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Abstract

Feature selection facilitates intelligent information processing, and the unsupervised learn-
ing of feature selection has become important. In terms of unsupervised feature selection,
the Laplacian score (LS) provides a powerful measurement and optimization method, and
good performance has been achieved using the recent forward iterative Laplacian score
(FILS) algorithm. However, there is still room for advancement. The aim of this paper is
to improve the FILS algorithm, and thus, feature significance (SIG) is mainly introduced
to develop a high-quality selection method, i.e., the incremental forward iterative Lapla-
cian score (IFILS) algorithm. Based on the modified LS, the metric difference in the incre-
mental feature process motivates SIG. Therefore, SIG offers a dynamic characterization by
considering initial and terminal states, and it promotes the current FILS measurement on
only the terminal state. Then, both the modified LS and integrated SIG acquire granulation
nonmonotonicity and uncertainty, especially on incremental feature chains, and the corre-
sponding verification is achieved by completing examples and experiments. Furthermore, a
SIG-based incremental criterion of minimum selection is designed to choose optimization
features, and thus, the IFILS algorithm is naturally formulated to implement unsupervised
feature selection. Finally, an in-depth comparison of the IFILS algorithm with the FILS
algorithm is achieved using data experiments on multiple datasets, including a nominal
dataset of COVID-19 surveillance. As validated by the experimental results, the IFILS
algorithm outperforms the FILS algorithm and achieves better classification performance.
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1 Introduction

Machine learning facilitates the research and application of artificial intelligence (Hai et al
2021; Lim et al 2022; Tham et al 2022; Van et al 2022), and feature selection (FS) is a
basic topic in machine learning (Cai et al 2018; Tubishat et al 2021). The aim of FS is
validity extraction and dimensionality reduction, and it has been deeply researched in data
mining (El-Hasnony et al 2020; Nguyen et al 2020; Sun et al 2021), pattern recognition
(Gunal and Edizkan 2008), etc. Moreover, FS has practical application (Kou et al 2020;
Remeseiro and Bolon-Canedo 2019). FS is usually classified into three cases based on the
decision category information, i.e., supervised FS, semisupervised FS, and unsupervised
FS. Supervised and semisupervised cases require objects with completely-labeled and
partially-labeled categories, respectively. Currently, unlabeled data exist universally across
diverse fields; therefore, unsupervised FS works well for anomaly detection (Amarbayas-
galan et al 2020; Yuan et al 2022), clustering learning (Chen et al 2020; Zhou et al 2020),
medical analysis (Garcia-Diaz et al 2020; Rostami et al 2020), etc.

Unsupervised FS can be divided into three main methods: “wrapper, Afilter,
hybrid” (Alelyani et al 2018; Solorio-Fernandez et al 2020). In terms of the FS strategy,
wrapper methods utilize clustering algorithms (Breaban and Luchian 2011) but filter meth-
ods do not (Dadaneh et al 2016; Luo et al 2017), while hybrid approaches reach a compro-
mise by combining the above two methods (Solorio-Fernandez et al 2016). Filter unsu-
pervised FS depends on the intrinsic properties of data to exhibit good characteristics and
applicability, and basic filter learning is motivated by the Laplacian score (LS). He et al
(2005) proposed LS to evaluate feature importance, and thus, FS was implemented by the
LS algorithm. Then, Zhao et al (2008) used LS for face recognition comparison in semi-
supervised FS, and Huang et al (2018) presented manifold-based constraint LS for multi-
label learning. Moreover, Zhu et al (2012) proposed an LS-based FS algorithm called the
iterative LS (ILS) algorithm, and using this approach, the nearest neighborhood graph is
iteratively updated by discarding the least relevant feature; thus, better experimental results
were achieved using the ILS algorithm compared with the LS algorithm. To enhance both
the LS and ILS algorithms, Pang and Zhang (2020a) recently proposed an improved FS
algorithm, i.e., the forward iterative LS algorithm. More specifically, LS is modified by
both the parameter concretization (on the K nearest neighbors (KNN)) and feature sub-
set assessment, and then, the FILS algorithm introduces the forward strategy and selective
criterion by optimally extracting the most important feature in each iteration. Meanwhile,
Pang and Zhang (2020b) introduced the modified LS to linearly combine the neighborhood
discrimination index, and the corresponding semisupervised FS was further implemented.

Now, the FILS algorithm (Pang and Zhang 2020a) is refocused on, and it utilizes the
modified LS assessment and forward iteration strategy to achieve better performance
than the LS and ILS algorithms. This algorithm still has room for improvement. In the
FILS algorithm, the feature correlation and selection criterion require uncertainty meas-
urements on the subset transfer A - AU {f,}, and this core process actually adheres
to dynamic learning with a feature increment; however, only the measurement of the
terminal state subset AU {f,} is of concern when using the FILS algorithm. However,
the initial state A with dynamic change is also worth considering. Thus, in this paper,
feature significance (SIG) is introduced through the process of state deference, i.e.,
A(A =AU {f} ), and the relevant uncertainty characterization can more systematically
evaluate and effectively promote forward iterations with dynamics. The in-depth utili-
zation of SIG has already been applied in optimal selection and heuristic reduction of
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rough set reasoning (Wang et al 2017; Xu et al 2021; Yuan et al 2021; Zhang et al 2021;
Zhang and Yao 2022). In this paper, the modified LS and forward iteration are still uti-
lized. However, the SIG technology is added to implement (filter) unsupervised FS. The
relevant algorithm is referred to as the incremental forward iterative LS (IFILS) algo-
rithm, and it truly improves the FILS algorithm, which already improves the LS and ILS
algorithms. Thus, better learning performance on classification recognition is achieved
using the IFILS algorithm, as validated by data experiments. Moreover, both the basic
modified LS and developmental SIG acquire in-depth measurement properties, mainly
granulation nonmonotonicity and uncertainty.

In this paper, unsupervised feature selection is implemented, and its purpose is to
improve the current FILS algorithm (Pang and Zhang 2020a). Regarding its novelty,
SIG and its granulation nonmonotonicity and uncertainty are deeply mined, and thus
an improved algorithm, i.e., the IFILS algorithm, is designed to achieve better classi-
fication performance. The remainder of this paper is organized as follows. In Sect. 2,
unsupervised FS based on FILS is reviewed. In Sect. 3, unsupervised FS based on IFILS
algorithm is established. In Sect. 4, an illustrative example is provided for relevant
measures and algorithms. In Sect. 5, comparative experiments of the FILS and IFILS
algorithms are performed. Finally, in Sect. 6, this paper is concluded.

2 Unsupervised feature selection based on forward iterative Laplacian
score (FILS)

LS effectively evaluates feature description abilities. Therefore, it facilitates FS espe-
cially in unsupervised learning. In LS-based FS, if samples with similar distances in the
original feature space maintain their neighbor relationships in a single feature dimen-
sion, then the basic feature is considered to maintain local structures of data; that is, FS
utilizes the nearest neighbor graph to explore the local structures. Of course, different
LS forms and treatments may cause different algorithms and effects of unsupervised
FS. Next, the relevant FILS algorithm is reviewed based on basic LS and improved LS
(Pang and Zhang 2020a).

