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Advances in genotyping technology and the multitude of genetic data available now provide
a vast amount of data that is proving to be useful in the quest for a better understanding
of human genetic diseases through the study of genetic variation. This has led to the
development of approaches such as genome wide association studies (GWAS) designed
specifically for interrogating variants across the genome for association with disease, typ-
ically by testing single locus, univariate associations. More recently it has been accepted
that epistatic (interaction) effects may also be great contributors to these genetic effects,
and GWAS methods are now being applied to find epistatic effects.The challenge for these
methods still remain in prioritization and interpretation of results, as it has also become stan-
dard for initial findings to be independently investigated in replication cohorts or functional
studies.This is motivating the development and implementation of filter-based approaches
to prioritize variants found to be significant in a discovery stage for follow-up for replication.
Such filters must be able to detect both univariate and interactive effects. In the current
study we present and evaluate the use of multifactor dimensionality reduction (MDR) as
such a filter, with simulated data and a wide range of effect sizes. Additionally, we com-
pare the performance of the MDR filter to a similar filter approach using logistic regression
(LR), the more traditional approach used in GWAS analysis, as well as evaporative cooling
(EC)-another prominent machine learning filtering method. The results of our simulation
study show that MDR is an effective method for such prioritization, and that it can detect
main effects, and interactions with or without marginal effects. Importantly, it performed
as well as EC and LR for main effect models. It also significantly outperforms LR for various
two-locus epistatic models, while it has equivalent results as EC for the epistatic models.
The results of this study demonstrate the potential of MDR as a filter to detect gene–gene
interactions in GWAS studies.
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INTRODUCTION
Advances in genotyping technology have led to an explosion of
information for human geneticists, and genome wide associa-
tion studies (GWAS) have now become the preferred method for
studying complex diseases such as diabetes, hypertension, cancer,
asthma, etc. So far the majority of these studies have focused on
finding main effects and though many studies have had some suc-
cess with this strategy (Burton et al., 2007; Hakonarson et al., 2007;
Helgadottir et al., 2007; Hunter et al., 2007; Plenge et al., 2007),
their results still suggest that main effects do not totally account for
all the genetic variation associated with these phenotypes (Frazer
et al., 2009; Manolio et al., 2009; Eichler et al., 2010). It is now
generally accepted that one potential explanation for this “miss-
ing heritability” are epistatic effects (gene–gene interactions), as
well as gene–environment interactions that may be contributing
to the disease phenotype (Frazer et al., 2009; Manolio et al., 2009;
Eichler et al., 2010). Additionally, such epistatic interactions are a
potential explanation for the inability of many univariate signals
to replicate in independent, replication studies. This explanation

is further validated by studies showing evidence of the possibility
of the existence of epistatic interactions without any associated
marginal effects (Culverhouse et al., 2002; Hu et al., 2010). This
has resulted in an increasing number of researchers including the
search for interactions as part of their analysis for GWAS. Con-
cerns with high false positive rates associated with GWAS and the
reproducibility of genetic association signals has prompted the use
of a replication sample as a standard in the study designs of GWAS
(Moore and Williams, 2002; Calle et al., 2008; Kraft et al., 2009),
highlighting the need to be able to investigate potential interac-
tions in the discovery stage of GWAS, which could then be further
evaluated in replication sample(s).

In order to find the most promising candidates for replica-
tion, a broad number of methods have been developed, using
a range of variable selection and statistical modeling techniques
(Hoh and Ott, 2003; Culverhouse, 2007; Brinza et al., 2010). While
the majority of these approaches have been applied to candidate
gene studies, the potential of a few methods have been investigated
at a genome-wide level (Brinza et al., 2010). Encouragingly, using
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traditional logistic regression (LR) analysis with a multistage
approach has been evaluated in simulation studies, with the gen-
eral conclusion that even after correcting for the large number of
tests associated with searches for interactions in high-throughput
data, there is high power to detect interactions (Burton et al., 2007).

These previous studies used a variety of multistage filters
including: (1) filtering for significant main effects and then test-
ing for interactions amongst loci with main effects (Hoh et al.,
2001); (2) filtering for significant main effects, then testing for
interactions between these significant markers and all other (non-
univariately associated) markers (Evans et al., 2006); and (3)
filtering out markers that have significant main effects and then
testing for interactions amongst all the other non-univariately
associated markers. These approaches can be successful for par-
ticular types of genetic etiologies of disease. The first approach
can find interactions that involve significant main effects for all
loci involved in the interaction, but will fail to detect interactions
involving markers without significant marginal effects. The sec-
ond approach will only be able to detect interactions with at least
one-locus having a significant main effect, but will fail to detect
purely epistatic effects (interactions with no marginal effects). The
third approach will only be able to detect interactions with no
main effects and will fail to characterize interactions with mar-
ginal effects. More recently, the idea of using filters that incorporate
some prior biological knowledge such as biochemical pathways in
order to limit the subset of variants considered in the initial analy-
sis or as a means of prioritizing results have started to gain traction
(Moskvina et al., 2011; Ritchie, 2011), and are being used in some
combination with the filtering approaches mentioned above. The
specific performance characteristics of these approaches motivate
the use of a method that can inclusively detect interactions with a
range of stringency: a method needs to filter both purely epistatic
effects, and main effects with interactions. Multifactor dimen-
sionality reduction (MDR) is a highly successful method that was
designed to detect gene–gene and gene–environment effects, and
is capable of detecting a wide range of epistatic models (Ritchie
et al., 2001; Hahn et al., 2003). It has shown high power to detect
a range of effect sizes and genetic models in a broad range of
simulation studies (Ritchie et al., 2003; Motsinger and Ritchie,
2006; He et al., 2009) and real data applications (Ritchie et al.,
2001; Park et al., 2007). The main limitation to the application
of MDR to GWAS was originally computation time (since it uses
an exhaustive combinatoric search approach), but recent parallel
applications and GPU implementations (Greene et al., 2010) make
this a reasonable approach to investigate two-locus interactions in
GWAS studies.

In traditional applications of MDR, model selection within a
cross-validation framework is used to select a single best model
that is associated with disease status. Given the commonality of
two-stage study designs, with the use of discovery and replica-
tion cohorts to identify and then replicate models, we evaluate the
potential of MDR as a filter-based approach, using MDR mod-
eling to evaluate and rank all univariate effects and two-locus
epistatic effects. We compare the use of MDR as a filter approach,
to evaporative cooling (EC), another machine learning filtering
method (McKinney et al., 2009), which we use in conjunction
with the Genetic Association Interaction Network (GAIN) first

proposed by McGill (1954) to find multivariate epistatic mod-
els. We also compare our approach to a more traditional filter
approach using LR modeling, the de facto standard in genetic
association studies. We compare these approaches in simulations
with a range of genetic main effects and interaction effects, and
show the better performance of MDR for filtering gene–gene
interactions.

