal muscle 1045 953 249 0.2691384 1.000000e + 0

Ovary 15 18 33 1180 890 Ovary 787 726 33 0.7785577 1.000000e + 0

Small_Intestine 17 8 25 14 11 Small_Intestine 973 816 0 1 1.000000e + 0

Spleen 17 7 24 104 39 Spleen 600 493 4 0.04076562 3.668906e-01

Table 3.  Overview of differential expression analysis in 15 human and mouse tissues.

GEO (human) GEO(mouse)

Overlap HomoloDEG

Fisher’s exact test

Tissues CD DEG Homolo DEG Tissues CD DEG Homolo DEG pvalue p.adjust

brain 1836 1589 brain 2274 2020 350 2.73741e-46 4.653597e-45

retinal 600 549 retinal 3603 3221 328 9.536745e-112 1.716614e-110

hematopoietic_stem_cells 1214 943 hematopoietic_stem_cells 600 502 61 3.168386e-13 4.752579e-12

Table 4.  Overview of differential expression analysis in 3 human and mouse tissues from GEO database
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In terms of 18 mouse tissues, for neocortex, the tissue with the biggest number of overlapping homolo-
gous age-related genes is Hippocampus, the overlapping number is 849 and the p-value of fisher’s exact test is 
1.169441e-199. This result is consistent with human.

Comparison of homologous age-related genes in human Brain_Cerebellum, Brain_Cortex, 
Brain_Hippocampus and brain (from GEO).  Here, we did a more in-depth study of the four tissues 
associated with human brain: Brain_Cerebellum, Brain_Cortex, Brain_Hippocampus and brain (from GEO). 
39 homologous age-related genes are overlapped in these four tissues (see Table S5). Biological interpretation of 
these DEGs was carried out using ClueGO v2.5.143 in Cytoscape44, we reserved the terms with p-value < 0.05 (see 
Fig. 2), and got 56 overlapping terms (see Table S6).

Comparison of homologous age-related genes in mouse cerebellum, neocortex, hippocampus 
and brain.  Similarly, we made a further comparison of the four tissues associated with mouse brain: the 
cerebellum, neocortex, hippocampus and brain. There are just 8 overlapping age-related DEGs among these four 
tissues (see Table S5). As the studying process of human brain, the results of mouse brain biological interpretation 
are in Fig. 3, and there is no overlapping terms among these four tissues in mouse.

It is worth noting that GFAP appears in both human and mouse overlapping DEGs list. Middeldorp et al. 
have already proved that the astrocytic cytoskeleton protein GFAP plays role in many processes in the brain, and 
they discussed the versatility of the GFAP cytoskeletal network from gene to function with a focus on astrocytes 

Figure 2.  Functional groups in ClueGO Overview. ClueGO analysis of DEGs in Brain_Cerebellum, Brain_
Cortex, Brain_Hippocampus and brain from human donors. Overview chart with functional groups including 
specific terms for DEGs. The percentage of genes per term is shown in each group.
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during human brain development, aging and disease45. Furthermore, GFAP in Cerebrospinal Fluid (CSF) serves 
as a potential biomarker of Alexander disease that is comparable between mouse models and human patients46.

Comparison of CD and Deseq2 methods.  In order to compare the two methods of CD and Deseq2, we 
performed differential expression analysis on young and old samples of human Adipose_Subcutaneous tissue 
using CD and Deseq2 methods respectively. We found overlapping 637 out of the top 2000 DEGs in both CD and 
Deseq2. That is 32% of the top DEGs were identified using both methods.

Discussion
In the comparison of age-related genes in multiple tissues of human and mouse, we used GTEx data and more 
sensitive algorithms than the previous studies, and we found 9 pairs of tissues were significantly correlated 
between human and mouse on aging. The results were similar to those of Zahn13 and Yang14.

By functional enrichment analysis of DEGs, we have found some terms related to aging, such as 
GO:0031012~extracellular matrix35, Phosphoprotein36,37, Cytoplasm38, Cell cycle, Cell division, ATP-binding and 
GO:0005515~protein binding et al.

When we performed a crosswise comparison of 18 tissues in human and mouse respectively, we found that the 
human Brain_Cortex aging is significantly associated with Brain_Hippocampus aging, which was also found in 
mouse. Next, we focused on comparing four brain-related tissues in human and mouse, and found a gene–GFAP–
related to aging in both human and mouse.

