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A Hypothesis Concerning the Biphasic
Dose-response of Tumors to Angiostatin
and Endostatin
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Abstract
This manuscript proposes a hypothesis to explain the U-shaped dose-response observed for angiostatin and other
high-molecular-weight drugs in various anti-cancer bio-assays. The dose-response curves for angiostatin and endostatin
(measured as suppression of tumor growth) go through an optimum (i.e., minimum tumor growth) and then becomes less
effective at higher doses. The literature suggests that at lower doses the primary action of these high-molecular-weight drugs is to
counteract the angiogenic effects of vascular endothelial growth factor (VEGF). To do this, the drugs must pass out of the blood
vessel and enter the extra-cellular matrix (ECM) where VEGF induces the growth and fusion of tip cells. Ironically, VEGF actually
facilitates access of the drugs to the ECM by making the vascular endothelium leaky. At higher doses, the high-molecular-weight
drugs seem to reverse VEGF-induced permeability of the endothelium. Thus, at high dose rates, it is hypothesized that the drugs
are not able to enter the ECM and block the angiogenic effects of VEGF there. As a result, high doses of the drugs do not suppress
vascularization of the tumor or tumor growth. Moreover, if the permeability of the vessels is suppressed, the VEGF released
by the stroma is concentrated in the ECM where it amplifies the angiogenic activity around the tumor.
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Angiogenesis and Cancer

In the early 1980s, it was recognized that a factor secreted by

tumor cells caused leakage from blood vessels and the term

‘‘vascular permeability factor’’ (VPF) appeared in the litera-

ture (Senger et al. 1986; Clauss et al. 1990). It was also soon

realized that VPF was associated with growth of blood vessels

(i.e., angiogenesis) around tumors (Dvorak et al. 1991; Senger

et al. 1993) and the term was changed first to ‘‘vascular per-

meability factor/vascular endothelial growth factor’’ (Senger

et al. 1993) and finally to merely ‘‘vascular endothelial

growth factor’’ (VEGF) by 1993 (Adamis et al. 1993).

Although some tumors attain nutrients by growing along

existing blood vessels or otherwise coopting existing blood

vessels (Dome et al. 2007; Donnem et al. 2013), by the late

1990s, it was widely accepted that conversion of hyperplasia

into neoplasia is accompanied by (and facilitated by) formation

of new blood vessels, i.e. an ‘‘angiogenic switch’’ (Hanahan

and Folkman 1996; Bergers et al. 1999; Folkman 2002). Rap-

idly growing tumors tend to display an ‘‘aerobic glycolysis’’

phenotype (i.e., the Warburg effect) in which both aerobic and

anerobic respiration provide energy (Sciacovelli et al. 2014)

and proliferation is only limited by the availability of the

blood supply. Sustained angiogenesis became recognized

as one of the hallmarks of cancer (Hanahan and Weinberg

2000). Thus, great interest has developed in finding anti-

angiogenic drugs (Folkman 1985; Folkman and Ingber

1992; Bergers et al. 1999).

The Tumor and its Stroma

Once a tumor has begun growing, inflammation and hypoxia

cause the release of chemokines that attract immune cells

that begin to form the stroma. VEGF/VPF isoforms are also

cytokines that attract monocytes (Czepluch et al. 2011),

macrophages (Li et al. 2011), pericytes (Grosskreutz et al.

1999; Yamagishi et al. 1999; Ribatti et al. 2011) and
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fibroblasts (Senger et al. 1993; Wynn 2008; Asumda and

Chase 2011) to surround the tumor. The attraction of the

pericytes to the tumor apparently pulls them from the

endothelial walls of the local blood vessels and makes the

blood vessels hyper-permeable (i.e., leaky) (Adams and Ali-

talo 2007; Zhao et al. 2007; Azzi et al. 2013).