MATERIALS AND METHODS
In brief, to evaluate our ranking approach, we simulated case–
control SNP data for single locus main effects, two-locus inter-
action effects, and two-locus combinations of both main and
interaction effects. The simulations were done using varying pen-
etrance functions, created with heritabilities close to 1 and 5%,
“odds ratios” from 1.2 to 3.0, and minor allele frequencies of 0.2
and 0.4 separately (details of the penetrance functions are given in
Tables A1–A6 in Appendix), giving us a wide range of effect sizes
to analyze. For the one-locus models, we use MDR, EC, and LR
modeling as filters for ranking and prioritizing models for follow-
up in replication studies. We also use MDR, LR, and GAIN to find
the important interactions for the two-locus models. For the one-
locus models, all possible main effects were tested, and all possible
interactions effects were also analyzed for the two-locus models.
For each distinct model the marginal locus or multi-locus com-
binations (for two-locus models) were then ranked according to
classification error (for MDR), p-values (for LR) and significance
scores (for GAIN) separately. Additionally, error rates were calcu-
lated for the two-locus interactions analyzed with MDR to assess
the false positive rates and reliability of our filter.

DATA SIMULATIONS
Three types of disease models (one-locus main effect, two-locus
epistatic effects, and two-locus models with joint epistatic and
main effects) were simulated to include the disease causing SNP
or SNPs for main effects and interaction effects. All simulations
were done assuming SNPs are biallelic. All the models were sim-
ulated with specific penetrance functions (where the penetrance
is the risk of disease given a genotype) to reflect the “odds ratios”
and heritabilities desired. For the single locus models, a classical
definition of an odds ratio was used. The odds ratios were cal-
culated as the ratio of the odds of being affected to the odds of
being unaffected, with the reference allele being the minor allele,
e.g., for the dominance model and minor allele “A” the odds ratio
is calculated by

((oddsAA + oddsAa)/2) /
︸ ︷︷ ︸

Affected

oddsaa
︸ ︷︷ ︸

Unaffected

For the two-locus models found using software described below,
the use of the term “odds ratio” is specific to the data simulation,
and is meant to capture the effect size between low-risk and high-
risk penetrance values. The heritabilities (the proportion of trait
variation that is due to genetics) were calculated as described in by
Culverhouse et al. (2004).

The GenomeSim software (Dudek et al., 2006) package was
used for all data simulations. A null model with no disease causing
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SNP was also simulated to be used for assessing the false posi-
tive rates of the filter. While our study involves relatively small
datasets, other studies have shown that the results of large GWAS
studies analyzed with MDR are highly consistent, regardless of the
number of noise SNPs simulated (Edwards et al., 2009), so our
results hopefully should also apply to GWAS data. Unfortunately,
computational limitations prevent a large-scale simulation exper-
iment with extremely large numbers of SNPs (at a true GWAS
level).

One-locus main effect models
We simulated additive, recessive and dominant genetic effects for
the main effects models. Odds ratios for the simulations ranged
from 1.2 to 3.0 and heritabilities of 1 and 5%, as well as minor
allele frequencies of 0.2 and 0.4 for the disease causing SNP. The
penetrance functions with targeted odds ratios, heritabilities and
allele frequencies were then used to simulate case–control data.
The penetrance functions used are shown in Tables A1–A3 in the
Appendix for each genetic inheritance mode. For each specific
disease model within each of the three genetic inheritance struc-
tures (additive, recessive, and dominant), there were two groups
of data simulated, each with eight models: One group for the data
simulated with minor allele frequencies of 0.2 and the other for
those simulated with minor allele frequencies of 0.4 for the disease
causing SNP. One hundred replicate datasets were simulated for
each model, with each dataset having 250 cases, 250 controls, and
100 independent SNPs [no recombination or linkage disequilib-
rium (LD) between SNPs]. This process created a combined total
of 4,800 datasets of one-locus (univariate) models (1,600 within
each inheritance mode).

Two-locus interaction (epistatic) models
We simulated a total of 16 two-locus epistatic models, with each
model having a distinct penetrance function used for its dataset
simulation. The penetrance functions were generated with “odds
ratios” ranging from 1.2 to 3.0 (in increments of 0.2), heritabilities
close to 1 and 5%, and minor allele frequencies of 0.2 and 0.4 for
the disease causing SNPs separately (shown in Tables A4 and A5 in
Appendix). This resulted in two sets of two-locus models, one with
minor allele frequencies of 0.2 and the other with 0.4. Penetrance
functions, with purely epistatic effects (with no marginal main
effects for either SNP) were found using a genetic algorithm imple-
mented in the SimPen software (Moore et al., 2002). SimPen uses
a genetic algorithm that minimizes marginal penetrance variance
to find penetrance functions with minimal to no main effects. The
program accepts specified user parameters including heritability,
“odds ratio,” marginal penetrance, allele frequency, etc., and gives
the function with the best fitness. For each penetrance model 100
replicate datasets were simulated, with each dataset having 250
cases, 250 controls, and 100 independent SNPs (no recombina-
tion or LD between SNPs). This process created a total of 1,600
two-locus datasets.

Two-locus models with main effects
The modifying effect model previously described by Li and Reich
(2000) was used as the template for estimating the penetrance
functions for interaction effects that include both a main effect

and an interaction effect between the main effect and another SNP.
In this model, an individual is affected if they are homozygous for
the disease allele (in this case the minor allele) from the main effect
locus regardless of what alleles they carry at the second locus, or if
they are heterozygous at the main effect locus and heterozygous or
homozygous for the minor allele at the secondary locus. As with
the purely epistatic models, two sets of disease models were sim-
ulated, one with minor allele frequency of 0.2 and the other with
0.4. Each set had eight models for a total of 16 models, with 100
replicates within each model. As with previous models, the pene-
trance functions were estimated with “odds ratios” varying from
1.2 to 3.0 (in increments of 0.2), but with heritabilities ranging
from 0.02 to 8.4% using the modifying effect model as a template
(Table A6 in Appendix). There were 100 replicate datasets for each
model, each with 250 cases, 250 controls, and 100 SNPs per dataset,
which were also independent (no recombination or LD between
SNPs).

Null model
In addition to the disease model simulations, a null model was
also simulated, with 100 replicate datasets having 250 cases, 250
controls, and 100 independent SNPs. The model was simulated
with no penetrance function or heritability, as well as no main
or interaction effect loci, such that all loci are noise loci with no
disease status association.

