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A Schema-Based Robot Controller
Complying With the Constraints of
Biological Systems

Fabien Lagriffoul *

Centre for Applied Autonomous Sensor Systems (AASS), Orebro University, Orebro, Sweden

This article reports on the early stages of conception of a robotic control system based
on Piaget’s schemas theory. Beyond some initial experimental results, we question the
scientific method used in developmental robotics (DevRob) and argue that it is premature
to abstract away the functional architecture of the brain when so little is known about its
mechanisms. Instead, we advocate for applying a method similar to the method used
in model-based cognitive science, which consists in selecting plausible models using
computational and physiological constraints. Previous study on schema-based robotics
is analyzed through the critical lens of the proposed method, and a minimal system
designed using this method is presented.
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1. INTRODUCTION

Developmental robotics (DevRob) is the logical outcome of convergent ideas from different fields
in Cognitive Science. In Philosophy, the theory of Embodied Cognition (EC) (Varela et al.,
1992) proposes an alternative to the Classical Computational Theory of Mind (CTM) (Fodor,
1975; Pylyshyn, 1984), rejecting the view of intelligence as a symbol manipulation process where
the symbols are abstract representations detached from the organism and its environment.
Cognition does not take place only in the brain but through the continuous process of interaction
between mind, body, and environment. In Robotics, the Nouvelle AI movement pioneered by
Brooks (1990) challenges classical symbolic Al, questioning the capacity of abstract symbols
to represent and reason upon the world. Instead, it is argued that intelligence emerges from
the interaction of multiple components implementing simple sensorimotor couplings between
an agent and the environment. In Psychology, Piaget introduces a constructivist theory of
knowing, in which learning takes place stage-wise, through the interaction of the child with her
environment (Piaget and Cook, 1952). Unlike the behaviorist approach which focuses and different
types of conditioning, Piaget emphasizes the active construction of novel structures to make sense
of new experiences. DevRob (Guerin, 2011; Cangelosi and Schlesinger, 2014) aims at designing
robotic systems along with these principles, which could be summarized by two key ideas: (i)
knowledge is constructed through the interaction of the robot and its environment, and (ii) the
focus of interest is not to “reverse-engineer” intelligence but rather to understand the principles
that allow it to develop.

However, despite an appealing theoretical framework, DevRob has not made significant progress
when compared to “mainstream” approaches to Robotics, which have leveraged technical advances
in other AI fields like Deep Learning. For the remainder of the discussion, the theoretical
framework of cognitive development by Piaget (Piaget and Cook, 1952; Piaget, 1971) will be
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assumed. According to Asada et al. (2009), DevRob suffers from
a double problem: higher order cognitive functions depend on
lower primary functions, therefore, building a developmental
system requires a good understanding of both primary functions
and developmental mechanisms. Let us examine each element
separately. In Piaget’s framework, the primary functions are the
sensorimotor schemas. Although sensorimotor schemas are not
formally defined in the theory, there is abundant neuroscientific
literature about sensorimotor phenomena upon which roboticists
can draw. The case is different for developmental mechanisms,
for which little knowledge is available since most studies
address steady state functions of the brain, rather than how
they develop through time (Karmiloff-Smith, 1996). On the
theoretical side, Piaget’s theory provides overarching principles,
and three abstract mechanisms (assimilation, accommodation,
and equilibration), which are too vague about how to concretely
implement a developmental mechanism. This lack of knowledge
is reflected in previous study on “Piagetian” robotics: there is
an overall agreement on how to model sensorimotor schemas
(typically, a learned action model), but the picture is less clear
for developmental mechanisms. These are neither grounded
on theoretical nor empirical models, which often results in
implementing some ad hoc mechanisms designed to fit with
the other components of the system. Admittedly, DevRob is
an experimental field; “trying out” and comparing different
ideas might lead to interesting insights, but the lack of guiding
principles might also lead to a dispersion of efforts. This raises
the question of the scientific method to use in DevRob, which we
discuss next.