It has been found that the concentration of VEGF/VPF in the

microenvironment (i.e., immediately around specific clusters

of cells) rather than the bulk concentration of VEGF/VPF is

what is important in determining the course of angiogenesis

(Dvorak et al. 2011; Fidler 2011). In an interesting series of

experiments, Blau and coworkers (Springer et al. 2003; Ozawa

et al. 2004; von Degenfeld et al. 2006) created four homoge-

neous clones of myoblast that secreted VEGF at different lev-

els. They found that when they used mixtures of cell clones to

produce average dose rates between 5 and 70 ng VEGF/106

cells/day, angiogenesis was observed with formation of normal

blood vessels. At gross dose rates greater than about 100 ng

VEGF/106 cells/day, abnormal development of blood vessels

occurred leading to hemangiomas. More importantly, when

homogeneous clones of myoblast that produced less than 70

ng VEGF/106 cells/day were used, no abnormal foci or abnor-

mal angiogenesis were observed regardless of the number of

myoblast injected; and the blood vessels that were formed

were not leaky, had normal pericytes and were VEGF-

independent. In contrast, when individual cells producing

higher dose rates of VEGF were used, the blood vessels that

formed were leaky, VEGF-dependent, and malformed.

Clearly, new blood vessels tend to form only very near the

source of VEGF/VPF (i.e., a very steep concentration gradi-

ent) (Springer et al. 2003). This observation may be related to

the way that VEGF/VPF interacts with receptors (Kiba et al.

2003a; Kiba et al. 2003b). VEGF levels are normally very

tightly controlled because too little or too much VEGF can be

lethal to developing embryos (Carmeliet et al. 1996;

Miquerol et al. 2000).

In any event, the observations are consistent with the fact

that VEGF/VPF acts locally; not systemically. The nutrient

demand of rapidly growing tumors requires a blood supply

that is initially provided by secretion of VEGF/VPF that

dilates local blood vessels and makes them leaky. Leaky

blood vessels appear to be caused by the migration of peri-

cytes (Hasumi et al. 2007; Zhao et al. 2007; Cao and Cao

2010; Cao et al. 2010; Ribatti et al. 2011) that fill gaps

between endothelial cells into the ECM.

The Modes of Action of VEGF/VPF

The mechanism of angiogenesis induced by VEGF/VPF is

still poorly understood, but recent publications have provided

some detail (Ferrara et al. 2003; Dvorak et al. 2011;

Jeong et al. 2011; Ji 2011; Li et al. 2011; Ribatti et al.

2011; Tammela et al. 2011; Weis 2011; Indraccolo 2013).

There seem to be two distinct activities of VEGF/VPF: (i)

formation of leaks in existing vessels and (ii) formation of

new vessels. In normal vessels the lumen accounts for about

30% of the vessel diameter, but under the influence of high

concentrations of VEGF/VPF pericytes that maintain the

integrity of normal vessels appear to be drawn away towards

the tumor cells (Dvorak et al. 2011; Ribatti et al. 2011). Thus,

the weakened vessels balloon outward and leak blood with

macromolecules through the thin lining of endothelial cells

(Dvorak et al. 1991). This effect of VEGF/VPF acts quickly

(within 5 hr) but has a limited range of less than 0.5 mm from

the tumor (Dvorak et al. 1991). The angiogenic effects of

VEGF/VPF appear to act over greater distances (or at lower

concentrations). For example, in the rabbit cornea model

(Gimbrone et al. 1973) used to investigate angiogenesis, new

vessels are induced to sprout many millimeters from the

source of VEGF/PVF (Ryu and Albert 1979). The sprouting

of new blood vessels may not begin for 1 to 10 days (Ryu and

Albert 1979).

Anti-Angiogenic Agents

The clinical importance of biphasic angiostatic agents has

recently been reviewed (Reynolds 2010).

Formation and Composition of Angiostatin and
Endostatin

Concurrent with the establishment of angiogenesis and rapid

growth of solid tumors, a variety of enzymes are used by the

tumor to break down the ECM. The enzymes (e.g., matrix

metalloproteinases (MMPs) and urokinase-type plasminogen

activators (uPA)) cut polymers (e.g., glycosaminoglycans, pro-

teoglycans and collagen) and proteins (e.g., plasminogen) into

smaller soluble pieces (plasmin and angiostatin). Angiostatin (a

38 kDa protease fragment of plasminogen) (O’Reilly et al.

1994; Folkman 1995; Dong et al. 1997; Gately et al. 1997) was

identified as a natural anti-angiogenesis agent in 1994 and was

soon proven to have potent anti-tumor effects. Similarly, endo-

statin (a C-terminal, 20 kDa, zinc-binding protein cut from

collagen XVIII) was discovered in 1997 (O’Reilly et al.