DATA ANALYSIS
Multifactor dimensionality reduction
Traditional applications of MDR have previously been described in
detail (Ritchie et al., 2001; Hahn et al., 2003), and we implemented
MDR similarly, except for our exclusion of cross-validation.
Briefly, the MDR algorithm performs an exhaustive search of
all possible main effects (for one-locus models) or all two-way
interactions (for the two-locus models), and for our filter imple-
mentation we saved and ranked all models (as opposed to selecting
the top single model as traditionally done). For the one-locus mod-
els this yields 100 possible main effects for each replicate within
each model and 4,950 two-way models within each replicate for the
two-locus interaction models. For each locus within each dataset
a contingency table (1 by 3 for one-locus and 3 by 3 for two-way
interactions) of all possible genotypes for that locus/locus combi-
nation is made and the number of cases and controls within each
cell in the table (genotype combination) is counted. The ratio
of cases to controls is taken and compared to a threshold, which
was set to 1 as is the standard for MDR when using balanced data
where there are an equal number of cases and controls (Velez et al.,
2007). Each cell was then classified as high-risk if the ratio is greater
than 1 and low-risk if less than 1. The classification error for each
model is based on the number cases in cells that were classified as
low-risk and the number of controls in those that were classified
as high-risk. Figure 1 illustrates the MDR method for two-locus
combinations. The classification error of each model was used to
rank the models, where lower error was given a better rank (with
a rank of 1 representing the top model).

Logistic regression
For the one-locus main effect models, association analysis using
LR was done, as implemented in PLINK version 1.06 (Purcell et al.,
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FIGURE 1 | Summary of MDR implementation. Step 1: list of multi-locus combinations is generated. Step 2: number of cases/controls is counted (gray bars
are cases, white bars are controls). Step 3: ratio of cases to controls is counted. Step 4: Cells are labeled as high-risk (HR) or low-risk (LR). Step 5: the
classification error is calculated.

2007)1 Dummy encoding was used for each genotype, such that
two terms were entered into the regression model for each SNP,
for a more fair comparison to the model free encoding (categor-
ical) of MDR. By default, the genotype that was homozygous for
the major allele was used as the reference. Loci were ranked from
lowest to highest p-value (taking the lowest p-value from test-
ing the two parameters for the dummy encoding), where lower
p-values resulted in higher ranks. For testing the two-locus inter-
action models, terms for each dummy variable were entered as
terms in the model, and terms for the interaction effects of each
combination of variables were also entered.

The specific LR model used for the two-locus models is:

log[y/1 − y] = α + β1x1i + β2x1j + β3x2i + β4x2j + β5x1ix2i

+ β6x1ix2j + β7x1j x2i + β8x1j x2j + e

1http://pngu.mgh.harvard.edu/purcell/plink/.

where: y = 1 if case; 0 if control.
α = intercept.
β1 = main effect of SNP 1, dummy variable i.
β2 = main effect of SNP 1, dummy variable j.
β3 = main effect of SNP 2, dummy variable i.
β4 = main effect of SNP 2, dummy variable j.
β5–8 = interaction effects of the dummy encoded variables of SNPs
1 and 2.

This model was applied to all SNP pairs and the SNP pairs were
then ranked based on the most significant p-values. The p-values
were from the joint test of the overall LR model. The two-locus LR
analysis was implemented in R software package version 2.8.12

Evaporative cooling
The EC algorithm is motivated by the statistics of the thermody-
namic process of cooling a gas through evaporation (Hess, 1986),

2http://www.r-project.org/.
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and was adapted by McKinney et al. (2007) for selection of variants
involved in interactions. It is based on a linear combination (cou-
pling) of transformations using Relief-F (Kononenko, 1994), as
well as random forests (RF; Breiman, 2001), and it works by inte-
grating and optimizing the importance scores from Relief-F and
RF in order to find the most relevant variants to the phenotype.

In brief, it optimizes F = E − TS, where (F) is the free energy
which is analogous to relevance of a group of SNPs to the phe-
notype (in our study this is case/control status). E is determined
by statistical interactions (the Relief-F score). Independent/main
effects are S (RF score) and the noise variants are T which are also
used as a coupling constant. Since EC is designed to find the SNPs
with the highest potential for interaction and not the specific inter-
actions themselves, we expected it to give the main effect SNP a
high rank in both the one-locus and two-locus datasets. We use EC
to analyze the one-locus models as well as the two-locus models
to see if the main effect locus (in the one-locus model) or both the
main effect locus and the secondary interacting locus (in the two-
locus joint main and interaction effect models) would rise to the
top in the rankings, as these would have been the SNPs that may
have been considered for further tests of interaction in a real study.
We expect that the most significant interaction models would con-
tain the main effect SNP especially for the two-locus joint main
and interaction effect models, and as such should rank high in the
EC results. The software package provided by the McKinney et al.
(2009) was used for this analysis.

Genetic association interaction network
Genetic association interaction network (GAIN) calculates the
pair-wise interaction information (I ), which quantifies interac-
tion gains between the variants and case/control status. It works
based on the following model:

Ii,j ,y = Ii,j ,y − Ii,y − Ij ,y

where Ii,j,y = interaction information between SNPs i and j, and
the phenotype (case/control) y.
Iij,y = information gained about y when considering loci i and j
jointly.
Ii,y = information gained about y when locus i is measured.
Ij,y = information gained about y when locus j is measured.

We performed a GAIN search for the two-locus datasets to rank
all possible two-way interactions and compare the results to the
MDR and LR analysis. The GAIN tool software package was used
for this analysis (McKinney et al., 2009).

Ranking filter
For each simulated model, MDR, EC, and LR analysis was per-
formed, using the level of interaction (one or two-way interac-
tions) simulated for each model, and the rank was calculated.
The average rank of the simulated model was calculated across
the 100 replicates of each model. For the single locus model, the
possible ranks ranged from 1 (highest) to 100 (lowest). For the
two-locus models, the possible ranks range from 1 (highest) to
4,950 (lowest). The average ranks for the non-causal loci were also
calculated across each model for comparative purposes, and to get
a feeling for the distribution of ranks expected by chance. These

experiments were performed to compare how the “signal” raises
out of the “noise” for the two methods.

Power analysis for the MDR filter
To evaluate the “power” of the MDR filter, we evaluated the num-
ber of times across the 100 replicates that the true, simulated model
would pass through a filter using different cut-offs. We evaluated
a range of cut-off values based on classification error, from 45%
(a very loose filter) to 35% (a more stringent filter). The number
of times the classification error score of our disease locus combi-
nation, passed through the filter for all 100 replicates was counted
and converted to percentage points to estimate power.

False positive rate of the MDR filter
We then estimated the false positive rate of the two-locus epista-
tic models for the MDR method. To find this rate we calculated
the frequency of noise (the non-disease two-locus combinations)
passing through the classification error filter. For each replicate
within each purely epistatic model the number of non-disease
locus combinations that passed through the filter at the six differ-
ent levels of the filter from 35 (the most stringent) to 45 (a score
that could be expected by chance), was counted. The average for
each error filter level, within each model was then calculated by
averaging over the counts collected from the 100 replicates in that
model; these scores were then converted to percentage points.