The “grand challenge” of cognitive science is to bridge
the different levels of analysis of the human mind, ie.,
computational, algorithmic, and implementational levels (Marr,
1982). Model-based cognitive science creates mathematical
models of cognition and tests them by comparing the
predictions of these models to empirical data (typically
response times and accuracy) (Griffiths et al., 2010). From
the bottom up, cognitive neuroscience uses neural imaging
data to constrain computational models (Palmeri et al,
2017). The range of plausible explanations is narrowed
down by the constraints imposed across the different
levels of analysis (refer to Figure1A). It is important to
note that the algorithmic level is tightly connected to
functional architecture, ie., a set of primitive operations,
representations and processes, upon which algorithms can
be specified (Pylyshyn, 1984). By analogy with computers,
functional architecture is a kind of virtual machine on which
“cognitive algorithms” are executed. At the implementational
level, neural wetware and computer hardware are so
different that one must consider this interface to some
extent when designing a biologically-inspired system (refer to
Figure 1B).

A good analogy for illustrating the importance of functional
architecture is Artificial Neural Networks (ANN) (McCulloch
and Pitts, 1943). The mode of operation of ANNSs intrinsically
depends on their functional architecture. Even though ANNs
are implemented on computers using serial processing, the
functional architecture of biological neural networks is preserved

in several aspects: (i) high-dimensional raw input, (ii) distributed
processing of the input through hidden neurons, (iii) parallelism
at the layer level, ie., all the outputs of a layer must be
computed before feeding the next layer. Obviously, there exist
mathematical methods that can achieve a similar function (e.g.,
classifying input data) using algorithms that are intrinsically
serial, e.g., Support-vector networks (Cortes and Vapnik, 1995).
The point is that functional modeling is a sensible approach
as far as the intended function—in this case, classifying data—
is clearly defined. But in the case of sensorimotor schemas
(or cognitive systems in general), the functionality is not well
defined nor understood. Our stance in such a situation is that the
functional architecture should be preserved as much as possible,
to avoid overlooking computational properties which are not
yet understood.

Currently, our knowledge of the functional architecture
of the brain is not complete, which results in a chicken-
egg situation for specifying algorithms, since basic operations
depend on the functional architecture. In our opinion, our
current understanding of brain function is too limited to do
functional modeling independently of a plausible supporting
architecture. We argue that it results in an ineffective trial-and-
error design cycle and that it is more effective to account for
biological constraints until more is known about brain function.
Therefore, one should aim at systems strongly equivalent to
their biological counterparts, i.e., systems which run similar
algorithms, using similar representations and processes, on a
similar functional architecture. For this reason, we shall use
a method inspired by the “constraint-based” method used in
model-based cognitive science, which consists in constraining
the algorithmic level with biologically plausible architectural
constraints.

More specifically, we shall consider two types of
constraints inherent to biological systems: constraints
on data representation and constraints on processing.

These constraints are rarely accounted for in functional
modeling approaches, which use algorithms developed for
computer architectures. Biological systems use distributed
representations and process data in a parallel or concurrent
manner, whereas classical computer methods use compact
representations (vectors, symbols) and serial processing
(conditional statements, loops). Our proposed approach is to
build a minimal cognitive agent based on a simple schema
mechanism, which complies with the aforementioned biological
constraints, i.e., distributed representations and non-serial
processing.

The proposed method is not novel and in some ways, it is
self-evident. Nevertheless, from the succinct literature review
presented in Section 2, we argue that this method can operate
a drastic selection among candidate algorithms, by showing in
Section 3 that all the reviewed studies do not comply with some
basic constraints derived from well-established neuroscientific
facts. In Section 4, we introduce several versions of a minimal
cognitive agent using such architectural constraints, which will
serve as a developmental “seed” for future study. From the
preliminary results presented in Section 5, we discuss some
possible directions for future study in Section 7.
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FIGURE 1 | Marr’s three levels of analysis: Computational, Algorithmic, and Implementational from a biological (A) and artificial (B) perspective. Also, the functional
architecture: the basic functions of the functional architecture cannot be decomposed further without considering implementational details.

