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Purpose: Evidence suggests that circulating serum microRNAs (miRNAs) might preferentially 

target immune-related mRNAs. If this were the case, we hypothesized that immune-related 

mRNAs would have more predicted serum miRNA binding sites than other mRNAs and, 

reciprocally, that serum miRNAs would have more immune-related mRNA targets than non-

serum miRNAs.

Materials and methods: We developed a consensus target predictor using the random for-

est framework and calculated the number of predicted miRNA–mRNA interactions in various 

subsets of miRNAs (serum, non-serum) and mRNAs (immune related, nonimmune related).

Results: Immune-related mRNAs were predicted to be targeted by serum miRNA more than 

other mRNAs. Moreover, serum miRNAs were predicted to target many more immune-related 

mRNA targets than non-serum miRNAs; however, these two biases in immune-related mRNAs 

and serum miRNAs appear to be completely independent.

Conclusion: Immune-related mRNAs have more miRNA binding sites in general, not just for 

serum miRNAs; likewise, serum miRNAs target many more mRNAs than non-serum miRNAs 

overall, regardless of whether they are immune related or not. Nevertheless, these two independent 

phenomena result in a significantly larger number of predicted serum miRNA–immune mRNA 

interactions than would be expected by chance.

Keywords: biomarker, posttranscriptional regulation, random forest, target prediction

Introduction
MicroRNAs (miRNAs) are small (~21 nucleotides long) noncoding RNAs that func-

tion as posttranscriptional regulators of gene expression in metazoans and plants.1 The 

identification of stable circulating miRNAs in mammals within a wide range of bodily 

fluids, including serum, suggested their use as noninvasive biomarkers.2 Indeed serum 

miRNA levels have been observed to correlate with a number of diseases, including 

various cancers, which has attracted great interest for their use for cancer diagnosis 

and to predict prognosis and response to therapy.3

Both the cellular origin and biological function of extracellular miRNAs remain 

controversial.4 Evidence exists for both passive release of miRNA from cells during cell 

death and cell–cell signaling, especially by circulating miRNAs encapsulated within 

apoptotic bodies or exosomes.5,6 Interestingly, blood cell counts significantly influence 

plasma miRNA biomarker levels, and many reported miRNA cancer biomarkers are 

in fact highly expressed in blood cells, suggesting that the levels of some circulating 

serum miRNAs are by-products of immune cell function.5 Regardless of the precise 
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origins of circulating serum miRNAs, their known correla-

tion with disease states, along with their co-localization with 

circulating immune cells, suggests that they represent a rich 

source of information about the status of the immune system. 

Consistently, a number of miRNAs have been shown to have 

critical roles in the regulation and development of adaptive 

and innate immune cells.7

A more mechanistic understanding of circulating 

 miRNAs in the regulation of immune cell responses and 

development would enhance their use as disease biomarkers.8 

One critical step in this direction is to associate circulating 

miRNAs with specific mRNA targets. Experimental iden-

tification of miRNA–mRNA interactions has been carried 

out using both small- and large-scale methods. Small-scale 

methods generally involve perturbing the expression level of 

a single miRNA of interest in a cell line or a tissue, following 

expression changes in putative targets and finally confirming 

the interaction physically.9 Recently, cross-linking immu-

noprecipitation (CLIP)-based techniques have been applied 

to miRNA–mRNA detection (high-throughput sequenc-

ing of RNA isolated by crosslinking immunoprecipitation 

[HITS-CLIP] and photoactivatable ribonucleoside-enhanced 

crosslinking and immunoprecipitation [PAR-CLIP]), 

greatly expanding the scope of putative miRNA–mRNA 

interactions.10,11 Computational miRNA–mRNA prediction 

integrates experimentally observed interactions along with 

sequence-level complementarity, conservation and other fea-

tures.12 The use of both small-scale and large-scale datasets 

to train and test miRNA–mRNA target prediction remains 

challenging due to differences in the precision of various 

experimental approaches.

A 2008 study that used a simple consensus-based predic-

tor found that the 3′-untranslated regions (UTRs) of immune-

related genes had more predicted miRNA binding sites than 

background genes.13 This study did not distinguish between 

circulating and noncirculating miRNAs. We speculated that 

circulating serum miRNAs (referred to here as serum miR-

NAs) preferentially target genes expressed highly in immune 

cells. Specifically, we hypothesized that immune-related 

mRNAs would have more predicted serum miRNA binding 

sites than other mRNAs and, reciprocally, that serum miRNAs 

would have more predicted immune-related mRNA targets 

than non-serum miRNAs.