Large dataset analysis
In order to get a an idea of how well our filter may perform in
the presence of thousands of noise SNPs, we ran an EC analysis
and a one-way and two-way MDR analysis on a simulated dataset
of 50,000 SNPs, with 1,000 cases, and 1,000 controls. The simu-
lated dataset includes four interacting loci with 1 two-locus XOR
model with heritability of 2% and 2 one-locus dominant models
with heritability of 0.9 and 2%. All models had the minor allele
frequencies set at 0.5. The whole four-way penetrance function
had heritabilities ranging from 0 to 2% for all the individual two-
way interactions contained within it (Table A7 in Appendix). This
additional analysis was performed to evaluate how well the results
seen in the simulation experiment might extrapolate to larger data,
with a GWAS number of SNPs.

Implementation
Multifactor dimensionality reduction was implemented in C++,
the two-locus LR was implemented in R, and the EC and
GAIN algorithms are both implemented in JAVA. All simulations
and analysis were run on quad-core Core2 Xeon processors (8
processors, each at 3 GHz and with 4 GB of memory). A java
implementation of MDR software is publicly available through
www.epistatis.org and an R implementation is available through
http://cran.r-project.org/ (Winham and Motsinger-Reif, 2010).
Java implementations of EC and GAIN were used from software
provided by (McKinney et al., 2009).

Results were tested for significance using a mixed model analysis
of variance approach. The analysis of variance model used checked
for effects of allele frequency, analysis method (MDR, EC, or LR),
models (effect sizes), and effect of association between allele fre-
quency and analysis method on ranks. Note that the p-values
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reported from the ANOVA are raw (uncorrected for multiple com-
parisons) since these tests are meant to help interpret the results
and not meant as strict statistical hypotheses.

RESULTS
ONE-LOCUS (MAIN EFFECT) MODELS
The ranking results for the disease causing SNP in the one-locus
models based on the MDR, EC, and LR analyses are shown in
Figures 2–4, for the dominant, additive, and recessive models.
The ranks are shown for all 16 models (in order of increasing
effect size on the x-axis) for all methods, and for both minor

FIGURE 2 | Ranking of the simulated disease locus for the one-locus

dominant main effect model. Δ: LR analysis for models with MAF of 0.2;
Δ: LR analysis for models with MAF of 0.4; •: MDR analysis for models
with MAF of 0.2; •: MDR analysis for models with MAF of 0.4. ×: EC
analysis for models with MAF of 0.2; ×: EC analysis for models with MAF
of 0.4. SeeTable A1 in Appendix for model descriptions.

FIGURE 3 | Ranking of the simulated disease locus for the one-locus

recessive main effect model. Δ: LR analysis for models with MAF of 0.2;
Δ: LR analysis for models with MAF of 0.4; •: MDR analysis for models
with MAF of 0.2; •: MDR analysis for models with MAF of 0.4. ×: EC
analysis for models with MAF of 0.2; ×: EC analysis for models with MAF
of 0.4. SeeTable A2 in Appendix for model descriptions.

allele frequencies models. As expected, the average rank of the
causal locus model improves as the effect sizes increase. There was
not a significant difference between the average ranks of LR and
MDR for the additive, dominant, or recessive models (p = 0.609,
p = 0.748, and p = 0.117 respectively). There was also no signifi-
cant difference between the MDR and EC results for the dominant
and recessive models (p = 0.818 and p = 0.062 respectively), how-
ever there was a difference in the results for the recessive model
(p = 3.83 × 10−6). Also, though not shown, the average ranking
for the noise loci (non-disease causing) ranged between 45 and 55
on a scale of 1–100 for all models (data not shown).

EC ranks for interacting loci for two-locus models
For the two-locus joint main and interaction effect models, the
two disease loci were ranked in the top 20% for the models with
“odds ratios”greater than 2.0 (Figure 5). The main effect locus was
in the top 20 for 57% of the total models while the second locus
was in the top 20 for about 28% of the models. For the purely
epistatic models, there was only one model in which EC ranked
the 2 interacting loci in the top 20%. The ranks were generally
between 40 and 50 for most models in this group (Figure 6).

Two-locus interaction (purely epistatic) models
The results of the rankings for the purely epistatic models are
shown in Figure 7. Again the models are ranked in order of
increasing effect size on the x-axis. For all 16 epistatic models,
the non-disease locus combinations had rankings expected by
chance, ranging between 2,000 and 3,000 on a scale of 1–4,950 (not
shown). These results demonstrate a marked difference between
the rankings produced by MDR and LR. MDR had better rank-
ings than LR for most of the models and especially so for the larger
effect sizes (p = 3.046 × 10−8). The comparison between the MDR
and GAIN results were better for GAIN when the effect sizes were
smaller, but were about the same for both methods when the effect

FIGURE 4 | Ranking of the simulated disease locus for the one-locus

additive main effect model. Δ: LR analysis for models with MAF of 0.2;
Δ: LR analysis for models with MAF of 0.4; •: MDR analysis for models
with MAF of 0.2; •: MDR analysis for models with MAF of 0.4. ×: EC
analysis for models with MAF of 0.2; ×: EC analysis for models with MAF
of 0.4. SeeTable A3 in Appendix for model descriptions.
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FIGURE 5 | EC Ranking of the simulated disease locus combination for

the two-locus joint main and interaction effect model. ◦: Locus 1 (main
effect locus); ×: Locus 2 (secondary interacting locus).

FIGURE 6 | EC Ranking of the simulated disease locus combination for

the two-locus pure interaction effect model. ◦: Locus 1 (main effect
locus); ×: Locus 2 (secondary interacting locus).

sizes were larger. The analysis of variance showed a significant dif-
ference between the two methods (MDR and EC) for this analysis
(p = 0.0005). There was also a significant difference between the
rankings for the models with minor allele frequencies of 0.2 and
those of 0.4 for the LR method (p = 1.267 × 10−5) but there was no
significant difference between effects of allele frequency on ranks
for the MDR and GAIN analysis. The results show a strong trend of
improving ranks as effect sizes increases for MDR and GAIN, but
it is clear that there is little improvement in rank for the LR results.
The average rankings for the models with allele frequency of 0.2,
for the LR analysis were not better than what could be expected by
chance as they had similar rankings as those for the null model.

Two-locus main effect and interaction models
The ranking results for the two-locus models with significant main
effects are shown in Figure 8, again arranged based on effect

FIGURE 7 | Ranking of the simulated disease locus for the two-locus

pure interaction effect model. Δ: LR analysis for models with MAF of 0.2;
Δ: LR analysis for models with MAF of 0.4; •: MDR analysis for models
with MAF of 0.2; •: MDR analysis for models with MAF of 0.4. ×: GAIN
analysis for models with MAF of 0.2; ×: GAIN analysis for models with
MAF of 0.4. SeeTables A4 and A5 in Appendix for model descriptions.