Let DIS=(X,F,D) be a decision information system. Here, uni-

verse X ={x;,%,...,x,} carries u samples, the condition set
F=A{f.fr,....f,} =1{f. | r=1,2,...,n} contains n features (such as f,), f,; denotes
the value on i-th sample and r-th feature (i =1,...,u; r=1,...,n), and D implies the

decision set. By separation, information system IS = (X, F) is mainly used for unsu-
pervised FS, and D supports only eventual identification for learning effects. Let
ACF,A=F-A

Definition 1 (LS (He et al 2005)) Information system IS = (X, F) has the nearest neighbor
graph. If x; € X is in KNN of x; € X, then nodes i and j are connected by an edge. By sam-
ple circulation in universe X, weight matrix § = [S;],,, is obtained as follows:

(D

5 = 7)) if x; € KNN(x)) V x; € KNN(x)),
v 0, otherwise.

Here, ¢ > 0 is an adjustable parameter, d(xl-,x/-) is the Euclidean distance for Xis Xjs and
KNN(x;) denotes the KNN set of x;. Now, introduce matrix expressions:
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1=[1,1,..., 11", D = diag(S x 1),L =D — 8,
- ffxDx1 (2)

r=r?r""’r]T’ r= r_r—XI'

Sr=stias il fr = f <D x1

Then, LS of feature f, is defined as

2
501y,
l)~ Zi (fri - Mr)zDii

3

1
where y, = . Y. fiand Dy = Zj Sij

Basic LS can be used to guide unsupervised FS, as realized by the LS algorithm
(He et al 2005). In this method, the nearest neighborhood graph is mainly iteratively
updated, and the importance of a feature is evaluated based on its locality preservation
ability. Furthermore, the ILS algorithm is used to remove poor performing features (Zhu
et al 2012); therefore, it generally outperforms the LS algorithm. In contrast, select-
ing higher-ranking features becomes a direct and effective strategy. For example, bet-
ter effects are achieved using the FILS algorithm with the LS improvement (Pang and
Zhang 2020a).

Definition 2 (FILS (Pang and Zhang 2020a)) The original weight matrix in Eq. (1) is
defined as

&2 (5i.x)
s =4 7T ifx € KNNGy) v € KNN(), @
0, otherwise.

Here, o0; = d(xl-,xf() is given, where le represents the KNN of x;, and o; has the similar
case. By Egs. (2) (4), S-based L, D is updated to generate matrices:

T
Z, =7, -1x Zy' xDx1 Z. =@Z)" Q)
4T "xpx1 ] = 7™ 7

where Z, € R™ X |A|is the sample matrix of feature subset A C F. Thus, the modified LS
of feature subset A is defined as

~T —~
trace(Z, XLxXZ,) .
— 2 if A#0,

Jeis(A) = 9 trace@; xDXZ;) # (6)
0, otherwise,

where trace(-) denotes the sum of the diagonal matrix elements.
The selection criterion (regarding picking up the most important feature) is based on

Jrps(AU
Jre = argminJp; (fy) = argmin |1 — M l @)
fieA fieA JriLs(F)

where
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e s(A U {fi})

Jps(fi) = |1 - 8
FiLsUk Trms(F) ®
In Definition 2, the weight matrix is first defined by the modified LS through the assign-
ment of parameter ¢ to the distance production on KNN, i.e., t = o% This strategy is used
i0)

to introduce relative measurements and statistical information on KNN. Therefore, it
largely eliminates similar elements to accurately reflect the intrinsic relationships of the
elements. Moreover, feature subsets rather than single features are of concern in variant
LS. Therefore, it more completely contains local structures and actual interactions. Briefly,
the new LS fully considers mutual influences between elements and features to improve the
previous LS, so it is beneficial in unsupervised FS. As a result, the corresponding feature
indicator and optimization extraction are presented in Eq. (7) of Definition 2, and they are
mainly established by virtue of minimality and inversion. They naturally lead to the FILS
algorithm and its validity. Note that abbreviation FILS is used to represent both the rele-
vant mechanism and the feature extraction algorithm (Pang and Zhang 2020a).

3 Unsupervised feature selection based on incremental forward
iterative Laplacian score (IFILS)

Based on observation, the FILS algorithm still has room for improvement with respect to
unsupervised feature selection. Although each dynamic iteration necessarily contains two
states, the beginning and ending states, this algorithm mainly addresses uncertainty meas-
urements for the ending state in an iterative process. Therefore, not describing the begin-
ning state causes both the basic defect of measurement incompleteness and the further
possibility of FS improvement. In this section, the incremental technology and complete
measurements are introduced to address the underlying measurement issue in the FILS
algorithm, and thus, an improved FS algorithm (i.e., the IFILS algorithm) is proposed.

3.1 Feature significance in the incremental process and its granulation
nonmonotonicity/uncertainty

Herein, a process measure for feature importance is first mined based on modified LS, and
its granulation nonmonotonicity/uncertainty is further revealed.

Feature selection with forward iterations concerns the core process from A to A U {f; }.
Therefore, the additional feature f;, € A should be optimally selected to efficiently increase
A. The A — A U {f, } procedure contains two states: the initial set A and the final extension
AU {f }. In the FILS algorithm, the evaluation measurement in Eq. (7) only considers the
final state A U {f,}. Based on the broad treatment of the global A U {f,}, it undoubtedly
outperforms the single evaluation of the local {f, }. However, this approach represents only
the structural absoluteness of the process termination. Therefore, measurement weakness
easily occurs. The initial state A inevitably exhibits subsequent iterative renewals; thus,
the relevant relativity measurement should be added for integrated reinforcement, based on
the concept of double quantification and its advantages (Zhang and Gou 2022). Therefore,
a better structural mechanism that addresses both initial and final states is worth introduc-
ing to realize systematic extraction and comprehensive assessment. Herein, the process dif-
ference A(A - AU {fk}) is considered, and thus, the process A — A U {f, } is integrally
estimated by |Jp;¢(A U {f;}) — Jps(A)| or its related variants. The contrast difference or
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difference operation has been extensively utilized in multiple disciplines, such as physics
and mathematics, and its resultant feature significance has already profited the optimiza-
tion selection and heuristic search in rough set analysis (Wang et al 2017; Zhang et al 2021;
Zhang and Yao 2022).

Definition 3 (SIG) In information system IS = (X, F), the significance (SIG) of the addi-
tional feature f; € A = F — A on feature subset A C F is defined as

SIG,(fi) = Jris(A) = Jps(A U {fi ). 9

and it is a new measure from the basic modified LS and related difference operation.