1997; Beecken et al. 2001).

Targets of Angiostatin

Angiostatin binds to cell surface glycoproteins, angiomotin

(Troyanovsky et al. 2001), integrins (Tarui et al. 2001;

Chavakis et al. 2005; Wahl et al. 2005), ATP synthase

(Moser et al. 1999; Wahl et al. 2005; Chi and Pizzo 2006;

Yamamoto et al. 2007). It also binds to mitochondrial ATP

synthase (Lee et al. 2009).

Effects of Angiostatin

Angiostatin is known to promote apoptosis (O’Reilly et al.

1994; O’Reilly 1997; Lee et al. 2009). It inhibits recruitment

of macrophages (Distler et al. 2002; Chavakis et al. 2005;

Dineen et al. 2008; Lee et al. 2009; Chen et al. 2011; Li

et al. 2011; Lin et al. 2011), which are normally attracted into
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the stroma by signaling involving VEGFR-1 and VEGFR-2 (Li

et al. 2011) and which are involved with completing vascular

circuits with VEGFR-3 (Tammela et al. 2011). Angiostatin has

recently been shown to inhibit migration and activation of

neutrophils (Aulakh et al. 2014).

Hypothesis for Action

One hypothesis for its mechanism of action is that angiostatin

blocks the action of hepatocyte growth factor (HGF) (Wajih

and Sane 2003), which activates the c-met receptor. The c-met

receptor of endothelial and smooth muscle cells initiates migra-

tion and facilitates proliferation essential to establishment of

new blood vessels (Chang et al. 2013). There is very active

research on this pathway in a number of cancer types. The

mechanism appears to be dependent on the kringle 5 (K5)

domain of angiostatin which is shared with HGF (Ansell

et al. 2010). The mechanism of endostatin is less studied but

appears to facilitate apoptosis and suppress autophagy by mod-

ifying the effect Bcl-2 via its complex with Beclin 1 (Ramak-

rishnan et al. 2007; Wu et al. 2011; Ibrahim et al. 2014).

Disappointing Clinical Results and the U-shaped Dose-
Response Curve

Following the 1996 report from the Folkman group on the pre-

clinical effects of angiostatin (O’Reilly et al. 1996) there was

much optimism that at last a ‘‘unifying concept’’ had been

discovered for cancer treatment (Saphir 1997). Numerous can-

didate compounds went into clinical trials (Folkman 2003) and

the ownership of intellectual property was aggressively con-

tested (Brower 2000). But, as time passed, the dream of a

universal chemotherapy for cancers began to wane as clinical

trials produced less than overwhelming results (Gupta and

Zhang 2005). Reynolds has provided a comprehensive review

of the findings and show that a u-shaped dose-response curve

may be the problem in many cases (Reynolds 2010; Javaherian

et al. 2011). Here, I want to dissect the U-shaped curve into its

component parts.

A Hypothesis for U-Shaped Dose Response
for Angiostatin

Mathematically, a U-shaped curve can be derived from two

S-shaped dose-response curves as indicated in Figure 1.

Many biochemical mechanisms could be invoked to account

for the two S-shaped curves. The key factor here seems to be

that VEGF/VPF released by the tumor is known to have two

distinct modes of action: It is angiogenic and it causes per-

meability of the nearby blood vessels. Based on our under-

standing of the roll of VEGF/VPF in angiogenesis (discussed

above), a conceptual model can be proposed (Figure 1). The

first drug target (with a rather low effective dose 50%, ED50)

blocks angiogenesis and inhibits tumor growth as expected.

At higher doses, a second target (with higher ED50) blocks

the access of the drug to the first target. This model has the

virtue of requiring a minimum number of assumptions. The

second target is merely nullifying the first target. Although it

is easy to postulate such a model with some confidence, it is

harder to demonstrate the actual biochemical processes that

are being impacted by the drug.

Discussion

As discussed above, VEGF/VPF has very localized effects on

angiogenesis (Springer et al. 2003), whereas the angiostatin

and endostatin effects are systemic (i.e., they suppress angio-

genesis at distant metastases) (Fisher et al. 1989a; Fisher et al.

