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Objective: To establish the noninferiority of the rapid and sensitive multiplex polymerase chain reaction (M-PCR) method versus 
standard urine culture (SUC) in pediatric urinary tract infection (UTI) diagnostic testing.
Methods: A United States of America (USA)-based single-center prospective observational study of 44 female and four male patients 
aged 3–21 years old presenting to a Pediatric Emergency Department in New Jersey with clinically suspected UTI. Urine specimens 
were primarily collected via midstream voiding. Patients with antibiotic exposure within the week prior to presentation were excluded. 
Patient demographic data, clinical manifestations, and urinalysis results were recorded. Noninferiority testing comparing M-PCR and 
SUC was conducted using a method for paired binary data, with a noninferiority margin set at 5%. Noninferiority was concluded if the 
lower bound of the 95% confidence interval of the difference in detection rates between M-PCR and SUC lies entirely to the right of 
the value minus the noninferiority margin. All statistical calculations were performed using Python 3.10.12.
Results: The two methods were concordant in two-thirds of cases. Of the 14 M-PCR-positive/SUC-negative discordant specimens, 13 
(93%) contained a fastidious and/or emerging uropathogen (A. urinae, A. schaalii, G. vaginalis, C. riegelii, U. urealyticum, Viridans 
group Streptococci (VGS), and/or Coagulase-negative Staphylococci (CoNS)). Neither symptom presentation nor urinalysis results 
differed significantly between participants with concordant positive results for UTI diagnosis and those with concordant negative 
results (non-UTI group).
Conclusion: In this pediatric population, similar to previous findings in an older adult population, M-PCR established not only 
noninferiority but also superiority over SUC in detecting microorganisms in the urine.
Keywords: symptoms, urinalysis, UTI, SUC, M-PCR, Guidance UTI

Introduction
Pediatric urinary tract infection (UTI) constitutes a significant healthcare burden, leading to more than 1.1 million office 
visits and around 2.8% of children being diagnosed each year.1,2 Furthermore, pediatric UTI can result in acute complica
tions, like renal abscess, pyelonephritis, pyonephrosis, even urosepsis, as well as chronic kidney health complications such 
as renal scarring, hypertension, and/or insufficiency in adulthood.3–10 Estimated costs are over $180 million annually for 
inpatient hospital care of children with pyelonephritis in the United States of America (USA) alone.2 UTI recurrences in 
children are also common, especially in very young children and children with urinary tract abnormalities, primarily due to 
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unresolved bacteriuria due to inadequate antimicrobial treatment.11 Therefore, prompt and accurate diagnosis and treatment 
of pediatric UTI are crucial to preventing UTI recurrence and potentially irreversible renal damage.

UTIs are caused by bacteria invading the kidneys, ureters, bladder, and/or urethra (which together constitute the 
urinary tract). Polymicrobial UTIs, which involve ≥2 species of microorganisms, have been considered rare. However, 
this assumption is related to the usual interpretation of standard urine culture (SUC), which is often dismissed as 
contaminated when more than one microbial species is present.12–14 Yet, polymicrobial infections are being increasingly 
recognized as clinically relevant.15–19 SUC also has inherent limitations, including a poor sensitivity for the detection of 
“emerging” or “opportunistic” uropathogens, which includes fastidious, anaerobic, slow-growing, and gram-positive 
microorganisms. Diagnosis by SUC is also far from the most time-efficient methodology, taking up to 3–5 days to 
provide bacterial identification and results of SUC with antimicrobial susceptibility testing.20 Not all patients are 
systemically healthy enough to tolerate a time delay before treatment, which then results in clinical reliance on empiric 
antibiotic therapy.17,21–23 Empiric antibiotic therapy, in turn, is associated with increased risk of treatment failure and 
developing antibiotic resistance.21 Culture-based methods of diagnosis are therefore lacking not only in their sensitivity 
toward polymicrobial and non-E. coli infections but also in the speed necessary to provide optimal guided treatment for 
patients. Advanced molecular methods, including real-time multiplex polymerase chain reaction (M-PCR), offer faster 
and more sensitive UTI testing, with both organism identification/quantification and antibiotic susceptibility results 
available within 24 hours of urine specimen receipt in the laboratory.24,25 Although M-PCR has demonstrated increased 
diagnostic sensitivity and improved clinical outcomes in older adults, evidence in pediatric populations is currently 
lacking. Therefore, this study was conducted to compare the performance of M-PCR and SUC in UTI diagnostic testing 
in pediatric patients.

Materials and Methods
Study Design
This USA-based, single-center, prospective observational study was conducted with the approval of the institutional IRB 
(Approval: Pro2021-0783). Patients 0–21 years old who presented to the Pediatric Emergency Department of a large 
academic children’s hospital in New Jersey, USA, between 2/25/2022 and 10/22/2023, with suspected UTI based on 
physician assessment, and who were able to provide a urine specimen of sufficient volume via midstream voiding, 
catheterization, or wet diaper, were eligible. Patients treated with antibiotics within one week prior to presentation were 
excluded. Each participant’s age, sex, and clinical presentation, including fever, abdominal pain, flank/back pain, nausea, 
vomiting, diarrhea, dysuria, malodorous urine, and/or altered urinary frequency, were documented.