SIG 4(f,) utilizes the difference of modified LS to express a type of feature importance.
Therefore, a better assessment of the increment process A — AU {f,} with dynamics
is obtained. The difference characteristic of SIG implies a general increment, and it has
become a common and effective form. In later studies, SIG is utilized to optimize measure-
ments and select features. As a basis and an extension, granulation nonmonotonicity/uncer-
tainty, which is a fundamental property regarding knowledge cognition (Xu et al 2021;
Zhang and Jiang 2022), is particularly discussed for the SIG metric. In fact, knowledge-
based uncertainty is an inherent quality of intelligent information systems, and its relevant
granulation monotonicity and nonmonotonicity have currently gained extensive attention
in feature selection and attribute reduction (Stariczyk and Zielosko 2020; Zhang and Yao
2022; Gao et al 2019; Wang et al 2015, 2019). An inclusion relationship of feature subsets,
such as A C A’ CF, is theoretically required to discuss the granulation uncertainty and
monotonicity/nonmonotonicity of SIG. In practice, researchers may focus more on a usual
granulation chain with feature additions, i.e.,

Ai={fitcA ={i.HhlCcCA, ={fl,....[h,} =F, (10)
which concerns n — 1 incremental processes:
A=A =AU, }0=12,...,n-1). (1D)

This totally ordered sequence from feature granulation can be effectively used to probe
hierarchical knowledge structures and corresponding measurement manifestations.

Theorem 1 In information system IS = (X, F) containing A C A’ CF, Jp;5(A) < Jps(A)
does not necessarily hold, and the inequality Jpy ((A) > Jgy(A) may partially or com-
pletely emerge. In other words, the modified LS has granulation nonmonotonicity and
uncertainty.

Corollary 1 For A C A, C -+ CA, (Eq. (10)), if 1 <ry <r, <norA, CA,, then neither
Jris@A,,) S Jpps(A,) nor Jgs(A, ) 2 Jpys(A,) necessarily holds. That is, all modified
LS values on the feature-incremental chain, i.e.,

JrisA1) Jps(Az), - Jps(4,), (12)

have nonmonotonic and uncertain size changes.

Theorem 2 For A; CA, C -+ CA, (Eq. (10)), let 1 <r; <r, <n—1so that A, CA,.
Thus, Egs. (9), (10) and (11) lead to the following formulas:
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SIGA,_l (fr1+l) =JFILS(Ar1) - JFILS(Ar1+1)’

13)
SIGy,, (1) =Jrus(Ar,) = Tpis(Ar,10),

SIGA,.l ) =JrisA) = JensA, U ALY,

SIGA,2 () =Jrns(A,) = Jpis(A,, U {fih)s (19

wherek € {r, +1,....n}sothat fy e F—A, CF—A,.

(1) Basedon Eq. (13), neitherSIGArl (1) < SIGAr2 (fr2+1)”0"SIGA,.I () 2 SIGAr2 (1)
necessarily holds. This basic size result implies sequential size changes with granula-
tion nonmonotonicity and uncertainty for n — 1 values:

SIG, (), SIG,,(3), .., SIG, _ () (15)

(2) Based on Eq. (14), neither SIG,_(fi) < SIG, _(fi)nor SIG, (f;) 2 SIG, (fi) necessar-

ily holds. This basic size result implies sequéntial size changes with granulation non-
monotonicity and uncertainty for general r — 1 values (r € {2,3,...,n}):

SIG, (1), ... SIG, _ (1), (16)
as well as for special n — 1 values (where r = n) or n values.

SIG, (1,).SIG, (f,). ... .SIG, (£,

17
SIG, (£,).SIG, (£, ... .SIG, _ (£,).5IG, (f,). an

where SIGAn (f,) = 01is additionally and reasonably stipulated.

Corollary 2 In information system IS = (X, F), the measure SIG ,(f,) has nonmonotonic and
uncertain size relationships in relation to the variable changes of subset A and feature f,.
In other words, let ACA' CF and 1 <k <k’ <n. A pair of metric values may have no
necessary sizes for four special pairs:
(SIG4(f), SIG,(fi)
(SIG (). SIG 4, (f)
(SIGA(f), SIG 4, (fi)
(SIGA(fo), SIG 4/ ()

(where f..f, € F — A),
(wheref, € F — A’ CF —A),
(wheref, € F—A,f, € F—A),
(wheref,, e F—A,f, e F—A").

(18)

—_— — — —

Theorems 1, 2 and Corollaries 1, 2 present the basic nonmonotonicity and further
uncertainty for two measures, mainly by the granulation changes of feature subsets.
For these metric properties, Theorem 1 and Corollary 1 support modified LS, while
Theorem 2 and Corollary 2 support SIG. As a comparison, Theorem 1 and Corollary 2
mainly focus on the direct change of A C A’, while Theorem 1 and Corollary 1 reveal
the incremental chain A; C A, C --- CA,. The theoretical correctness, especially in
terms of the relevant changes of Theorem 1 and Corollary 1 on the feature chain, will
be verified through examples and experiments, as shown in Table 3, Fig. 2, Table 6, and
Fig. 3. Since SIG is derived from modified LS, the nonmonotonicity and uncertainty of
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modified LS induce the similar properties in SIG. In other words, the nonmonotonicity
and uncertainty of SIG mainly originate from modified LS.

e In terms of the incremental chain, the chaos in Eq. (12) implies the qualitative difference
of positive-negative numbers or the quantitative difference of values in Egs. (13) and (15).
Therefore, the SIG values in Egs. (13) and (15) also become chaotic. A similar induction
or explanation applies for the cases in Eqs. (14) and (16) (17).

e For a direct binary comparison, there are several basic cases of SIG for single and dual
changes of the features and subsets, i.e., the four combined types in Eq. (18). Based on
Eq. (18), A C A’ represents the knowledge granulation. However, k < k' still implies the
usual parallel relationship or selection. For a single change, the incomparability is natu-
rally related to the nonmonotonicity/uncertainty in Theorem 1; furthermore, dual changes
become more complex and also exhibit the incomparability, and their related derivations
can be easily realized.

In summary, Theorem 1 describes the original and basic nonmonotonicity/uncertainty of
modified LS, and Corollary 1 is derived from it. Corollary 1 generates Theorem 2, which
describes the SIG nonmonotonicity/uncertainty on the incremental feature chain, and the latter
is the main conclusion that will be observed and verified. Finally, Corollary 2 can be explained
by Theorems 1 or 2. All these properties of granulation nonmonotonicity and uncertainty are
in-depth. Therefore, they both enrich theoretical studies and underlie practical applications of
modified LS and evolutive SIG for uncertainty characterization.

3.2 Increment-significance-based feature selection criterion and algorithm

In the above, feature significance (SIG) is established via modified LS, and its robust mecha-
nism on the uncertainty measurements firmly underlies further applications, such as feature
selection. Next, SIG is utilized to develop the corresponding optimization criterion and imple-
mentation algorithm for feature selection.