Since human and mouse DEGs are obtained by different algorithms, it is necessary to parallel the two methods 
over the same dataset to make sense of the impact of technical error. So we applied CD and Deseq2 to analyze the 
DEGs of human Adipose_Subcutaneous respectively. Also, because we only focused on the overlapping of aging 
genes in human and mouse, we were not positioned to identify human-specific gene expression changes related to 
aging. More research is needed to find human specific pathways and mechanisms that contribute longer lifespan 
in human47.

Materials and Methods
Data collection.  We downloaded human multi-tissue gene expression data from the Genotype-Tissue 
Expression (GTEx) Portal (https://www.gtexportal.org/home/). And two age-related differential expression gene 
data from Enrichr (http://amp.pharm.mssm.edu/Enrichr/#stats). These two datasets are Aging_Perturbations_
from_GEO_down and Aging_Perturbations_ from_GEO_up which are obtained by applying CD algorithm48 
to the GEO data (https://www.ncbi.nlm.nih.gov/geo/) to analyze the age-related genes. Comparisons between 

Figure 3.  Functionally grouped networks on cerebellum, neocortex, hippocampus and brain for mouse. 
Functionally grouped network with terms as nodes linked based on their kappa score level (≥ 0.4), where 
only the label of the most significant term per group is shown. Each node in the figure represents a term, and 
the node size represents the term enrichment significance. Functionally related groups partially overlap. The 
connection between the nodes reflects the correlation between the terms, and the color of the node reflects the 
enrichment classification of the node.
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human and mouse DEGs were based on homologous genes which used HOM_ MouseHumanSequence.rpt 
obtained from MGI Data and Statistical Reports (http://www.informatics.jax.org/downloads/reports/index.
html).

Matching of tissues.  We matched 15 tissues between GTEx data and GEO data, and then compared the 
DEGs related to aging between human and mouse. In addition, in terms of the GEO data itself, we found three 
additional human and mouse tissues which are matched. So we collected 15 human tissues from GTEx data, 3 
human tissues from GEO data, and 18 mouse tissues corresponding to human tissues from GEO data (see Table 1 
and Table 2).

Data pre-processing.  We restricted GTEx RNA-seq tissue-wide expression data to individuals who were 
30 or under (young), and 65 or over (old), and removed genes that had either 0 or 1 read in minimal pre-filtering.

Differential gene expression analysis.  We applied Deseq2 to identify age-related genes in humans24,49. 
Deseq2 algorithm has two requirements of inputting data: (1). Deseq2 requires that the input data be a matrix 
of integers, and (2). the matrix is not standardized. It is worth noting that Deseq2 has its own strategy for cal-
culating the scaling factors. For data visualization purposes, we log transformed our data, and added a pseudo 
count to avoid undefined values. Deseq2 provides two types of transformation methods for count data: 
regularized-logarithm transformation (rlog24) and variance stabilizing transformation (VST27). Both transforma-
tions produce transformed data on the log2 scale which has been normalized with respect to library size or other 
normalization factors24. Usually, rlog is used when the data set is less than 30, VST is used for large data sets, and 
the most appropriate one is automatically selected during the Deseq2 analysis process (Fig. S1). Then, we used the 
negative binomial distribution to calculate the statistical significance (p-values) among all genes across datasets50, 
and FDR corrected using the Benjamini-Hochberg method51–53. Genes were considered differentially expressed 
if their adjusted p-value < 0.05.

For GEO data, DEGs are obtained by the CD algorithm48. In this paper, we directly used the DEGs on GEO 
data obtained by Wang et al.15.

The Fisher’s exact test.  For each pair of tissues, the statistical significance of the difference between 
human aging genes and the mouse aging genes was assessed by fisher’s exact test54–56. P-values were corrected for 
multiple-hypothesis testing using Benjamini-Hochberg correction51, with a significance threshold of adjusted 
p-value < 0.05.

Gene function enrichment analysis.  In this paper, DEGs were annotated by David tools (V6.7) (DAVID; 
http://david.abcc.cifcrf.gov/)32,57 and ClueGO v2.5.143 in Cytoscape44. In these two analyses, we adopted the 
threshold p-value < 0.05.
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