2. PREVIOUS STUDY

The monumental study by Piaget is out of the scope of the
article, but introducing some key concepts might give some
context before introducing the related study in robotics. Piaget
is well-known for his work on developmental stages and the
construction of knowledge in children (Piaget and Cook, 1952),
but his constructivist prism was also applied to a wide range
of phenomena, including biological development (Piaget, 1971)
and scientific progress (Piaget et al., 1988). The theoretical
starting point for roboticists is Piaget’s schema theory. Schemas
are the basic building blocks of knowledge. They represent
different types of knowledge depending on the stage of cognitive
development of the child, e.g., sensorimotor schemas during
the sensorimotor stage, and more abstract schemas in the latter
stages. Throughout development, infants acquire new schemas
through the mechanisms of assimilation, accommodation, and
equilibration. The process of assimilation takes new information
into existing structures, while accommodation alters existing
structures when assimilation is not possible. As assimilation
and accommodation occur, the system gets unbalanced due to
conflicts or internal contradictions, which are resolved by the
process of equilibration.

Piaget’s theory is not the unique entry point to DevRob;
a wider perspective on DevRob can be found in the surveys
by Lungarella et al. (2003) and Guerin (2011), and a more
specific overview of previous study inspired by Piaget was done
by Stojanov (2009). In the scope of this article, we focus on studies
implementing Piaget’s schema theory, and more specifically on
those involving embodied agents.

One of the first systems inspired by Piaget’s schema theory
was proposed by Drescher (1987). Drescher’s schemas represent a
(context, action) — result relation, i.e., they learn a causal model
of the actions of the agent in the world, unlike Reinforcement
Learning which learns the value of the actions with respect
to a state for a given task. The context is represented by
a set of binary elements called items representing perceptual

features. The system implements an inductive mechanism called
marginal attribution, which identifies the items causing reliable
state transitions (since actions may have unpredictable effects).
Abstraction occurs by creating synthetic items, which augment
the context with new (non-perceptual) concepts, and through
composite actions which represent chains of primitive actions.
The test bed for the schema mechanism is the “micro-world,”
a grid-like environment in which the agent can interact with
objects by controlling a symbolic hand and moving its visual field
over the grid.

The CLASM system (Chaput et al,, 2003; Chaput, 2004)
resembles Drescher’s schema mechanism, but the costly marginal
attribution mechanism is replaced by hierarchical unsupervised
learning with Self Organizing Maps (Kohonen, 2001). With this
more efficient implementation, the system can deal with more
complex environments, and it is applied to a foraging scenario
with a robotic platform. The robot (real and simulated) is a
mobile robot with a differential drive, a camera, and a gripper,
which senses the environment through 5 “blob detectors” located
in front of the robot. Drescher’s schema mechanism has also
inspired the CALM system (Perotto et al., 2007), which operates
in a purely abstract domain.

Georgeon and Ritter (2012) proposed a schema-based
developmental system exploiting the idea of intrinsic motivation.
In this paradigm, the perception of the state and the value
assigned to action are not objective but depend on the
previous experiences of the agent. Following Gibson’s concept of
affordances, their schemas do not model a (context, action) —
result relation but rather a (interraction;, interraction,) relation.
Therefore, the hierarchical structure of schemas’ organization is
by construction contained in the formalism. The system also uses
arepresentation of the internal state of the agent, the scope, which
keeps track of the completion of current interactions, hence
providing the agent with a simple form of situation awareness.