To test our hypotheses, we developed a consensus predic-

tor using the random forest (RF) framework and carefully 

trained it on data from both validated small-scale miRNA–

mRNA interaction experiments and recent large-scale data 

for both human and mouse miRNAs. We monitored the 

amount of large-scale data in order to identify an optimal 

balance between the two data sources. The results were highly 

consistent between human beings and mice in spite of the 

fact that independent data sources were utilized. Interest-

ingly, although we found that immune-related mRNAs were 

predicted to be targeted by serum miRNAs modestly more 

than other mRNAs and that serum miRNAs were predicted 

to target many more immune-related mRNA targets than non-

serum miRNAs, the two phenomena are, in fact, independent. 

That is, immune-related mRNAs have more miRNA binding 

sites in general, not just for serum miRNAs; reciprocally, 

serum miRNAs target many more mRNAs in general, not 

just immune-related mRNAs. In spite of this independence, 

the combined miRNA and mRNA biases result in a much 

greater number of serum miRNA–immune mRNA interac-

tions than expected by chance.

Materials and methods
Sequence data sources
All human and mouse miRNAs were taken from miRBase 

(v21).14 Human and mouse mRNAs were retrieved from the 

Ensembl database.15 If the Ensemble mRNAs transcripts could 

be associated with established microarray experiments, they 

were used for further study.16,17 This mapping resulted in 22,084 

and 23,575 mRNAs in human beings and mice, respectively.

Immune-related mRNAs
Immune-related mRNAs in human beings were taken from 

the microarray-based immune response in silico dataset.16 

This dataset consists of human mRNAs for which signifi-

cantly higher expression was observed in any of six immune 

cell types (T-cell, B-cell, natural killer cell, monocyte, den-

dritic cell and neutrophil) than in a representative set of non-

immune cells (brain, lung and kidney cells).16 Immune-related 

mRNAs in a mouse consisted of 1,227 orthologous mRNAs 

that had immune cell lineage-specific expression signatures 

in both human beings and mice.18 All mRNA names were 

mapped to the latest version of Ensembl, and only those with 

unambiguous gene names and annotations were retained for 

further analysis, resulting in 1,632 and 1,221 immune-related 

mRNAs in human beings and mice, respectively.

Circulating miRNAs
A set of 93 circulating miRNAs were taken from a previous 

study that demonstrated consistent expression levels in the 

serum of a large group of healthy donors.2 A set of 96 mouse 

serum miRNAs was assembled from two previous studies.19,20 

Nomenclature of both human and mouse miRNAs was cor-

rected so that they corresponded to their latest version of 

miRBase (v21).14
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miRNA–mRNA interactions
A set of 777 high-confidence, experimentally validated 

small-scale miRNA–mRNA interactions was extracted from 

miRecords.9 A subset of large-scale (HITS-CLIP and PAR-

CLIP) interactions was taken from DIANA-TarBase v7.21 The 

large-scale interactions were sorted by the number of times 

each interaction was observed in an independent experi-

ment. The selection of how many large-scale interactions to 

use was based on the performance of the consensus-based 

predictor, as described in the following. In brief, the large-

scale interactions were added to the small-scale interactions 

incrementally and were used for training and testing the 

consensus-based predictor and for testing each individual 

predictor, as described in the following.

Computational miRNA–mRNA 
target prediction
Individual target predictors used in this study included 

 TargetScan, DIANA-microT-CDS, miRDB and miRanda.22–25 

The choice of target predictors was based on the fact that, 

collectively, these predictors cover most features used in 

miRNA–mRNA target prediction and that they are regularly 

updated.26,27

We developed a consensus predictor based on the output 

of these four independent target predictors. Our consensus 

prediction method utilized the RF framework as implemented 

in the RandomForestClassifier class in the sklearn.ensemble 

package of the Python programming language. Raw outputs 

of the four individual predictors differed in scale and sign. 

For the TargetScan predictions, we used the context score 

of predicted miRNA–mRNA interactions.28 For DIANA-

microT-CDS, the miTG score was used.24 For MiRanda, the 

mirSVR score was used after reversing the sign.22 Each score 

was scaled between 0 and 1 using min–max normalization.