Definition 4 (IFILS) Egs. (7) and (9) are combined to offer a new standard of feature
selection, i.e.,

, . SIG,(fi)
S = argminJyp; o(f) = argmin (1 — ——|. (19)
fieA feA Jris(F)
Here, the metric integration of feature f is obtained by
SIG,(f,)
usth) = |1 = 25 2
1riLs Uk T (F) (20)
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Algorithm 1 (The IFILS algorithm) Feature selection based on incremen-
tal forward iterative Laplacian score

Require: Information system I.S = (X, F), nearest neighbor number K, and
required feature number 7.
Ensure: Selective feature subset A with number r.
. Initialize A= 0, F = {f1, fo, -, fu}, A= F — A
. Construct the nearest neighbor graph;
: Use Eq. (4) to compute weight matrix S;
: Use Eq. (6) to compute LS of entire set F, i.e., Jrrrs(F);
. while (|[A] <7 A A #0) do
for each f, € A do
Let A, = AU {fk}
Use Eq. (6) to compute both Jrrrs(A) on initial feature subset A
and Jrrrs(Ag) on terminative union subset A U {fi};

[ T < B N

o: Use Eq. (9) to compute SIG of feature f, i.e., SIGA(fx);
10: Use Eq. (20) to compute Jrprrs(fx) on feature fi;
11: end for

12: Use Eq. (19) to sequentially find fro with the minimum Jrprrs(fi);
13: A<—AU{fk0};

u. A=F- A4

15: end while

16: Return A.

In Definition 4, SIG,(f,) is introduced in Eq. (7) to replace Jp; (A U {f;}). There-
fore, an improved selection strategy is constructed through Eq. (19). The new feature
index and extraction still use modified LS but carry the difference SIG,(f;), and they
adhere to the structural relativity and dynamic integrity of the entire incremental pro-
cess. Hence, Definition 4 (or its Eq. (19)) guides the natural construction of the rel-
evant IFILS algorithm, and corresponding Algorithm 1 has a procedural flowchart that
is shown in Fig. 1.

For feature selection, Egs. (7) and (19) have a large similarity to influence the FILS
and IFILS algorithms, respectively. In Eqs. (7) and (19), Jp;; ¢(F) informationizes local
structures of the original data to act as a contrast criterion; when adding feature f,
measures Jg; (AU {f,}) and SIG,(f,) imply the process-driven absolute and rela-
tive degrees, respectively, for maintaining the local structures of the data. In the FILS
algorithm, if Jp; ¢(A U {f,}) approaches Jg; o(F), i.e., Jp;4(fi) = 0, then feature subset
AU {f;} can represent the whole feature set F well; in other words, a lower amount of
Jrs(fi) implies more importance of feature f;. Therefore Jz; ¢(f;) is minimized to gen-
erate the FILS algorithm. Similarly, the IFILS algorithm is designed by minimizing
Jiens(fi); when facing multiple features, the feature with the smallest label is preferen-
tially utilized. Clearly, the IFILS algorithm and its performance benefit from both the
effective uncertainty measurement of SIG and the corresponding convergence treatment
of incremental forward iteration.

Algorithm 1 mainly simulates but slightly changes the FILS algorithm. The FILS
algorithm necessarily enters the loop calculation regardless of A’s condition satisfi-
ability. In contrast, Algorithm 1 adopts the condition judgement to enter the loop, as
shown in Step 5. This type of improvement reduces the running costs of a complete
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Begin
Input
IS=(X,F), K, r
Initialize
A=@, F={fi,.f,}, A=F—4. i=1

v

Construct nearest neighbor graph
Compute weight matrix §
Compute LS of entire set F: J,,  (F)

v

[Al<rrAd=D? =

Yles
5
LYCS_ i<|A4]? —Nol
Let f, =4@), 4 =A9{f} Find minimal Jy5(f,)
Compute Jy,5(4) and Jpys(4,) (oot manioseLbel )
No| Compute SIG,(f,)
Compute J s (f,) v
A<« A {fk }
- i=i+1 A=F— A4
v
Output
A
v
End

Fig.1 Procedural flowchart of the IFILS algorithm

circulation. In terms of computational complexity, weight matrix S in Step 3 has a com-
plexity of O(u?), Jp;s(F) in Step 4 has a complexity of O(nu?), feature iterations on
h € (0,n]in Steps 5-15 have a complexity of O(2hu?). Therefore, the total complexity is
O(n*u?). The IFILS algorithm has a partial complexity increase in contrast to the FILS
algorithm. This increase mainly comes from the calculation of SIG,(f,). In addition,
the IFILS algorithm actually concerns the underlying calculation of modified LS only
twice, and thus, it becomes feasible.

4 lllustrative example of relevant measures and algorithms

Here, a table example is provided to illustrate relevant measures and algorithms, mainly
the granulation nonmonotonicity/uncertainty of the modified LS, SIG and process-
ing contrast of the IFILS and FILS algorithms. For this purpose, a defined part of the
University of California at Irvine (UCI) dataset, “Immunotherapy”, is extracted. This
numeric dataset and 11 other experimental datasets all come from the UCI repository
(https://archive.ics.uci.edu/ml/index.php), and their basic information is described in
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Table 1 Basic descriptions of experimental ten UCI datasets

No.  Dataset name Sample number Feature = Category Data type
number  number
0) Immunotherapy 90 2 Numeric
(D Blood 748 2 Numeric
2) Ccbr (Cervical cancer behavior risk) 72 19 2 Numeric
3) Ecoli 336 7 8 Numeric
4) Glass 214 9 6 Numeric
3) Hayes-roth 132 5 3 Numeric
6) Iris 150 4 3 Numeric
(@] Lung cancer 32 56 3 Numeric
8) Wine 178 13 3 Numeric
) COVID-19 (COVID-19 surveillance) 14 7 3 Nominal
(10)  Brain (Multi-view Brain Networks Data Set) 70 70 10 Numeric
(11)  Parkinsons 195 22 2 Numeric

Table 1. On this website, the “view all datasets” link or the “search” function can be
directly utilized to acquire the relevant datasets. Moreover, some datasets are saved
or opened in other locations. As a result, the data can be received in various manners

through searches and downloads. For the Immunotherapy dataset, it can offer

DIS = (X = {x1,2, .. s Yoo} F = {fyofos oo 5, D = {d}),

which has seven selective features.

Max-min normalization is implemented for data preprocessing:

fri “

fri - min?:] fri

max;‘=l fii— min’i‘:1 S

@n

In 10-fold cross-validation, ten random trials are run for performance and statistics assess-
ments, and each trial contains both a 9-subset collection for training and one for testing.
In a given case, only one primary treatment is focused on to better illustrate the algorith-
mic procedures and comparisons. After normalization, the 1st random subset for testing is

Table 2 Decision subsystem on
the Immunotherapy dataset’s 1st
sample subset

T4 h f fa s Js £ d
Xg 1.00  0.10 045 0.06 0.00 024 0.09 1
X0 1.00 041 1.00  0.28 1.00  0.03 004 O
X4 1.00 0.00 041 0.61 0.00  0.05 0.07 1
X9 1.00 0.00 050 1.00 0.00 006 0.07 1
X5 0.00  0.56 1.00 0.72 000 0.09 006 O
Xsg 1.00  0.93 0.82 0.00 050 0.03 0.34 1
Xy  0.00  0.07 0.98 022 050 0.01 0.04 1
X8 1.00 076  0.61 039 0.00 004 001 1
Xgp 1.00 020 052 028 0.00 0.01 0.00 1

@ Springer



J.Jiang et al.

extracted, as shown in Table 2, where subuniverse X* contains nine samples. Next, Table 2
is utilized to measure the observation and demonstrate the algorithm.