Guerin and Mckenzie (2008) developed a test bed similar in
spirit to Drescher’s micro-world (eye-mouth-hand) but based
on a 2D physics simulator. Since Piaget’s theory is too vague,
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they argue that computer models should be validated by closely
replicating his empirical observations, hence Guerin attempts to
replicate the second developmental stage theorized by Piaget.
The schemas are inspired by Drescher’s schema, but augmented
with target values: (context,action) — (result, values), which
quantify the value of a schema with respect to subsequently
executed schemas. The systems use different types of schemas,
including super-schemas, and the learning algorithm presents
mechanisms similar to the options framework in Reinforcement
Learning (Sutton et al., 1999).

The study by Aguilar and Pérez (2017) also seeks to
replicate empirical observations on child development, namely
the emergence of hand-eye coordination. Their system differs
from others in several aspects. The context, in addition to sensory
features, also represents the emotions and motivations of the
agent. The schema learning mechanism is not purely inductive
but proceeds through a generalization-splitting-specialization
cycle, from which the process of equilibration naturally emerges.
The experiments were conducted in a 3D simulated environment
more realistic than the aforementioned micro-worlds, but
fundamentally, the interaction of the agent with the world
happens through discrete steps, using discretized actions and
perceptions.

The “Jean System” (Chang et al., 2006) uses the Image Schema
Language (ISL) (Amant et al., 2006) to model the knowledge
represented by schemas. ISL allows representation of qualitative
and dynamic aspects of the relationship between objects, e.g., A
is quickly approaching B which is contained in C. Learning occurs
through Experimental State Splitting (ESS), a mechanism that
splits states based on minimizing the entropy of the distribution
of state transitions, hence maximizing their prediction power. In
a subsequent version of the Jean System (Cohen et al., 2007),
schemas are built from controllers and maps. The controllers
control actuators, and the maps record sensory traces during the
execution of the corresponding schema. In this version of the
system, the state splitting mechanism delimits decision regions in
the maps, from which the system may switch from one controller
to another. This differs from previous study in that the system
learns its own abstractions from sensory data and operates in the
continuous domain.

3. CRITIQUE OF PREVIOUS STUDY

In this section, we elaborate on some areas of divergence between
the studies presented above and the approach proposed in this
article. The provided references shall help us to define the
architectural constraints used to guide the design of the system
presented in Section 4. These architectural constraints are of two
types: constraints on processes (how the system operates in time)
and constraints on representations (how data is represented).

3.1. Serial Decision Mechanisms

Our first criticism concerns the way these systems operate in
time. In Drescher and Chaput’s systems and Georgeon et al.’s
systems, the interaction between the agent and the environment
is serial and discrete, i.e., it runs through a loop: Perception—
Schema selection—Schema execution. This may be due to the

limitations of the simple environments they used. The other
systems run in more realistic environments, with continuous
sensory data and continuous actions. However, their control
process remains serial: an action is executed after the completion
of the decision process, which occurs after the completion of
the perception step. These steps cannot be interrupted nor
revised as they occur (Chang et al., 2006 refer to their schemas
as finite state machines). In our view, such a control process
is not in line with a sensorimotor-based approach. We refer
to the Dynamical System approach (Thelen and Smith, 1994)
and Embodied Cognition (Varela et al., 1992), which highlight
the role of continuous coupling between the agent and the
environment. Furthermore, Neuroscience provides numerous
accounts of concurrent and continuous decision and planning
mechanisms (Cisek and Kalaska, 2010), for simple tasks (Coles
et al, 1985; Lepora and Pezzulo, 2015), or more complex
behaviors such as hand-writing (Perdikis et al., 2011). It is
admitted that low-level cognition is supported by distributed
mechanisms, but higher-level tasks are generally thought to
require strict serial processing. However, behavioral experiments
suggest that some high-level tasks partly rely on concurrent
processes (Millroth, 2021).