In addition to the scores, the consensus method utilized 

the minimum distance between binding locations as a feature, 

the logic being that predictions with a smaller spread in dis-

tances would be more reliable. All training was carried out 

using the Matthews correlation coefficient (MCC) as a target 

function with the experimental miRNA–mRNA interactions 

randomly divided into 80% training and 20% test data. For 

estimating the number of trees (n_estimators) and maximum 

tree depth (n_ features), threefold cross-validation was used 

while searching a grid of values in the 5–100 and 1–20 range 

using a fixed set of 1,277 large-scale interactions and 777 

small-scale interactions. Optimal values of 46 and 3 were 

subsequently obtained for the number of trees and maximum 

tree depth, respectively.

Further training of the consensus-based predictor 

involved adjusting the number of large-scale interactions 

based on the performance of the consensus predictor. We 

iteratively added the large-scale interactions to the 777 manu-

ally curated interactions in steps of 100 interactions. At each 

step, we examined the MCC from each individual predictor 

and our meta-predictor. The experimental data were again 

randomly split into training (80%) and test (20%) sets, as 

mentioned earlier. We artificially kept the class imbalance 

constant by repeated random sampling negative examples. To 

limit noise from random sampling and splitting, we repeated 

this operation 10 times for each dataset size.

Results and discussion
Consensus target prediction shows stable 
improvement over individual predictors
We evaluated four target prediction methods (DIANA-

microT-CDS, TargetScan, miRDB and miRanda) and the 

consensus method, while adjusting the number of large-scale 

interactions used. First, we sorted the large-scale experimen-

tal data by the frequency that the interaction was observed in 

independent experiments. Next, we iteratively added these 

sorted interactions to 777 manually curated interactions, 100 

interactions at a time. At each step, we computed the MCC 

for each individual predictor and the consensus predictor. 

We repeated this retraining 10 times for each dataset size.

Figure 1 shows the MCC of the consensus method along 

with the individual methods for the first 10 steps, where the 

x-axis shows the size of the large-scale data portion. As the 

figure shows, the mean MCC value of the consensus method 

was consistently above that of the individual predictors. This 

relative performance was maintained even when the dataset 

was dominated by the large-scale data (Figure S1A–D). The 

consensus MCC value reached a peak of 0.45 at the fifth 

step (red dashed line), indicating addition of 500 large-scale 

interactions. As the small-scale/large-scale balance shifted 

more toward large-scale data, the performance of all pre-

dictors, including the consensus-based predictor, declined, 

suggesting that the large-scale data are either noisy or that 

the features used in the predictors were insufficient to learn 

from the additional data. The consensus-based method con-

sistently achieved a higher overall MCC value (0.37) than 

any of the individual predictors (0.33, 0.30, 0.33 and 0.21 

for DIANA-microT-CDS, TargetScan, miRDB and miRanda, 

respectively). For these reasons, we used the consensus pre-

dictor and selected the RF model trained at the fifth step for 

all subsequent analysis.
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Serum miRNAs exhibit apparent 
preference for immune-related mRNAs
We next examined the number of miRNA–mRNA interac-

tions for different subsets of miRNAs (serum, non-serum) 

and mRNAs (immune, nonimmune). We observed a modest 

but statistically significant (median values 3 and 4, Mann–

Whitney U test: p-value 1.76E - 18) increase in the number 

of interactions for immune-related human mRNAs with 

serum miRNAs compared to nonimmune-related mRNAs, as 

shown in Figure 2A. Moreover, a similar trend was observed 

for mouse immune-related mRNAs ( Figure S2A), which is 

consistent with previous observations that immune-related 

mRNAs have more miRNA binding sites than nonimmune-

related mRNAs.13 Next, we examined the reciprocal 

 relationship and analyzed the number of immune-related 

mRNAs targeted by serum and non-serum miRNAs. As 

shown in Figure 2B, serum miRNAs target many more 

immune-related mRNAs than non-serum miRNAs (median 

values 34 and 79, Mann–Whitney U test: p-value 2.89E - 30). 

The difference is particularly pronounced for miRNAs that 

have few or no predicted targets, but is maintained across the 

entire distribution of hits. Again, a similar trend was observed 

in mouse (Figure S2B). Taken together, these results appear 

to support the contention that serum miRNAs preferentially 

target immune-related mRNAs.