4.1 Measure observation

For the nonmonotonicity/uncertainty metric, the relevant results on incremental feature
chains, i.e., the modified LS case in Eq. (12) of Corollary 1 and the SIG cases in Eqgs.
(15) and (17) of Theorem 2, are mainly considered. According to Table 2, the incremental
feature chain is defined as A; C A, C --- C A;. Therefore, the relevant metric observations
mainly concern three groups of measurement values, i.e.,

Jrns(A.), SIG, (f41), S1G, (f) (r=1,2,....7). (22)

The first group of the modified LS and the two types of SIG are listed in Table 3 and
depicted in Fig. 2.

Table 3 and Fig. 2 can be used to illustrate relevant measure definitions, calculations,
and properties, and thus, the granulation nonmonotonicity/uncertainty in Egs. (12) (15)
(17) are mainly verified.

e The value sequence Jp; ¢(A,) (r = 1,2, ...,7) shows a general increase. However, there
is a decrease in the case when Jgj; ¢(A;) = 0.1013 > 0.0488 = J;; o(A,). This phenom-
enon is in accordance with the granulation nonmonotonicity/uncertainty of the modi-
fied LS in Corollary 1.

e The sequence of SIGA,(f, +1) (r=1,2,...,6) contains only the positive value
SIG,,(fy) = +0.0525, which adheres to serial number 3, a middle num-
ber. Moreover, there is some fluctuation in the five negative values, such as
SIG,,(f5) = —0.1006 < SIG, (fg) = —0.0251 > SIG, (f;) = —0.0468. These two facts
validate the granulation nonmonotonicity/uncertainty of SIG in item 1) of Theorem 2.

e The sequence of SIG, (f;) (r=1,2,...,7) contains only negative numbers. How-
ever, quantitative differences and fluctuation are observed for these values. Thus,
SIG, (f) = —0.0199 > SIG, (f;) = —0.0705 < SIG, (f;) = —0.0468 fully reflects the
granulation nonmonotonicity/uncertainty of SIG in item 2) of Theorem 2.

4.2 Algorithm demonstration

For the Immunotherapy dataset, the training dataset is the complement of the 1st group
of subsets, i.e., the opposite of the data in Table 2. Parameter values K = 5,r = 4 are

Table 3 Measurement values of the modified LS and SIG on incremental chain of Table 2 (the Immuno-
therapy dataset)

Measure Feature-incremental chain A} C A, C -+ C A,

A A, A3 Ay As Aq A
Jrns(A,) 0.001 0.0054 0.1013 0.0488 0.1494 0.1745 0.2213
SIG, (foi1) —-0.0044 —-0.0959 +0.0525 —0.1006 —-0.0251 —0.0468 -
SIG, (f) —0.0199 —0.0503 —0.0705 —0.0700 —0.0488 —0.0468 0

@ Springer



Unsupervised feature selection based on incremental forward. ..

0.25
02f
o
Q
G015 ~
8 <
8 ©
ERCAN: n
0.05 F
0 . . . . 012 . . . . . .
A A2 A3 A4 A5 A6 A7 A1 A2 A3 A4 A5 A6
Feature increasing chain Feature increasing chain
(@) Jrrrs(A,) change (b) SIGa, (fr+1) change

0 — 0.25 T
—a—Jps(A)
-0.01 0.2 SIG, (f,,,)
-0.02 1 0.15 S%/f7)

SIG, (f,)
5
2
Modified-LS/SIG
°
]

006 1 005} \\/ /\a
-0.07 — 1 011 \/

0.08 0.15
A1 A2 A3 A4 A5 A6 AT A A2 A3 A4 A5 A6 AT
Feature increasing chain Feature increasing chain
() SIGa, (fr) change (d) Three-way changes

Fig.2 Three-way non-monotonicity/uncertainty changes of the modified LS and SIG on incremental chain
of Table 2 (the Immunotherapy dataset)

set due to algorithmic requirements. The FILS and IFILS algorithms have different
selection procedures and results, as shown in Tables 4 and 5 (where Jg; o(F) = 0.2243),
respectively. The FILS algorithm utilizes optimal ordering f; — f; — f; — f; to obtain a
feature subset {f,f, fs.f7 }, while the IFILS algorithm adopts sequence f;, = f; = f5 = f»
to yield another subset {f},f,fs.fs }- There are some differences beyond circulation opti-
mization between these two algorithms, e.g., the IFILS algorithm selects f; rather than
fiin the 2nd round.

The subsets selected above, which are based on the unsupervised training, next work
on the testing set (i.e., Table 2), and the accuracy of label prediction can be formulated
by decision classification. Conclusively, the prediction resorts to the KNN classifier to
pursue balanced connections with previous KNN processing approaches, such as Eq. (4),
and the classifier that is used requires the same distance and K. In Table 2, {f;,f4.fs.f7}
in the FILS algorithm generates predicted labels [1, 1, 1, 1, 1, 1, 1, 1, 1] on X*, and a
classification accuracy of 7/9 ~ 77.78% is achieved when considering the real labels
[1,0,1,1,0,1, 1, 1, 1]; in contrast, a recognition rate of 9/9 = 100% is achieved using
{fi.f2.f5.f} in the IFILS algorithm, which predicts the labels [1, 0, 1, 1, 0, 1, 1, 1, 1].
Herein, the classification accuracy (or recognition rate) is defined as the percentage of
correct predictions, i.e.,
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Object-number(Correct prediction)
Accuracy = - . . (23)
Object-number(Testing set)

The contrast accuracies reflect the validity and superiority of the IFILS algorithm, and the
root comes from the SIG advancement on the uncertainty measurement.

In summary, Tables 4 and 5, which come from Table 2 as well as the surplus, thoroughly
demonstrate the process and comparison of the FILS and IFILS algorithms. As a result,
the measurement mechanism and recognition advantage of the IFILS algorithm are firmly
validated.

5 Comparative experimental verification of unsupervised feature
selection on the FILS and IFILS algorithms

Finally, data experiments are performed to further demonstrate the effectiveness and superior-
ity of the IFILS algorithm, mainly in contrast to the FILS algorithm. Before this core treat-
ment, the modified LS and SIG are also calculated so that their granulation nonmonotonicity/
uncertainty is provided, mainly in terms of incremental feature chains. Three-way values are
defined as follows:

[Tris(A), SIG, (f41), SIG, (f,)]. (24)

These values are shown in Table 6 and are depicted in Fig. 3. For basic settings, only the
Ist sample subset is chosen from the 10-fold cross-validation. The chain number follows
r = min(7, n) for full verification, and the end feature f, is adopted for the last metric obser-
vation of the fixed features. Thus, related results from Table 6 and Fig. 3 effectively vali-
date all theoretical properties, especially the nonmonotonicity/uncertainty in Corollary 1
and Theorem 2.