FIGURE 8 | Ranking of the simulated disease locus combination for the

two-locus main and interaction effect. Model Δ: LR analysis for models
with MAF of 0.2; Δ: LR analysis for models with MAF of 0.4; •: MDR
analysis for models with MAF of 0.2; •: MDR analysis for models with MAF
of 0.4. ×: GAIN analysis for models with MAF of 0.2; ×: GAIN analysis for
models with MAF of 0.4. SeeTable A6 in Appendix for model descriptions.

size of the models simulated. The results are similar to those
shown in Figure 5, with MDR having better rankings than LR
(p = 4.916 × 10−11), and about the same rankings for the com-
parison with GAIN. The ranking improves as effect size increases,
with the MDR and GAIN results. There was again a significant
difference in results with respect to minor allele frequency for
the LR results (p = 0.01774) but not the MDR or GAIN results
(p = 0.562 and p = 0.51 respectively). For the MDR and GAIN
analysis the results show that for all 16 models within this group,
the average rankings for locus combinations not including the dis-
ease SNPs were spread around the center (ranking between 2,000
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and 3,000) as expected, except for those locus combinations that
included the main effect SNP or the secondary interaction effect
SNP (which had better than average rankings), however, the locus
combination with both disease SNPs ranked highest in all mod-
els for both MDR and EC (results not shown). The LR analysis
ranked the actual disease locus combination has highest only for
the models with the larger minor allele frequency of 0.4 and did
not rank the other combinations that included either the main
effect locus or secondary disease locus any better than the average
(Figure 6). Again, the improvement of ranks in the LR analysis for
those locus combinations was not much different from the null
model.

Null model
The results from analyzing the null model using MDR, GAIN, and
LR, showed all loci with rankings ranging between 2,000 and 3,000,
which is to be expected by chance, and are accurate for this model
as no disease loci were simulated for this model (rankings shown
in Figure 9).

Power analysis of MDR results
The number of times that the correct disease model passed through
the MDR filter with a range of filter cut-offs is shown in Figure 10.
As expected, with lower cut-offs the “power” for the model to pass
through is higher, and as the cut-off is lower (more stringent),
the power is lower. At the more stringent cut-off, only the higher
effect size models pass through. The false positive rates are shown
in Figure 11; the increased power for the lower cut-off is at the cost
of a much higher false positive rate. The disease locus combination
for the smallest effect model was only able to pass the threshold of
43 at a 7% rate, however for the same effect size but with MAF of
0.4 it was able to pass the threshold of 41 at a rate of 2%. For the
largest effect model, even at the most stringent classification error
threshold of 35, the disease locus combination was able to pass
through the filter at a rate of 27% while no false positive could
pass below the threshold of 39, with the rate for that threshold
being 0.006%.

FIGURE 9 | Ranking of LR, GAIN and MDR on the null model. Δ: LR
analysis; •: MDR analysis; ×: GAIN analysis.

Large dataset results
For both the one-way MDR and EC analysis the four simulated
interacting disease SNPs were the highest ranked variants, with
both methods ranking them in the top 5 (MDR having them as
the best one-locus models and EC as the SNPs most enriched for
interactions). The two-way analysis of MDR showed the highest
ranked interaction to be the interaction between the two-locus
XOR model we had simulated into the data, and among the top
interactions were locus combinations including one of those two
SNPs. The two-locus exhaustive search done by MDR yielded
interactions involving the same SNPs that were ranked as hav-
ing the highest potential for interactions (in the top results) as the
iterative search of EC. When looking at the overall results, MDR
also ranked the interactions in which at least one of the disease
SNPs was involved higher than other interactions. As EC results
are a set of SNPs that have the most potential for interactions
with each other, and not the specific interactions themselves, a
GAIN analysis or perhaps a further MDR analysis of that result
set would be needed to find those interactions, but due to com-
putational resources and time constraints, this was not included
in this analysis. The results here show that even in the presence of
noise both MDR and EC should be able to find the SNPs with the
most potential for interactions in real data, with MDR being able
to further elucidate what the specific interactions may be.

DISCUSSION
It is now widely accepted that multiple genes may be responsi-
ble for many complex diseases and as such in the study of such
diseases, emphasis is now been placed on finding these interac-
tions. However, with the large amounts of data collected for these
studies, there are still few methods available to study all possi-
ble interactions (Ritchie et al., 2001; Hahn et al., 2003; Hu et al.,
2010; Steffens et al., 2010; Wan et al., 2010) between these variants
on a GWAS scale. Another obstacle may be the computational
time required for these methods to process all these interactions,
although BOOST (Wan et al., 2010) seems to do this in a reason-
able amount of time and with hardware requirements available to
most researchers. The issue here however is how are the results
from these preliminary analysis prioritized for replication and
biological and functional validation. As such, just being able to
analyze all possible interactions may not be enough, and methods
also have to ensure that the most significant interactions, rise to
the top, making filtering an important step for more success with
GWAS results replication, and useful health outcomes. We sim-
ulated datasets of SNPs for both main effect and epistatic effect
models, with varying effect sizes and allele frequencies, with the
goal of analyzing the data and ranking the outcomes, using MDR,
EC, and LR separately. As stated earlier there are several meth-
ods that have been put forward as filters for GWAS (Moore et al.,
2002; Hoh and Ott, 2003; Moore and Ritchie, 2004; Wang et al.,
2006; Culverhouse, 2007; Calle et al., 2008; Saccone et al., 2008).
Our study compares ranking methods based on significance scores
(LR, EC) and classification errors (MDR) derived from the SNPs
and combinations of SNPs within our data without adding any
extra information.

The analysis of the one-locus main effect datasets for the
three different inheritance models show that the three methods
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FIGURE 10 | Power of MDR for detecting correct disease loci. Plots: 1, 2, 3, 4, 5, and 6 show power of detecting true interacting loci using filter based on
classification error rates of 45, 43, 41, 39, 37, and 35 respectively for two-locus interaction effects only models 1 through 16 (seeTables A4 and A5 in Appendix).

have comparable performance in detecting the disease locus for
the dominant and additive models. The ranking results for both
types of data follow a similar pattern with the ranks improving
as the effect sizes increased regardless of the minor allele fre-
quency. The recessive model showed an almost identical pattern
with the exception that there were separate curves according to
minor allele frequencies, with those having MAF of 0.4 having
better ranks than those with 0.2 for the same effect sizes and
this followed for all three methods (note here that the minor
allele is our disease causing allele). This disparity of the reces-
sive model as compared with the other two models may be due to
the nature of the recessive model itself; since the disease locus
is homozygous for the minor allele and as such the smaller
minor allele frequency (0.2), produces a smaller genotype fre-
quency for the disease genotype thereby creating fewer cases of
this genotype to select from for these datasets than for the datasets
with the larger minor allele frequency (0.4). The analysis here
mainly showed that for main effect models, MDR, EC, and LR
worked comparably well with similar results using our ranking
system.