Serum miRNA and immune-related 
mRNA preferences are independent
We can see from Figure 2 that the bias in the serum versus non-

serum miRNA (Figure 2B) is greater than that of immune versus 

related nonimmune mRNAs (Figure 2A), suggesting that the 

driving forces for the two phenomena might be different. More-

over, in order to say that serum miRNAs prefer immune-related 

mRNAs, it is necessary to show that the bias in Figure 2A is not 

observed for non-serum miRNAs. However, in contrast to our 

expectations, we found nearly the same modest but statistically 

significant (median values 40 and 50, Mann–Whitney U test: 

p-value 3.89E - 18) increase in the number of immune-related 

interactions for non-serum miRNAs, as shown in Figure 3A. 

Symmetrically, the dramatic differences between serum and 

non-serum miRNAs in targeting immune mRNAs (Figure 2B) 

were also observed for nonimmune mRNAs (median values 333 

and 672, Mann–Whitney U test: p-value 2.32E - 30), as shown 

in Figure 3B and in Figure S3 for mouse. In other words, the 

Figure 1 Performance of the predictors based on large-scale data.
Note: The red dashed line indicates the dataset size for which the RF-based 
consensus method achieved the maximum MCC.
Abbreviations: MCC, Matthews correlation coefficient; RF, random forest.
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3′-UTRs of immune-related mRNAs simply have more miRNA 

binding sites than other mRNAs, as previously reported,13 

and serum miRNAs have many more targets than non-serum 

miRNAs, regardless of whether the targets are immune related 

or not. Independently, these two phenomena lead to a greater 

number of circulating miRNA–immune mRNA interactions 

than would be expected by chance, as shown in Table 1 for 

human beings and in Table S2 for mice. For example, all 93 

serum miRNAs and 1,632 immune-related mRNAs in human 

beings might be expected to have (93/2,613) × (1632/22,084) = 

0.0026 interactions by chance. However, almost threefold more 

interactions were observed based on the consensus method, that 

is, 7,041/904,296 = 0.0078 interactions (Table S1). In contrast, 

the expected number of interactions between noncirculating 

miRNAs (2,613 - 93 = 2,520) and nonimmune-related mRNAs 

(22,084 - 1,632 = 20,452) would be (2,520/2,613) × (20,452/22

,084) = 0.89, but the observed value was 75,732/904,296 = 0.83 

interactions (Table S1).

The basis for the observed preferences in immune-related 

3′-UTRs may be due to several factors. For example, it is 

already well known that immune mRNAs, especially their 

3′-UTRs, contain more adenylate-uridylate (AU)-rich ele-

ments.29 Asirvatham et al13 found that AU-rich regions in 

immune-related mRNAs were frequently targeted by miR-

NAs. In addition to their nucleotide composition, shorter tran-

scripts tend to be less susceptible to regulation by miRNAs 

due to loss of miRNA binding sites.7 Indeed, the background 

distribution of 3′-UTR length has a median value of 1,350 nt 

in human beings, whereas the value for immune-related genes 

is 1,676 nt, which is statistically significant (Mann–Whitney 

U test: p = 5.60E - 18; Figure S4). Therefore, the results in 

Figures 2A and 3A can be rationalized in terms of the length 

of the 3′-UTRs in immune-related mRNAs. Taken together, 

immune-related mRNAs have a larger than expected number 

of miRNA binding sites, but are not specifically biased toward 

circulating miRNAs.

It is currently unclear why serum miRNAs would have 

dramatically more predicted targets than non-serum miRNAs. 

Since serum levels of some miRNAs are known to correlate 

with cellular miRNA levels, their presence in the blood 

might reflect higher expression levels overall.4 It has also 

been reported that nucleotide content affects serum miRNA 

extraction efficiency.30 At the same time, the ability to bind 

more mRNA targets might result from a sequence bias in the 

serum miRNAs. To test this idea, we surveyed the nucleo-

tide content in serum miRNAs and found that, indeed, there 

were statistically significant differences in nucleotide usage 

between serum and non-serum miRNAs. Adenine (A) was 

more frequent and cytosine (C) was less frequent in serum 

miRNAs than in non-serum miRNAs; in non-serum miRNAs, 

guanine (G) was the most frequent nucleotide. The nucleotide 
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Table 1 Predicted miRNA–mRNA interactions in human beings