In the above example, relevant experimental settings and mechanisms are detailed, and
they include the dataset description in Table 1, data standardization in Eq. (21), 10-fold cross-
validation, KNN classifier prediction, and recognition accuracy in Eq. (23). By deepening and
enlarging the above example, more datasets, cross-validation, and parametric optimization are
adopted to determine the statistical performance, where a fixed value K = 5 is mainly used
(Pang and Zhang 2020a). Next, four subsections are respectively formed from the Immuno-
therapy dataset, eight-numeric datasets, the COVID-19 dataset, and two additional datasets
(of medical diagnosis). As described in Table 1, all 12 datasets come from the UCI reposi-
tory (https://archive.ics.uci.edu/ml/index.php). UCI datasets with real-world data have become
authoritative and convenient for machine learning, and thus they are also generally utilized for
studies on feature selection. Relevant experiments are related to the theoretical validation and
practical application, and thus, they adopt more datasets around medical diagnosis, including
8 cases: Immunotherapy, Blood, Ccbr, Ecoli, Lung cancer, COVID-19, Brain, and Parkinsons.
Regarding the operational environment, all experiments are performed in MATLAB R2021a
and run with an Intel Core i7 CPU at 2.80 GHz, 8 GB RAM and 64-bit operating system.

5.1 The Imnmunotherapy dataset

The above example is obtained by performing experiments on the Immunotherapy dataset.
The 1st group is fixed and (K, r) = (5,4). These parameters are further extended through
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mental chains of nine UCI datasets

10-fold cross-validation and parameter changes. For the case where K = 5, Fig. 4 (a) shows
the accuracies obtained on a 10 X 7 grid, and the IFILS algorithm occupies more domi-
nant points with higher accuracies. Fig. 4 (b) shows the 10-fold average accuracy on fea-
ture chain A; C A, C --- C A; with representative subset A,, and the highest accuracy on
each feature number r is achieved using the IFILS algorithm. Hence, the optimal accuracy
86.67% (r = 4) achieved by the IFILS algorithm is better than the optimal accuracy 77.78%
(r =4,5,6) achieved by the FILS algorithm. In terms of the Immunotherapy dataset, the
IFILS algorithm outperforms the FILS algorithm, and the optimal accuracies of the two
methods are mainly realized by middle feature numbers.

K is the surplus parameter for change analysis, and it is next extended to {1,2, ..., 10}.
The K analysis for only the IFILS algorithm is sufficient and reasonable because this
new algorithm is improved and more representative. Table 7 shows the 10-fold average
accuracies and standard deviations on the (K, r)-grid, and it also shows the edge statis-
tics of K and r optimization. For clarity, Fig. 5(a) shows the average accuracies, and the
highest accuracy of 86.67% is obtained when (K, r) = (5,4). Figure 5(b) shows the cut
accuracies (with standard deviations) when r = 4. When the K value increases, the mean
accuracies first change from the lowest accuracy 57.78% (K = 1) to the highest 86.67%
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Fig.4 The FILS and IFILS algorithms’ accuracies on the Immunotherapy dataset (K = 5)

Table7 The IFILS algorithm’s 10-fold-average accuracies and standard deviations on the Immunotherapy
dataset (with K, r)

r K
1 2 3 4 5 6

1 6222 +13.04 522241391 7222+12.00 62.22+1589 76.67+1430 73.33+11.94
2 6333 +12.88 51.11+11.94 67.78 +9.73 55.56 +9.07 78.89 + 13.30 7333 +11.94
3 6333+ 1741 5556+ 1737 66.67+ 1571 6556+ 1523 7222+ 12.00 65.56 + 12.23
4 5778 £21.47 6444 +14.63 71.11 +1589 68.89 +8.76 1 86.67 £8.76 71.11 = 10.73
5 7556 £11.97 68.89+19.12 7445+1222 7223 +1024 7778 +£13.15 7556 +12.96
6 178.89 + 12.62 17556 +15.56 177.78 +8.61  175.56 + 6.67 78.89 + 10.48 77.78 + 13.15
7 7445+ 1222 7223 +10.24  75.56 + 6.67 74.45 +£5.09 74.45 + 8.68 17778 £ 11.11

roptimization ~ 178.89 +12.62 175.56 + 15.56 17778 +8.61 17556 £ 6.67 186.67 +8.76  177.78 + 11.11

r K K optimization
7 8 9 10
1 77.78 + 12.83 76.67 + 12.23 77.78 +12.83 76.67 + 14.30 77.78 + 12.83
2 78.89 + 13.30 76.67 + 13.30 17889+1330 17889+1330 7889+13.30
3 77.78 + 13.86 72.22 +13.09 76.67 + 14.30 72.22 +17.57 77.78 + 13.86
4 75.56 + 12.61 77.78 + 14.05 77.78 +£14.91 75.56 + 14.74 1 86.67 +8.76
5 18111 +£14.10 1 81.11+14.10 77.78 + 14.05 73.34 +14.23 81.11 +14.10
6 76.67 + 14.44 76.67 + 12.62 74.45 + 13.19 75.56 + 12.96 78.89 + 10.48
7 78.89 + 13.56 76.67 +10.48 76.67 +10.48 75.56 + 12.96 78.89 + 13.56

roptimization 181.11 +14.10  181.11 + 14.10  178.89 + 13.30  178.89 +13.30 1 86.67 +8.76

(K =5), and then they decrease to a stabilized value (K > 5). Figure 5(c) and (d) show
the optimization statistics on K and r, respectively, and the optimal accuracies adhere
to the middle values when K =5 and r = 4. In summary, K =5 is appropriate for the
IFILS algorithm as well as the FILS algorithm (Pang and Zhang 2020a).

@ Springer



J.Jiang et al.

Accuray(%)
Accuracy(%)
M @ s g o
s 8 & & 8

o

o

1 2 3 4 5 6 7 8 9 10
K

(b) Cut accuracies (r = 4)

100 100
920 920 -
sof o ke | — of = .
5 [ | 4 = Br= o B
70 = K= = K= = = 20k | || =] ] r=|| r= =l 5| 5 =|| r=
9 5, 7 7 5 7 6| 6|/ 6| 6 6 2|2
F 60 12 8 F 60 7
z 9, z
g€ 50 10 g€ 50
g g
8 8
< 40 < 40
30 30
20 20
10 10
0 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10
r K
(¢) K-optimization accuracies (r) (d) r-optimization accuracies (K)

Fig.5 The FILS algorithm’ accuracies on the Immunotherapy dataset (X, r)

5.2 Eight numeric datasets

By referring to the above experiments on the Immunotherapy dataset, eight extra numeric
datasets are implemented using the FILS and IFILS algorithms, and they are compared.
Except for a 10-fold cross-validation, parameter r concerns an equidistant feature sequence.
In terms of classifiers, KNN is still adopted, and K =5 is suitable and fixed; moreover,
classifiers CART and SVM are directly added for algorithmic comparison. In comparative
experiments, classification accuracies are focused on for the following three dimensions:
10-fold cross-validation, selection number r, and classifier, and the main results are pro-
vided after necessary integrated processing.

First, as shown in Fig. 6, the aim is to provide details on 10-fold cross-validation, and
r is optimized in the range |r| < F to achieve the highest accuracy. In other words, Fig. 6
shows the r-optimal accuracies on 10-fold cross-validation by using three classifiers. By
observation, the IFILS algorithm occupies more 10-fold points with higher accuracies in
terms of KNN, CART, SVM. Therefore, it has superiority over the FILS algorithm from
the perspective of 10-fold cross-validation.