The two-locus purely epistatic models show a significant dif-
ference between the ranks estimated by MDR and EC from that
of LR. The results showed that when the minor allele frequency
was small (0.2), LR was unable to rank the interacting disease loci
better than it would by chance, even as the effect sizes increased,
but for the datasets with MAF of 0.4, LR rankings were better than
would be expected by chance, and ranging between 4,950 and 1. In
contrast the rankings from MDR and EC were always better than
what could be expected by chance regardless of allele frequency
and there was consistent improvement in ranking as the effect
sizes increased. These results show that for higher-order interac-
tions LR may fail to find the disease locus. This supports findings
from other studies showing that sparse contingency table cells can
result in biased coefficient estimates and large SE estimates with
LR analysis (Concato et al., 1993; Peduzzi et al., 1996; Hosmer
and Lemeshow, 2000) The MDR and GAIN comparisons however,
were about the same when finding the disease loci and even when
finding other loci that are associated with either of the disease loci.
Although GAIN may be used to exhaustively find all possible two-
way interactions (which is how our two-way interaction analysis
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FIGURE 11 | False positive rate of MDR as filter. Plots: 1, 2, 3, 4, 5, and 6
show rates in percentages of false positives based on classification error

rates of 45, 43, 41, 39, 37, 35 respectively for two-locus interaction effects
only models 1 through 16 (seeTables A4 and A5 in Appendix).

was done), it has been used by others (McKinney et al., 2009) as
a second step after selection of SNPs by some other method such
as EC and is designed for finding interactions and not for selec-
tion of SNPs enriched for interactions. The results of using it after
filtering with EC will depend greatly on how well EC selected the
SNPs most enriched for interactions.

The models with main and interaction effects show that MDR
and GAIN were able to find both loci at both minor allele frequen-
cies. Again, LR was unable to give a ranking that would have been
better than chance for the lower allele frequency. Another impor-
tant observation here was that MDR and GAIN also ranked all
loci interacting with the secondary locus much higher than those
that were not and further still, it ranked loci interacting with the
main effect locus even higher. The EC ranks of the two separate
interacting loci showed that their average rank was in the top half
of all SNPs and the ranks got better and were among the top 20 as
the effect sizes became larger.

It has been shown in a previous study using LR to analyze
genome wide data using different strategies (Marchini et al., 2005)
that searches that allowed for interactions are generally more pow-
erful than single locus searches alone for genome wide datasets
even after accounting for multiple testing. It was also shown that
the information gathered from multiple loci simultaneously is
greater than that from single locus analysis. This is important

in the context of the current study, since based on the increased
performance of MDR in ranking correct signals and on previous
study results, MDR has a better performance than LR, such that if
a more formal hypothesis testing approach was used instead of just
a ranking approach, it is expected that MDR would have improved
performance compared to LR.

Our power analysis of the MDR results reveal that even at
stringent thresholds of classification error, the rate of false pos-
itives passing the filter was relatively low, with 0.001% false pos-
itive rate at a threshold of 39 for the model with the smallest
effect size (MAF = 0.2, “odds ratio”= 1.2, h2 = 1%) and a rate of
0.005 at the same threshold for the model with the largest effect
size (MAF = 0.4, “odds ratio”= 3.0, h2 = 5%). Within this same
threshold, the disease loci also passed through the filter at a rate
of 93% for the model with the largest effect size and at a rate of
0% for the model with the smallest effect size. It is important to
note here that even with this low rate, the disease loci combina-
tion was still ranked highest in this model, as the rank is based on
the average classification error for each locus combination, not on
single occurrences. At the most stringent threshold of 35 in our
filter, the disease loci combination passed through the filter at a
rate of 27% for the largest effect size model with no false positive
passing through, while for the smallest effect size model, no locus
combination passed through the threshold.
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The findings from these simulations suggest that MDR, EC,
and LR perform favorably in detecting main effects, but MDR and
GAIN perform better than LR in detecting epistatic effects espe-
cially when the effect sizes are small. Even though we performed
our MDR analysis without cross-validation our analysis still pro-
duced powerful results, supporting other studies that have used
MDR without cross validation (Mei et al., 2005). Our method is
non-parametric as no models are implied, and can be used to
rank any number of interactions computationally feasible; it is
also clear from our results that MDR has an advantage over LR in
finding very small effects. As it is now being suggested that combi-
nations of these tiny effects may be very important in manifesting
the disease phenotype, methods such as MDR may assist in giv-
ing more clues as to the pathophysiology of these diseases, which
could become important factors in designing drug targets for their
treatment.

Overall the results of the current study demonstrate the poten-
tial of the use of the MDR method as a filter in large-scale genetic
association studies. The study demonstrates that as a ranking pro-
cedure, the “signal” emerges from the noise for even very small
effect sizes, and this signal emerges more readily using MDR mod-
eling compared to LR modeling. Additionally, it demonstrates the
ability of MDR to detect both purely epistatic models, as well as
models with main effects. This is in contrast to the filter approaches
that have previously been proposed (Hoh et al., 2001; Evans et al.,
2006), that make assumptions about the etiology of the interaction
in their model search.

It is important to note here that while our analysis showed MDR
to be a successful filter, the SNPs analyzed were all independent of
each other as LD was not included as a factor in the simulations,
however the effects of LD on MDR have been investigated (Grady
et al., 2011), and they found that loci not in direct association
with the disease SNP, but in LD with it, may be good predictors
of disease risk and can help in singling out actual risk alleles, but
there is also the danger of those indirect associations coming up
as the best models. This is similar to the results we obtained for
the two-locus joint main and interaction effect models where loci
in association with the main effect locus are ranked higher than
those not in association. This allows us to believe that the locus
combinations that rank high in our filter may also be used as pre-
dictors of disease risk alleles, if there is some correlation between
them. Related to this, it would also be important in future studies
to evaluate the impact of current imputation methods (based on
LD patterns and reference genomes) on the performance of MDR
and other machine learning methods on the performance of the
filter.

Additionally, the models themselves were not tested for signifi-
cance; although the results of our joint main and interaction effect
models suggest that the correct model may still rise to the top. All
p-values shown are raw p-values and were not corrected for mul-
tiple testing and as such are intended mostly for interpretation.
There was not a rigorous method to threshold selection in our
filter, but care was taken to use threshold intervals that allowed
for a range of liberal inclusion of false positives to more stringent
threshold.

Another consideration here is that although this analysis is
intended for genome wide association data our simulations were

not done on a GWAS scale. Although our large dataset consisted
of 50,000 SNPs it cannot be considered genome wide. This part
of the analysis was done primarily to show that even in the pres-
ence of noise, MDR is capable of finding the best candidates for
interaction, and can act as a filter. We also expect that it should
be able to do so with data on a genome wide scale. While the
exhaustive search approach is ideal for detecting purely epista-
tic effects, the most immediate limitation of this approach for
GWAS is the computation time required for higher-order inter-
actions. Currently, two-way interaction searches are feasible for
GWAS scale data (Greene et al., 2010) and improving the compu-
tation time for the approach is an active area of research for MDR,
hopefully making searches for higher-order interactions feasible
in large studies.