miRNAs mRNAs Observed Expected Ratio

Non-serum Nonimmune 0.83 0.89 0.93
Immune 0.096 0.071 1.35

Serum Nonimmune 0.066 0.033 1.98
Immune 0.0078 0.0026 2.93

Notes: Observed and expected frequencies of miRNA–mRNA interactions are 
shown. Observed values were calculated by the consensus method’s genome wide 
predictions. The expected values were calculated by considering the frequencies of 
all subsets of miRNAs and mRNAs in this study. As the ratio increases, the green 
color shading also gets darker.
Abbreviation: miRNA, microRNA.
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usage of serum and non-serum miRNAs is shown in Table 2 

and Figure 4. Very similar results were observed for serum 

and non-serum miRNAs in mouse, with the exception that 

uracil (U) was the most frequent nucleotide in serum miRNAs 

(Table S3 and Figure S5).

Next, we examined the position-wise nucleotide fre-

quency of both serum and non-serum miRNAs to see if there 

is any difference in a particular nucleotide usage at any given 

position in the miRNA sequences. The results show that 

serum miRNAs tend to start with U at position 1 in signifi-

cantly high frequency compared to non-serum miRNAs in 

human beings (Figure S6). The least frequent nucleotide for 

serum miRNAs at position 1 was G. The frequency of U is 

also significantly different in serum miRNAs at positions 9, 

17, 21 and 22. Serum miRNAs also have significantly high 

frequencies of nucleotide A at positions 2, 4. 5, 7, 8, 13, 15, 

16, 18 and 22. This comprises almost half (~45%) of miRNA 

sequences considered, and this is consistent with Figure 4. 

However, we rarely see any positions where serum miRNAs 

have remarkable high frequencies of C and G, except the 

positions 19 and 20 where G has significantly high frequency 

in serum miRNA sequences. Interestingly, we observed com-

parable position-wise nucleotide frequencies for mouse too, 

although there were a few positions for which mouse serum 

miRNAs have different nucleotide compositions (Figure S7). 

The seed region (positions 1–8) of miRNAs is the most 

important feature of miRNA–target mRNA biding, and we 

can see some notable differences in serum miRNAs and non-

serum miRNAs in that region. For example, the seed region 

in human serum miRNAs most likely starts (position 1) and 

ends (position 9) by U. Next, the most frequent nucleotide at 

positions 2, 4, 7 and 8 is A. Position 5 is likely to be A or G. 

In our results, positions 3 and 6 of the seed region did not 

show preference to any nucleotide. Based on these results in 

human beings and mouse, the consensus seed sequence for 

human serum miRNAs would be UANA(A/G)NAA flanked 

by U, and for mouse serum miRNAs, it would be UAAN(A/G)

NNN flanked by U.

The nucleotide usage suggests that there are fundamental 

differences between serum and non-serum miRNAs that can 

be understood at the sequence level; however, the detailed 

nature of these differences remains to be clarified.

Biological consistency of 
miRNA-targeting patterns
It is well known that miRNA–mRNA target prediction algo-

rithms suffer from false positive and false negative predic-

tions. In spite of the use of consensus-based prediction, which 

apparently mitigates such errors to some extent, it is useful 

to have a qualitative overview of the results presented here. 

To this end, we made use of human cell type-specific gene 

Table 2 Nucleotide frequency of human miRNAs

NT Serum miRNAs Non-serum miRNAs p-value

A 0.283 0.219 1.69E - 09
G 0.243 0.290 0.00088
C 0.198 0.236 0.0042
U 0.275 0.256 0.071

Notes: The second and third columns are the mean frequencies of A, G, C and 
U nucleotides for serum and non-serum miRNAs. Green color indicates most 
frequent nucleotides, while light blue color shows less frequent nucleotides. Two-
tailed p-values for serum nucleotides were calculated from the ratio distributions of 
similar number of randomly selected miRNAs (10,000 times).
Abbreviations: NT, nucleotide; miRNA, microRNA; A, adenine; G, guanine; C, 
cytosine; U, uracil.
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expression data to characterize mRNA binding profiles of 

each circulating miRNA in human beings. For each miRNA, 

to indicate its specificity to particular immune cell types, we 

counted the number of predicted interactions with mRNAs 

specifically expressed in each cell type, as defined in Abbas 

et al.16 Then, based on these mRNA binding profiles, we 

clustered the circulating miRNAs to compare with known 

lineage relationships (Figure 5).