In general, 10-fold cross-validation is mainly used for integrated statistics. Therefore,
the 10-fold dimension is naturally reduced. Based on 10-fold statistics, Tables 8, 9, 10
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basically summarize the average accuracies and standard deviations of KNN, CART and
SVM. Furthermore, optimal or suboptimal accuracies from r statistics are reflected in the
last two columns, and the bolded text highlights two-algorithmic comparisons. Moreover,
the 10-fold statistical averages of Tables 8, 9, 10 are equivalently depicted in Fig. 7 to
vividly clarify the relevant advancement of the IFILS algorithm. Based on comparisons
in the table and figure, the IFILS algorithm generally has greater proportions of dominant
features with higher accuracies for each dataset and the whole dataset. When r increases,
the accuracy first rapidly increases and then gradually increases or decreases. Therefore,
the optimal accuracies are usually realized by the final or middle feature numbers. Regard-
ing the entire feature set F, the highest accuracies on the Blood, Ecoli and Wine datasets
are achieved using both algorithms. However, the IFILS algorithm can make an additional
optimization realization on the Ccbr and Iris datasets, from the perspective of KNN. The
surplus observations of the CART and SVM classifiers can lead to similar analyses and
results. In terms of appropriate feature subsets, the IFILS algorithm can achieve not only
higher optimization accuracies but also less or an equal number of features for the three
classifiers on almost all datasets, and the latter results imply practical optimization with
dimensionality reduction. The sole exception for internal optimization comes from Wine
dataset when using the KNN and SVM classifiers. For the Wine dataset on KNN (Table 8),
optimal accuracies of 95.49% on r = 7 and 95.46% on r = 11 are achieved using the FILS
and IFILS algorithms, respectively; although 95.49% > 95.46%, these two values are very
close to never become significantly different; moreover, the highest accuracy of 96.08% on
the entire feature set ' (where r = 13) is actually achieved using both algorithms.

Tables 8, 9, 10 mainly come from the 10-fold statistics, and their accuracy values on
r-optimal selection (Where r < |F|) are extracted and summarized in Table 11. Moreover,
Table 11 shows a record of the running time of the two algorithms. Therefore, Table 11
provides a comprehensive platform for macroscopically comparing the FILS and IFILS
algorithms based on KNN, CART, SVM, and the bottom average results on 10-dataset sta-
tistics play an important role. Through observation and analysis, the dominant position of
the IFILS algorithm in contrast to the FILS algorithm can be concluded by three assess-
ment indicators, i.e., the reduction length, classification accuracy, and consumption time.
In terms of the main indices, the IFILS algorithm exhibits a general advantage in terms
of both the length and accuracy. Moreover, its execution time is only slightly greater than
that of the FILS algorithm, and the time difference is not large, which implies that these
algorithms are on the same level. In other words, the IFILS algorithm has great superiority
in pursuing feature simplification and recognition accuracy, and its time is acceptable when
compared to the FILS algorithm.

In summary, eight datasets based on the three classifiers provide information on the full
algorithmic verification from the correspondence and optimization perspectives, and the
IFILS algorithm generally outperforms the FILS algorithm and achieves better classifica-
tion performance.

5.3 COVID-19 surveillance: a nominal dataset

The FILS and IFILS algorithms can also be applied to nominal datasets, and the
COVID-19 dataset shown in Table 1 is provided. This important medical case can fur-
ther reveal the superiority of the new algorithm. There exist only three different opera-
tions, i.e., nominal-numeric transformation, cross-validation correction, and parameter
K determination. Two qualitative symptoms, i.e., “+,—", of seven features naturally
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Fig.6 The FILS and IFILS algorithms’ r-optimal (r < |F|) accuracies on eight UCI datasets (with 10-fold
times and three classifiers)
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Fig.7 The FILS and IFILS algorithms’ 10-fold-average classification accuracies on eight UCI datasets

(with number r and three classifiers)
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Table 12 The FILS and IFILS algorithms’ 3-fold-average accuracies and standard deviations on COVID-19
dataset (with K, r)

r Algorithm K
1 2 3 4

1 FILS 66.67 + 24.94  58.33 + 14.34 158.33 +14.34  |58.33 +14.34
IFILS 66.67 +24.94 5833 +14.34 5833+ 1434 5833 +14.34

2 FILS 56.67 +£4.71 165.00+7.07 56.67+4.71 158.33 £ 14.34
IFILS 66.67 +24.94  58.33 + 14.34 5833+ 1434 5833 +14.34

3 FILS 173.33+18.86 58.33 +14.34 158.33 + 14.34 5833 +14.34
IFILS 17333+1886 165.00 +7.07 165.00 +7.07  165.00 + 7.07

4 FILS 5833+ 14.34 5833+ 14.34 50.00 + 8.16 15833+ 14.34
IFILS 60.00 +32.66  58.33 + 14.34 56.67 +£4.71 58.33 £ 14.34

5 FILS 41.67 £ 1434 50.00 + 8.16 50.00 + 8.16 50.00 = 8.16
IFILS 58.33 +14.34  50.00 +8.16 63.33 + 1247 165.00+ 17.80

6 FILS 41.67 + 1434 50.00 + 8.16 50.00 +24.49 | 5833+ 14.34
IFILS 5833+ 14.34  50.00 + 8.16 35.00 +17.80  50.00 + 8.16

7 FILS 50.00 £ 8.16 50.00 £+ 8.16 35.00 +17.80 | 58.33 + 14.34
IFILS 50.00 £ 8.16 50.00 £ 8.16 3500+ 17.80  58.33 + 14.34

r optimization FILS 173.33+18.86 165.00 +bf 7.07 |58.33 + 14.34  |58.33 + 14.34
IFILS 173.33 +18.86 165.00 + 7.07 165.00 +7.07  165.00 + 7.07

r K K optimization
5 6 7 8

1 158.33 +14.34 5833 +14.34 5833 +14.34  |58.33 +14.34  66.67 +24.94
5833+ 1434 5833+1434 5833+ 14.34 5833+ 1434  66.67 +24.94

2 51.67 £16.50  51.67 +16.50  ]58.33 + 1434  50.00 + 8.16 65.00 +7.07
5833 +14.34 5833+ 1434 5833+ 1434 5833+ 1434  66.67 +24.94

3 158.33 + 1434 5833 +14.34 5833 +14.34 5833 + 1434 | 73.33 +18.86
165.00 £7.07  165.00 +7.07  165.00 + 7.07 165.00 +7.07 1 73.33 +18.86

4 50.00 + 8.16 15833+14.34 | 5833 +14.34 | 5833 +14.34 5833 +14.34
50.00 £ 8.16 50.00 +8.16 33.33+£24.94 5833+ 1434  60.00 + 32.66

5 50.00 + 8.16 50.00 +8.16 50.00 + 8.16 15833 +14.34 5833+ 14.34
5833 +14.34 5833 +1434 5833 +1434 5833 +14.34 1 65.00 +17.80