3.2. Global State Representation

The second concern is that all the presented studies make
the assumption of a unified representation of the world state.
The different sensory modalities are bundled into a single
data structure, upon which operations are carried out. This
results in several issues: A scaling issue since the dimension
of the state space grows exponentially with the number of
sensors. Computationally, it makes learning more difficult, unless
Machine Learning is used for labeling this large space into
a smaller set of relevant contexts. But this leads, in turn,
to the bootstrapping problem (Drescher, 1991; Kuipers et al,
2006; Mazac et al, 2014), ie., the fact that learning, if a
context is relevant, requires to have labeled it in the first place.
Through this example, we point out how the choice of the
representation impacts the functional architecture of the system,
by imposing specific mechanisms to deal with the problems
arising from the chosen representation. Consequently, neither
the representation nor the algorithms are biologically plausible.
Indeed, it is established that humans and higher mammals use
separate visual pathways for perception and action (the “Where”
and the “What”; Goodale and Milner, 1992). Besides, a unified
representation of the world state is not compatible with some
aspects of cognitive development. For instance, it overlooks
the process of Sensory Integration, which is a cornerstone of
Cognitive and Developmental Neuroscience. Sensory integration
is not innate: in both animals and humans, sensory cues
are separate or poorly integrated into newborns, and develop
through time along with other cognitive skills (Nardini et al.,
2010; Lewkowicz and Bremner, 2019).

4. METHODS

This section describes the minimal system that shall serve
as a base for future study. At this stage of our preliminary
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study, we have not committed to any specific developmental
mechanisms. First, we need to observe the consequences of
applying biologically plausible constraints on the functional
architecture, and then, developmental mechanisms will be
devised accordingly. Sensorimotor learning is done offline, so as
to provide the agent with a minimal behavioral repertoire. At this
stage, our focus is not on the learning process but on answering
the question:

Given a repertoire of ~ 100 trained sensorimotor schemas, which
control processes or decisions mechanisms, can be implemented
for the robot to act rationally (given a value system) while
complying with the following biologically plausible architectural
constraints derived from the previous section:

1. the decision process is distributed (Section 3.1).

2. the action currently executed can be refined or changed at any
time (Section 3.1).

3. the different sensory modalities are processed separately
(Section 3.2).

4.1. Simulated Robot and Environment

The environment used for training and testing the system is
implemented with the open source 2D physics engine for games
Box2d (Catto, 2007). It simulates a top-perspective flat world
in which the robot moves under linear and angular damping
constraints, which roughly emulates moving through a viscous
liquid, i.e., the robot will eventually stop moving if no force is
applied to it. The choice of a 2D environment is a compromise
between two requirements: the need for a realistic simulation of
physics to provide consistent input to the sensorimotor schemas,
and the need for a computationally light simulator so that
learning can be done efficiently by speeding up the pace of
simulation up to 10 times.

The environment is limitless, although there is a central region
populated with objects : walls, predators, and prey. Walls prevent
the robot’s movement, but they do not delimit a closed region,
hence the robot is free to move outside the region delimited
by the walls. Predators’ and preys’ motions are ruled by simple
controllers. They randomly alternate between straight motions
in a random direction or straight motions toward the robot (for
the predators) or the central region (for the prey). In this way,
although it can reach any location in space, the robot is constantly
chased by predators, while it needs to maneuver among the walls
where the preys tend to be.

4.2. Perception

The perception module pre-processes raw sensory data into
a lower dimensional input for the sensorimotor schemas.
Sensory pre-processing is not done for simplifying the learning
problem, but for the sake of realism: natural organisms do
pre-process sensory input through specialized structures. The
simulated robot perceives its surroundings at 60 Hz through
three modalities: distances, prey, and predators:

1. Obstacle distances: (dn, dg, ds, dw)
Distances to surrounding obstacles are measured by casting
12 rays (one ray every 30°, refer to Figure 2). This raw data is
processed by taking the minimum value of three consecutive

rays, resulting in four values for North, East, South, and West
directions in the frame of reference of the robot.