In thinking toward this goal, it is important to remember that
model over fitting could become a concern. Computational lim-
itations limit concerns with over fitting with the current filtering
approach, but it must be remembered that classification error will
always decrease as the order of interaction increases (Motsinger
and Ritchie, 2006), and in the traditional application of MDR,
internal model validation is used to control over fitting. By remov-
ing the cross-validation step for this filter, this characteristic of
classification error as a metric must be kept in mind. Using this fil-
ter approach for discovery only, within a study design that includes
a validation set would be important to limit false positives. If
models are over fit, false positive loci should be removed in the
validation stage of the study.

While this study has shown MDR’s utility as a filter, this is still
a preliminary analysis, and is only the beginning stage of applying
MDR as a filter approach, there is still more that can be done to
improve its utility as a filter for GWAS studies. Future directions
aim to address issues that were not addressed in this study, which
include the incorporation of significance testing for the models
before ranking is performed. The current study simulated various
effect sizes and various classification thresholds were tested. An
analysis of a more rigorous approach to better determine classifi-
cation error thresholds for more reasonable effect sizes that may be
encountered in real data also needs to be done. While this method
filters models based on ranks, it has not been tested for optimiza-
tion of power to detect associations for a two-stage analysis in
which case the selected models from the first stage (one partition
of all data) are further tested on another partition of the data, as has
been done with other two-stage or two-phase joint analysis meth-
ods for main effects (Satagopan and Elston, 2003; Satagopan et al.,
2004; Wang et al., 2006; Zuo et al., 2006; Skol et al., 2007; Yu et al.,
2007; Kwak et al., 2009; Pan et al., 2011). Also as mentioned earlier,
it may be important to include prior biological information as part
of an overall filter strategy, as it would be expected that results from
such analysis should prove to be true biologically. However there
is currently no consensus on if inclusion of some of these path-
ways as factors in analysis actually improves the chances of finding
true associations, and there has been at least one study (Moskv-
ina et al., 2011) showing evidence of genetic interaction among
products with seemingly unrelated function. The same study also
shows that such a filter also suffers from the same problems of
previous methodologies, such as high false positive associations.
It is thought that these inflated false positive rates may be due to
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incomplete pathways, or a lack of true understanding of how these
pathways or other genomic interactions work.

In thinking about the application of such a filter approach in
real data, there are a couple of important points to consider. First,
while in the simulations studies performed we knew the correct
number of SNPs to be found (whether the real disease model
was due to single locus effects or interactions), of course in real
data this is unknown. Hopefully the results of the current study
encourage testing for both single locus and interaction models.
As computational capabilities advance, higher-order interactions
may be computationally feasible as well. Second, in real data, when
a two-locus model is found by MDR (ranked very highly), to really
understand how these loci confer risk, post hoc analysis should be
considered to better understand the model. A high rank of two
loci could be because of two strong main effects, or by interactive

effects. A high rank alone does not necessarily indicate an inter-
action effect, and the development of methods to help dissect the
underlying etiology of complex genetic models is an active research
area.

While we have done a comparison with one of the other prevail-
ing filtering approaches, this method may still need to be compared
with other filter approaches designed for the analysis of epistatic
interactions without main effects (Kooperberg, 2008; Hu et al.,
2010) to further evaluate its strengths, weaknesses, and to make it
more efficient.
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APPENDIX

Table A1 | Penetrance functions for one-locus dominant main effect models.

One-locus dominance models

OR Models (#) MAF = 0.2 Models (#) MAF = 0.4

AA Aa Aa AA Aa Aa

1.2 (1) h2 = 1.05% 0.0155 0.0155 0.012916 (2) h2 = 1.07% 0.0155 0.0155 0.012916

1.4 (3) h2 = 1.01% 0.0159 0.0159 0.011349 (4) h2 = 1.07% 0.0155 0.0155 0.01108

1.6 (5) h2 = 1.04% 0.017 0.017 0.010625 (6) h2 = 1.1% 0.016 0.016 0.009999

1.8 (7) h2 = 1.02% 0.017 0.017 0.009444 (8) h2 = 1.09% 0.016 0.016 0.008879

2.0 (9) h2 = 1.013% 0.017 0.017 0.0085 (10) h2 = 1.03% 0.015 0.015 0.0075

2.0 (11) h2 = 5.00% 0.083 0.083 0.041489 (12) h2 = 5.007% 0.072 0.072 0.035989

2.5 (13) h2 = 5.03% 0.0833 0.0833 0.03332 (14) h2 = 5.066% 0.072 0.072 0.0288

3.0 (15) h2 = 5.07% 0.08233 0.08233 0.02744 (16) h2 = 5.07% 0.071 0.071 0.02366

(#), Model numbers; OR, odds ratio; MAF, minor allele frequency; h2, heritability; values in the center of the table represent the probability of disease given the

genotype.

Table A2 | Penetrance functions for one-locus recessive main effect models.

One-locus recessive models

OR Models (#) MAF = 0.2 Models (#) MAF = 0.4

AA Aa Aa AA Aa Aa

1.2 (1) h2 = 1.06% 0.016766 0.01396 0.01396 (2) h2 = 1.09% 0.016766 0.01396 0.01396

1.4 (3) h2 = 1.088% 0.019766 0.014118 0.014118 (4) h2 = 1.077% 0.018366 0.013118 0.013118

1.6 (5) h2 = 1.027% 0.020966 0.0131 0.0131 (6) h2 = 1.05% 0.019366 0.0121 0.0121

1.8 (7) h2 = 1.028% 0.023126 0.012847 0.012847 (8) h2 = 1.08% 0.021126 0.01173 0.01173

2.0 (9) h2 = 1.068% 0.02607 0.013031 0.013031 (10) h2 = 1.077% 0.0218 0.010891 0.010891

2.0 (11) h2 = 5.006% 0.120806 0.06029 0.06029 (12) h2 = 5.03% 0.100806 0.05029 0.05029

2.5 (13) h2 = 5.002% 0.140558 0.05622 0.05622 (14) h2 = 5.003% 0.105106 0.04204 0.04204

3.0 (15) h2 = 5.08% 0.015791 0.052618 0.052618 (16) h2 = 5.038% 0.106906 0.035595 0.035595

(#), Model numbers; OR, odds ratio; MAF, minor allele frequency; h2, heritability; values in the center of the table represent the probability of disease given the

genotype.

Table A3 | Penetrance functions for one-locus additive main effect models.