Since dendritic cells, monocytes and neutrophils are 

all thought to descend from the myeloid lineage, we would 

expect to see higher similarity among these cells than, for 

example, B, T and natural killer cells, which descend from 

the lymphoid lineage. Figure 5 shows that such similarity is 

indeed recapitulated and that B and T cells contain mRNAs 

with similar miRNA binding profiles. In addition, we observe 

populations of miRNAs specifically targeting B or T cells. 

Similarly, we observed several clusters of miRNAs that 

appear to target mRNAs that are not present in cells from 

the lymphoid lineage. Such qualitative grouping is reassur-

ing as it suggests that the differences observed in this study 

reflect biological differences and are not simply an artifact of 

the underlying prediction methods. Moreover, the ability to 

interpret predicted miRNA–mRNA interactions functionally 

is critical if serum miRNA levels are to be used as biomark-

ers of disease.

Conclusion
Serum miRNAs are potentially attractive as biomarkers but 

their cellular origins as well their biological functions are 

largely unknown. In the last decade, a number of miRNAs 

Figure 5 A heat map of serum miRNAs targeting immune-related genes specifically expressed in the human immune cells.
Notes: Colors represent Z-score of the number of predicted interactions with mRNAs specifically expressed in each cell type. Each row corresponds to a human serum 
miRNA. Serum miRNAs were hierarchically clustered by the number of immune-related genes they target in each immune cells (in columns).
Abbreviations: miRNA, microRNA; DC, dendritic cell; NK, natural killer.
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with functional roles in the immune system have been 

described.31–34 The majority of such studies were carried 

out by knocking out or overexpressing miRNAs of inter-

est and then observing the changes in gene expression 

levels in particular immune cells. Here, we took a differ-

ent approach: we prioritized miRNA–mRNA pairs with 

consensus target predictions and looked for target mRNAs 

with high expression in immune cells. We discovered that 

serum miRNAs target immune-related mRNAs much more 

than noncirculating miRNAs but that this difference is 

mostly due to two independent phenomena: 1) circulating 

miRNAs tend to target many more mRNAs in general and 2) 

immune-related mRNAs tend to be targeted slightly more, 

in general, than nonimmune-related mRNAs. Indeed, we 

can see these two effects independently, if we compare all 

pairs of expected and observed miRNA–mRNA interaction 

frequencies (Table 1).

There are several directions for future work to further 

elucidate the role of miRNA in immune cell regulation. The 

categorization of miRNAs into two groups – serum and non-

serum – is only a first-order approximation. Serum miRNAs 

can be further subdivided according to their specific source 

(plasma or serum) or type of compartmentalization – e.g., 

those bound by the Argonaute 2 (AGO2) protein encapsu-

lated in apoptotic bodies or in exosomes.4,35 Similarly, the 

categorization of mRNAs into immune/nonimmune-related 

mRNAs should take into account both up- and downregulated 

genes as well as additional cell types such as macrophages 

and innate lymphoid cells. Moreover, in the future, we aim 

to subdivide nonimmune cells into endothelial or stromal 

cells and to specifically examine expression in lymph nodes, 

spleen and bone marrow.

Despite these simplifications, the data presented in this 

study are remarkably consistent between human beings and 

mouse. The fact that serum miRNA–immune-related mRNA 

interactions are predicted to occur at higher frequencies than 

expected by chance, along with their co-localization in blood, 

strongly suggests that serum miRNAs carry important infor-

mation about immune cell function. Consistently, the reca-

pitulation of myeloid and lymphoid lineages from predicted 

interaction profiles suggests that groups of miRNAs in the 

blood can collectively be associated with the status of basic 

immune cell groups. Considering the fact that immune cell 

sequencing is also emerging as a very sensitive and specific 

biomarker for cancer, the combination of miRNA and mRNA 

levels in the blood represents the next-generation RNA-based 

disease diagnostics.36 In order to facilitate further use of 

specific miRNAs as biomarkers of immune status, we have 

summarized the number of immune-related targets for each 

miRNA utilized in this study in Table S3.
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