6 15833+14.34 | 5833+14.34 | 5833 +14.34 | 5833 +14.34 58.33+14.34
50.00 £ 8.16 5833 +14.34 50.00 +8.16 5833+ 14.34  58.33 +14.34

7 15833 +14.34 | 58.33 +14.34 50.00 +8.16 | 5833 +£14.34 58.33+14.34
5833+ 14.34  5833+14.34  50.00 +8.16 5833+ 14.34 5833 +14.34

roptimization |58.33 +14.34 5833 + 1434 5833 +14.34  |5833 + 1434 | 73.33 +18.86
165.00 +7.07  165.00 +=7.07  165.00 + 7.07 165.00 +7.07 1 73.33 +18.86

correspond to qualitative numbers +1,—1, and they can be linearly translated to 2, O to
eliminate the negativity. Since the COVID-19 dataset contains a small number of sam-
ples (only 14 samples), 3-fold cross-validation is alternatively adopted. K =5 used in
the above experiments may become too large, so K is mainly searched in {1,2, ..., 8} for
full analysis in both algorithms.
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Fig.8 The FILS and IFILS algorithms’ accuracies on the COVID-19 dataset

Table 12 shows the accuracy on the (K, r) grid based on the 3-fold statistics, and the 3-fold
case and mean are partly reflected in Fig. 8(a) and (b), respectively, when K = 5. In Table 12,
the main body of the average accuracies are imported from Fig. 8(c), and its cut parts when
K =5 and r = 2 constitute two broken lines in Fig. 8(c) and (d); furthermore, the right and
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lower margins represent the maximal accuracies on K and r optimization, respectively; these
form the other two lines in Fig. 8(c) and (d). Using contrast analysis, more proportions on cor-
respondence and higher accuracies on optimization are obtained using the IFILS algorithm.
Therefore, the better performance on this nominal medicine dataset is achieved using this
algorithm.

5.4 Two additional medical diagnosis datasets

Finally, two additional datasets related to medical diagnosis, the Brain and Parkinsons datasets
shown in Table 1, are adopted to comparatively analyze the FILS and IFILS algorithms to fur-
ther verify the advantage of the IFILS algorithm over the FILS algorithm. Note that both the
Brain and Parkinsons datasets are real-world related to medical diagnosis.

e The Brain dataset is a multilayer brain network dataset with resting-state electroencepha-
lography data, and these practical data come from the Department of Otolaryngology of
Sun Yat-sen Memorial Hospital, Sun Yat-sen University.

e The Parkinsons dataset is a detection dataset related to Parkinson’s disease (PD). In this
dataset, a range of biomedical voice measurements were recorded from 31 individuals. Of
these individuals, 23 were diagnosed with PD. This dataset can be used to discriminate
health patients from patients with PD.

Relevant accuracy results are provided in Table 13 based on changing the feature number
r. By using 10-fold statistics, the results in Table 13 are first summarized as average accu-
racies and standard deviations in terms of the KNN, CART and SVM classifiers. Then, the
last columns in Table 13 show a record of the r-optimal statistics, where the bold label high-
lights the comparative maximum. The algorithm comparison and superiority revelations can
be observed in Table 13. When considering the same feature number r on the same classifier,
higher recognition rates are often achieved using the IFILS algorithm rather than the FILS
algorithm. When r = |F|, the same recognition rate is achieved by these two algorithms with
the same classifier. These results are generally the highest in relation to feature subsets. How-
ever, one exception exists on Parkinsons dataset using the CART classifier. Concretely, a max-
imum of value of 87.71% is achieved when r = 10 using the IFILS algorithm, while a value
of 86.18% when r = |F| = 22 is achieved using the FILS algorithm, so the IFILS algorithm
outperforms the FILS algorithm. Regarding r-optimization with a range of » < |F|, the IFILS
algorithm has a better effect than the FILS algorithm when observing the two contrast indices
for the recognition rate and feature number. For the Brain dataset, when using the three-way
classifiers on r < |F|, the following results are acquired for the IFILS and FILS algorithms,
ie., (77.14%,61.43%, 85.71%) > (61.43%,60.00%, 82.86%) of the recognize accuracy and
(34,23,23) < (56,56,56) of the feature number. As further validated by the two medical
diagnosis datasets, the IFILS algorithm not only removes the redundant data but also improves
the recognition rate. Therefore, it has true improvements over the FILS algorithm.
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6 Conclusions

This paper devotes to an unsupervised feature selection method based on modified LS, and
thus, the IFILS algorithm, whose flowchart is shown in Fig. 1, is proposed as an improve-
ment over the FILS algorithm. The algorithmic validity and superiority come from the
introduction and perfection of the systematic measure SIG based on the modified LS (Defi-
nition 3), and they are completely supported through examples and data experiments. In
terms of the root of uncertainty in measurements, both the main SIG and underlying modi-
fied LS have granulation uncertainty/nonmonotonicity, and their characterizations (espe-
cially SIG’s informatization) effectively function in unsupervised feature selection.

As a result, the IFILS algorithm outperforms the FILS algorithm, and it achieves better
classification performance. This conclusion can be generally validated by the experimental
results, especially on the main ten datasets (Sects. 5.2 and 5.4), and the eight datasets and
their results in Sect. 5.2 are further summarized. In terms of the 8 datasets, Tables 8, 9,
and 10 provide information on the chain search and optimization determination. From this
detailed information, the comparative advantages of the IFILS algorithm are revealed by
using the KNN, CART and SVM algorithms; furthermore, Table 11 shows the optimal sit-
uations of feature selection, and they comprehensively reflect the superiority of the IFILS
algorithm in terms of selection number, prediction accuracy, and running time, using the
three classifiers. In terms of the 8 dataset figures, Fig. 6 shows the 10-fold cross-validation
to determine the r-optimal accuracies (where r < |F|) based on the KNN, CART and SVM
classifiers, while Fig. 7 shows the feature number r to reflect the 10-fold average accura-
cies based on the three classifiers; these two figures also reveal the advantages of the IFILS
algorithm from different yet clear perspectives.

The IFILS algorithm has become a new learning method for feature selection, and
there are two possible limitations and corresponding development opportunities. Since the
underlying modified LS is dependent on the KNN calculations of all elements, the IFILS
algorithm is concerned with relevant matrix processing, which is very time-consuming.
Meanwhile, the IFILS algorithm adheres to a specific approach to uncertainty measure-
ments, and more robust measures and algorithms need to be constructed by comprehen-
sively considering additional perspectives. In the future, the time efficiency of the IFILS
algorithm should be improved by utilizing some optimization strategies, while its recog-
nition effect can be further reinforced by combining other practical measures such as the
dependency degree and information entropy. Furthermore, the IFILS algorithm can be fur-
ther considered and utilized from the unsupervised FS to semisupervised learning perspec-
tive, and its data mining capability is worth studying from numeric and nominal datasets to
hybrid datasets. Moreover, in-depth experiments based on broader datasets are required for
the IFILS algorithm and subsequent improvements, thus better facilitating real-world intel-
ligent applications of machine learning.
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