2. Closest prey position and velocity: (x, y, vx, vy)
where (x,y) is the position vector of the closest prey, and
(vx,vy) the corresponding velocity vector, both in the frame
of reference of the robot.

3. Closest predator position and velocity: (x, y, vx, vy)
where (x, y) is the position vector of the closest predator, and
(vx, vy) the corresponding velocity vector, both in the frame of
reference of the robot.

Note: 10% of the sensory data is tampered with using white noise
with a magnitude of 10% of the maximal sensory value.

4.3. Motor Control

Each schema has its own motor control module, designed to
control the motion of the robot with few parameters. To achieve
this, actuation has been reduced to a minimum: the robot is a
single rigid body subject to a force and a torque applied to its
center of mass. The intensity of these forces is controlled by a
Dynamic Motion Primitive (DMP) (Ijspeert et al., 2013). A DMP
is a dynamical system inspired by the damped spring model:

y=a(Blg=y) = +f

where o and § are positive constants, 7 is the time constant of the
system, and g is the goal value toward which the system tends to
converge. DMPs provide a flexible framework for motion control
with well-understood convergence properties and the possibility
to be learned through the forcing term f (Ijspeert et al., 2013). In
the present study, the aim is to produce a reasonable variety of
motions using the minimum number of parameters, hence some
parameters were held constant (t =2, =0,f =0, =8, =
2), The ratio B = «/4 ensures critical damping of the system, i.e.,
y converges toward g without oscillations.

The initial velocity yo was set to 0, hence the system is solely
determined by its initial conditions yy and smoothly converges
toward 0 within a few seconds. The value of y is used to control
the force and the torque applied to the body of the robot
with a frequency of 60 Hz. The actions of the robot are, thus,
parameterized by yo, which will be denoted by p in the reminder
of the article for convenience. Accordingly, the first component
of p determines how far the robot moves, while the second
component determines how much and in which direction the
robot turns.

4.4. Sensorimotor Schema

The proposed schema illustrated in Figure 3 differs from
previous study in several aspects. Not only does it operates in the
continuous domain, but its control process is continuous (refer
to Section 4.6), i.e., it can be triggered or interrupted by another
schema at any time (within the limit of 60 Hz).

The second difference is that the predictive model does not
apply to a full state description but to a single modality. The
predictive model consists of multiple linear regressions, where
the feature vector is the joint vector (m;,p). Each regression
predicts a component of the modality ;. The model predicts
the value of the modality at the end of the action, i.e., when
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and get the associated reward r; through the Modal Reward component. Some experiments use the leaky integrated value of the reward (refer to Section 4.6). When

Schema

the DMP has converged to zero. The predictive model does not
predict a reward value: there is a Modal Reward component that
is external, shared by all schemas, and not subject to learning,
i.e, it represents an innate system that returns a positive reward
for proximity with prey, and negative rewards for proximity with
predators and contact with walls.

Another difference compared to previous studies is that the
sensorimotor schema here is not tied to a particular context,
because the notion of context is less relevant when the state is
only seen through one modality. Hence, a sensorimotor schema
is trained for making predictions over the whole range of possible
sensory inputs (within one modality).

4.5. Learning

This preliminary study focuses on the sensorimotor layer, hence
learning boils down to learning a predictive model for each
schema. In the experiments presented in Section 5, learning was
done offline for the sake of simplicity, and for avoiding any
bias caused by the exploration/exploitation strategy used. The
learning method was chosen with the idea of schemas as multiple
simple parallel processes in mind. Consequently, a simple (linear)
model was chosen, and learning simply consists of a regression of
the predicted next sensory state with respect to the current state
m;, and some action parameters p (refer to below). The main
difference with previous study is that the state is not a unique
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vector encompassing all the modalities: the predictive model only
predicts the next state through one modality.