1989b; Fisher et al. 1990). The U-shaped dose-response of

angiostatin on angiogenesis is probably traceable to its differ-

ent affinity and/or efficacy towards two (or more receptors).

Low Dose Rates of Angiostatin

The effects of angiostatin, especially interference with VEGF

signaling, are believed to cause the inhibition of angiogenesis

(Lee et al. 2009) consistent with the mechanism of VEGF-

induced angiogenesis discussed above (Fantin et al. 2010; Fan-

tin et al. 2011; Fantin et al. 2013; Lanahan et al. 2013; Fantin

et al. 2014). This appears to be the primary effect of the angio-

static agents at low doses (dose rates).

High Dose Rates of Angiostatin

On the other hand, access of exogenous angiostatin (a moderate

size 38kD protein) introduced from the blood stream (Kenan

and Wahl 2005) into the ECM (i.e., where the new blood ves-

sels are being formed) is facilitated by the VEGF/VPF-induced

dilation (Koshida et al. 2003) and leakage (Sima et al. 2004;

Shyong et al. 2007) of the existing blood vessels. At higher

Target 1 inhibit angiogenesis inhibit tumor growth
(low ED50)

Target 2 > inhibit >inhibit 
(high ED50) permeability     drug delivery

Dose

Effect

Tumor Growth

An�-angiogenic
effects

An�-permeability
effects

VEGF
concentra�on

In Stroma

Target 1
low ED50

Target 2
high ED50

Figure 1. Two S-shaped Curves Produce a U-shaped Curve. Based on
inspection of typical S-shaped curves, we estimate that the ED50 for
the anti-angiogenic effect is about half-way down the slope and the
ED50 for the anti-permeability effect is about at the bottom of the U.
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dose rates, angiostatin causes constriction of blood vessels

(Koshida et al. 2003) and stops the leakage (Sima et al. 2004;

Shyong et al. 2007), thus preventing the exogenous drug from

getting into the ECM where tumor-associated macrophages are

facilitating the completion of vascular circuits. It is also rele-

vant that reduction in the permeability of the blood vessels

ensures that the VEGF/VPF (protein 32-44 kDa) will be

concentrated in the stroma rather than dissipated in the blood

(Figure 1) and enhances angiogenesis. Hence, high doses (dose

rates) actually reduce the effectiveness of angiostatin and

produce a U-shaped dose-response curve (Figure 1). Endostatin

seems to follow a similar pattern (Celik et al. 2005; Tjin Tham

Sjin et al. 2006) for the same reasons (Brankin et al. 2005;

Marneros et al. 2007).

While high doses of angiostatin appears to interrupt VEGF

signaling by interacting with its receptors (VEGFR), a huma-

nized monoclonal antibody has been designed to directly target

VEGF (i.e., bevacizumab, Avastin). This VEGF antibody sup-

presses perfusion of water and docetaxel (molecular weight

808 g/mole) into tumors (Van der Veldt et al. 2012) presumably

by preventing VEGF from reaching its receptors on pericytes

(Greenberg et al. 2008). This observation is at odds with the

hypothesis that ‘‘normalized’’ (non-leaky) blood vessels are

more efficient for drug delivery to tumors (Azzi et al. 2013).

It has recently been suggested (Van der Veldt et al. 2012) that

introducing cytotoxic anti-cancer agents before administration

of agents that suppress VEGF signaling and allows the cyto-

toxic agent to enter the tumor and then be trapped there (i.e.,

reduced clearance). Because of their size, access of blood-

borne angiostatin and endostatin to the ECM may be particu-

larly sensitive to the porosity of the blood vessels.

Summary

This U-shaped dose-response of angiostatin is consistent

with the variety of high-molecular-weight drugs (i.e., that

do not readily diffuse through tissues) that are known to have

U-shaped dose response against angiogenesis (Slaton et al.

1999; Motegi et al. 2002; Panigrahy et al. 2002), and thus,

could provide a universal explanation for this behavior

(without specifically addressing molecular interactions,

which are still poorly understood). One prediction of this

hypothesis is that the angiogenic effects would be more

effective at high doses if the drug did not depend on reaching

the tumor via the blood vessels. Indeed, strategies using

viruses to express the anti-angiogenic agents in the tumor

itself have been developed and seem to work well (Shyong

et al. 2007; Luo et al. 2011).
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