One-locus additive models

OR Models (#) MAF = 0.2 Models (#) MAF = 0.4

AA Aa Aa AA Aa Aa

1.2 (1) h2 = 1.02% 0.01559 0.01429 0.012991 (2) h2 = 1.02% 0.015 0.01375 0.0125

1.4 (3) h2 = 1.1% 0.019008 0.016254 0.0135 (4) h2 = 1.2% 0.019008 0.016254 0.0135

1.6 (5) h2 = 1.004% 0.018501 0.015031 0.01156 (6) h2 = 1.08% 0.018001 0.014626 0.01125

1.8 (7) h2 = 1.06% 0.020995 0.016329 0.011663 (8) h2 = 1.05% 0.018031 0.014024 0.010016

2.0 (9) h2 = 1.028% 0.020995 0.015746 0.010496 (10) h2 = 1.02% 0.018005 0.013503 0.009002

2.0 (11) h2 = 5.1% 0.104091 0.078059 0.052027 (12) h2 = 5.02% 0.087 0.06525 0.0435

2.5 (13) h2 = 5.01% 0.11091 0.077637 0.044364 (14) h2 = 5.03% 0.09051 0.06335 0.036199

3.0 (15) h2 = 5.02% 0.116091 0.077391 0.03869 (16) h2 = 5.03% 0.092 0.061333 0.030667

(#), Model numbers; OR, odds ratio; MAF, minor allele frequency; h2, heritability; values in the center of the table represent the probability of disease given the

genotype.
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Table A4 | Penetrance functions for two-locus interaction (epistatic) effect models with minor allele frequency of 0.2.

Interaction effect models (MAF = 0.2)

Model (#) AABB AaBB aaBB AABb AaBb aaBb AAbb Aabb Aabb

(1) OR = 1.2, h2 = 1.02% 0.795 0.043 0.241 0.357 0.194 0.193 0.082 0.21 0.2

(3) OR = 1.43, h2 = 1.09% 0.029 0.324 0.151 0.001 0.255 0.187 0.31 0.165 0.21

(5) OR = 1.61, h2 = 1.1% 0.202 0.148 0.227 0.075 0.133 0.246 0.265 0.24 0.178

(7) OR = 1.82, h2 = 1.1% 0.519 0.926 0.995 0.945 0.936 0.966 0.986 0.963 0.946

(9) OR = 2.0, h2 = 1.12% 0.043 0.088 0.11 0.059 0.166 0.068 0.125 0.069 0.117

(11) OR = 2.03, h2 = 5.05% 0.706 0.533 0.003 0.535 0.063 0.247 0.002 0.246 0.191

(13) OR = 2.5, h2 = 5.13% 0.202 0.218 0.339 0.032 0.112 0.403 0.43 0.392 0.236

(15) OR = 3.02, h2 = 5.1% 0.438 0.223 0.176 0.389 0.368 0.105 0.092 0.115 0.252

(#), Model numbers; OR, odds ratio; MAF, minor allele frequency; h2, heritability; values in the center of the table represent the probability of disease given the

genotype.

Table A5 | Penetrance functions for two-locus interaction (epistatic) effect models with minor allele frequency of 0.4.

Interaction effect models (MAF = 0.4)

Model (#) AABB AaBB aaBB AABb AaBb aaBb AAbb Aabb aabb

(2) OR = 1.24, h2 = 1.0% 0.166 0.407 0.498 0.454 0.402 0.371 0.436 0.394 0.396

(4) OR = 1.448, h2 = 1.07% 0.255 0.081 0.054 0.083 0.104 0.102 0.052 0.099 0.117

(6) OR = 1.62, h2 = 1.14% 0.087 0.176 0.267 0.276 0.172 0.193 0.139 0.234 0.168

(8) OR = 1.81, h2 = 1.1% 0.062 0.115 0.091 0.15 0.102 0.065 0.045 0.081 0.145

(10) OR = 2.0, h2 = 1.17% 0.022 0.146 0.072 0.07 0.11 0.099 0.172 0.061 0.114

(12) OR = 2.0, h2 = 5.04% 0.678 0.281 0.098 0.129 0.254 0.38 0.307 0.309 0.227

(14) OR = 2.5, h2 = 5.04% 0.202 0.189 0.479 0.188 0.391 0.212 0.481 0.213 0.322

(16) OR = 3.05, h2 = 5.03% 0.34 0.106 0.267 0.236 0.142 0.27 0.101 0.324 0.084

(#), Model numbers; OR, odds ratio; MAF, minor allele frequency; h2, heritability; values in the center of the table represent the probability of disease given the

genotype.

Table A6 | Penetrance functions for two-locus interaction (epistatic) and main effect models.

Interaction and main effect models

OR Models (#) AABB AaBB aaBB AABb AaBb aaBb AAbb Aabb aabb

1.2 (1) h2 = 1.02% 0.37 0.37 0.3074 0.37 0.37 0.3074 0.37 0.3074 0.3074

(2) h2* = 1.02%

1.4 (3) h2 = 1.99% 0.37 0.37 0.2636 0.37 0.37 0.2636 0.37 0.2636 0.2636

(4) h2* = 3.3%

1.6 (5) h2 = 1.3% 0.37 0.37 0.2309 0.37 0.37 0.2309 0.37 0.2309 0.2309

(6) h2* = 2.3%

1.8 (7) h2 = 1.99% 0.37 0.37 0.2055 0.37 0.37 0.2055 0.37 0.2055 0.2055

(8) h2* = 3.3%

2.0 (9) h2 = 2.68% 0.37 0.37 0.1846 0.37 0.37 0.1846 0.37 0.1846 0.1846

(10) h2* = 4.3%

2.5 (11) h2 = 4.3% 0.37 0.37 0.1479 0.37 0.37 0.1479 0.37 0.1479 0.1479

(12) h2* = 6.5%

3.0 (13) h2 = 5.9% 0.37 0.37 0.1229 0.37 0.37 0.1229 0.37 0.1229 0.1229

(14) h2* = 8.4%

(#), Model numbers; OR, odds ratio; h2, heritability scores for datasets with minor allele frequency of 0.2; h2*, heritability scores for datasets with minor allele

frequency of 0.4; values in the center of the table represent the probability of disease given the genotype.
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Table A7 | Four-way penetrance function for large dataset.

CC Cc cc

BB Bb bb BB Bb bb BB Bb bb

AA 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

DD Aa 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

aa 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

AA 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Dd Aa 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

aa 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

(1) (2) (3)

AA 0.055 0.055 0.055 0.095 0.095 0.095 0.01 0.0634 0.01

dd Aa 0.055 0.055 0.055 0.095 0.095 0.095 0.0634 0.01 0.0634

aa 0.01 0.01 0.01 0.0095 0.0095 0.0095 0.01 0.0634 0.01

MAF = 0.5; (1) h2 = 0.9%; (2) h2 = 2.0%; (3) h2 = 2.0%.

Total h2 = 5.0%.

(#), Embedded penetrance functions for the 2 one-locus and the XOR two-locus models respectively are shaded in gray; h2, heritability scores; MAF, minor allele

frequency; values in the center of the table represent the probability of disease given the genotype.
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