The domain of the feature vector (m;, p) was partitioned such
that each model learn over a narrow domain, hence representing
a particular type of action. The domain was split along p only
since the notion of “context” is not relevant in the case of a
unimodal input. Concretely, an action is parameterized by 2
values pi,ps, where p; € [0,1] and p, € [—1,1]. It was
empirically found that 0.2 x 0.2 regions lead to good predictions
with few training data (< 100). Hence, 50 regions were necessary
to cover the domain of p, thus, 150 models were trained in total
(one for each modality).

Learning takes place in the environment as described in
Section 4.1, ie., with predators and prey interacting with the
robot. The position of the robot was periodically randomly reset
to avoid situations where the robot is “cornered” by predators,
hence not providing any novel training data. Training data is
collected in a temporary table for the regression process, with
a constraint that ensures that no two data are too similar. The
training process repeats the following steps until each schema has
collected enough data:

1. the sensory state is recorded.
2. an action p is randomly chosen and executed.
3. the sensory state is recorded after the DMP has converged.

Since the sensory state contains the three modalities, each
executed action provides data for training three models. In fact,
the training time is not affected by the number of modalities
in this approach, however, it raises a problem of interference
between modalities which we discuss in Section 7.

4.6. Control Process and Action Selection
Different control processes have been tested, which are all
built on a mechanism inspired by the Affordance Competition
Hypothesis by Cisek (2007). The original model—which applies
to neural populations—was adapted to the schema framework.
According to this hypothesis, biological brains have evolved
to make quick decisions in complex environments presenting
multiple choices. The view of serial processing through separate
perceptual, cognitive, and motor systems is not supported by
recent findings. Instead, phylogeny and neural data suggest
that action selection and action specification occur in parallel,
through a competitive process between possible actions, biased
by contextual cues.

This competitive mechanism was functionally emulated with
a two-passes search on the space of action parameters (refer
to Figure4). During the first pass, a quick global search is
performed to identify the candidate actions (action selection),
and during the second pass, a local search is performed to refine
the action parameters of candidate actions (action specification).
The criteria used by the selection process is Y _ r;, the sum of
predicted rewards in each modality, i.e., for a given state s and an
action parameter p, three schemas are used: one in each modality,
whose region contains p. Then each schema makes a prediction in
its respective modality and the Modal Reward system computes a

reward value for each of them:

shy ((my,p) — my — n
shy :((ma, p) — My — 12

shz :(m3,p) — Mz — 13

Another feature of Cisek’s model and similar decision models
is the accumulation of information through time (Usher and
Mcclelland, 2001; Mazurek et al., 2003). To emulate this, each
schema is endowed with a leaky integrator fed by the reward
value predicted at each time step. The decision of triggering the
execution of a schema is made when the sum of the integrators’
values in each modality reaches a given threshold.

5. PRELIMINARY EXPERIMENTS

The presented experiments are not meant to support the
proposed constraint-based method with experimental data, but
rather to gain insight into what these constraints imply for the
practical act of designing algorithms, which shall guide us in the
future development of the system.

5.1. Experimental Setup

Different control processes have been compared, which differ in
the way they unfold in time or in the way actions are selected.
They comply with the constraints listed in Section 4, except the
serial control process which does not comply with constraint
#2:

e Serial: A new schema is selected and executed after completion
of the currently executing schema (similar to the control
processes used in the reviewed literature).

e Continuous: A new schema can be selected and executed while
the current schema is being executed.

e Continuous with leaky integrator: Same as the “continuous”
scheme, but using the leaky-integrated value instead of the
instantaneous value of the predicted reward.

Each control process was evaluated by letting the agent act freely
in the simulated environment for 10 min, during which the
robot could execute 250 actions on average. The performance was
measured by the accumulated reward during this time.

For informal comparison, we implemented a decision
mechanism based on a traditional AI planning technique:
forward search in the space of states. This approach does not
comply either with constraint #3, since the basic operations of
the algorithm apply to a global state representation:

e Serial with the forward search: Same as the “serial” scheme,
but performs a random forward search. The predicted state is
used as a starting state to make 20 predictions of the next state
using random action parameters and select the action leading
to the best resulting state. A version looking three steps ahead
was also tested.
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6. RESULTS

The results of comparison between different control processes
(Figure 5, Left) were expected. The continuous control process
is superior to the discrete one, which does not have the capacity
to revise its decision as the action is being executed. Hence, if
the action was taken on the wrong premises (e.g., noise, predator
not perceived), the agent needs to wait for the completion of the
action to change or correct its action. However, the continuous
control process is not completely immune to noisy input, and
it also causes the agent to frequently “change its mind,” e.g., it
can move toward prey and miss the reward at the last moment
because of reacting to an approaching predator. The control
process using the leaky integrator is more consistent in its
decisions since changing behavior requires the accumulation of
contradictory input over a certain amount of time. Supposedly,
it also has a smoothing effect on noisy sensory data. The only
drawback is that the time constant of the integrator has to be
manually set, but the adjustment of the value needs not to be
precise (any value between 0.25 and 1s would give similar results
in our setup).

Another result from these experiments concerns the amount
of training data. Few data are needed (above 100 samples, little
improvement was observed). This was expected considering
the low dimensionality of the data due to the multi-modal
representation. It should be noted that even with 25 training
samples, the cumulated reward is higher compared to the
cumulated reward using random actions (which is —5).

The comparison of serial decision mechanisms using different
depths (Figure5, Right) shows that looking 2 steps ahead
improves the performance of the agent. Indeed, only predicting
the next state makes the agent blind to the states which are
not reachable by its action repertoire. As the motion primitives
represent short actions, their duration ranges from 0.5 to ~ 4s,
hence, the agent can only move up to ~ 6 m in the course of one
action. Thus, if the closest prey is located beyond this distance,
no schema can predict a state in which the robot is nearby the
prey, i.e., a rewarding state. However, it becomes possible by
looking 2 steps ahead, which explains the improvement, but the
drawback of this technique is that prediction errors accumulate
very quickly. It is still advantageous at two steps, but looking
three steps ahead results in completely distorted predictions, and
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the advantage of a longer planning horizon is lost. On a side
note, looking three steps ahead comes with a 20-fold increased
computational cost compared with two steps, which did not allow
us to run the simulation in real-time.

7. DISCUSSION AND FUTURE STUDY

The preliminary experiments presented above were a practical
application of the method proposed in the motivation of this
article, i.e., complying with constraints imposed by the functional
architecture of biological brains. These experiments do not
validate the method, but they are a proof of concept for a simple
cognitive agent which does not resort to the tenets of classical
methods: global state representation and discrete serial processes.
Therefore, we hope to encourage further research on schema-
based approaches with a scientific method inspired by model-
based cognitive science which stands on stronger foundations
than the functional modeling approach.

The next step is to devise some developmental mechanisms
that comply with these constraints. Note that these constraints
are not cast in stone: they might be updated as the functional
architecture of the brain is better understood. Before addressing
developmental mechanisms, we have to reflect on the fact that
some issues may not have come forward because of the simplicity
of the system. For instance, the fact that the motor system
only controls one effector eludes the problem of interference
between concurrent actions. Therefore, augmenting the system
with an additional effector, but also enriching sensory input
with additional modalities, should be the very next step. This
will certainly entail the need for executive functions such as
selective attention (Cohen and Magen, 2004) or inhibitory
control, although inhibitory control seems to be a skill that
develops through time (Dempster, 1992; van der Molen, 2000).

Two approaches for developing higher-order functions from
primary functions are commonly proposed: abstraction and
concatenation (e.g., Drescher’s, 1987 synthetic items and
composite actions). We shall follow a similar line of thought,
but we anticipate implementing radically different mechanisms
because our system processes sensory modalities separately at the
sensorimotor level. This constraint naturally leads us toward a
developmental mechanism that accounts for sensory integration,
which is consistent with the fact that multisensory processes are
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