Specimen Handling
Urine samples were immediately subjected to urinalysis and SUC protocols at the hospital clinical laboratory, according 
to the facility’s standard procedures which follow the American Society for Microbiology Clinical Microbiology 
Procedures Handbook 5th Edition. The remaining urine sample was divided between a gray-top vacutainer (BD, 
Franklin Lakes, NJ, USA) containing boric acid and a yellow-top vacutainer, which does not contain a boric acid 
preservative. The vacutainers were labeled with a de-identified code and transported to Pathnostics via FedEx within the 
allotted specimen stability time of five days at room temperature. Once received, urine samples from the gray-top tubes 
were used for microbial identification by M-PCR, and samples from the yellow-top tubes were used for pooled antibiotic 
susceptibility testing (P-AST).

Bacterial Identification with Multiplex- Polymerase Chain Reaction (M-PCR)/Pooled 
Antibiotic Susceptibility Testing (P-AST)
The M-PCR was performed as previously described with two exceptions: 1) Bacillus atrophaeus served as the inhibition 
control and 2) probes and primers for detection of Gardnerella vaginalis were included in addition those listed in the 
references.26,27 M-PCR is performed on DNA extracted from subject’s urine samples. The microbial DNA is amplified 
using a universal PCR master mix and TaqMan technology on OpenArray chips.
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Probes and primers were used to detect 30 microorganism species/groups and 32 antibiotic resistance genes 
(Supplemental Table S1). In addition to the organisms typically included in the M-PCR assay, this study also included 
probes and primers for microorganisms responsible for sexually transmitted infections, including Chlamydia trachomatis, 
Mycobacterium tuberculosis, Neisseria gonorrhoeae, Proteus vulgaris, and Trichomonas vaginalis, as well as for viruses 
such as the BK virus, Cytomegalovirus, Human Herpesvirus 6, Herpes Simplex Viruses 1 and 2, and JC virus.

Microorganism density was reported in semi-quantitative units of “<10,000”, “10,000−49,999”, “50,000−99,999”, or 
“≥100,000” cells/mL, calculated from copies/mL. The cells/mL unit of quantification by M-PCR correlates linearly 1:1 
with the colony forming units per milliliter (CFUs/mL) unit of quantification by SUC.28 In this analysis, only samples 
with at least one microorganism detected at a density of ≥10,000 cells/mL were included. Although the traditional 
threshold for diagnostically significant microbial density in the USA is 100,000 cells/mL or CFUs/mL, our published 
data,29–31 together with clinical guidances, suggest that a threshold of just 10,000 cells/mL or CFUs/mL may be more 
clinically relevant.32,33 Antibiotic resistance gene detection was reported as a binary “detected” or “not detected” result.

P-AST is a component of the M-PCR/P-AST test which measures the phenotypic susceptibility of 19 UTI-related 
antibiotics against the entire “pool” of cultivable bacteria in a patient’s urine specimen. P-AST is performed on all 
specimens in which M-PCR detects one or more non-fastidious bacterial species/groups. This “pooled” testing strategy is 
designed to account for interactions between multiple bacterial species that may change phenotypic resistance in 
polymicrobial infections. By combining genotypic resistance data from M-PCR with phenotypic susceptibility from 
P-AST, the M-PCR/P-AST assay provides clinicians with important actionable information for the management of 
complicated UTI cases. Since the P-AST result component is not relevant to organism identification, those results are 
outside the scope of this analysis.

Statistical Analyses
The confidence intervals of the agreement percentages between M-PCR and SUC were calculated using the Wilson score 
method. Symptom representation and urinalysis results between participants with concordant positive results versus con
cordant negative results were compared using the Fisher’s exact test. Noninferiority testing comparing M-PCR and SUC was 
conducted using a method for paired binary data,34 with a noninferiority margin set at 5%. Noninferiority was concluded if the 
lower bound of the 95% confidence interval of the difference in detection rates between M-PCR and SUC lies entirely to the 
right of the value minus the noninferiority margin. For all statistical tests, significance was defined as p <0.05 and no 
adjustments were made for multiple comparisons. All statistical calculations were performed using Python 3.10.12.

Results
Participant Demographics and Symptoms
UTI diagnostic testing was performed on urine specimens from 44 females and four males. All but two specimens were 
collected via midstream voiding, with one collected using a catheter and one collected using a diaper. Participants ranged 
in age from 3 to 21 years, with a mean age of 12.3 years (Figure 1).

The most common symptom noted during clinical evaluation was dysuria, and approximately half (54%) of the 
participants presented with ≥2 of the specified symptoms (Table 1).

Urinalysis
All specimens underwent urinalysis, and most participants had abnormal urinalysis results. The most common finding 
was pyuria, with elevated white blood cell (WBC) count (92%) and/or positive leukocyte esterase (LE) (92%) (Table 2). 
More than half (56%) of the patients had hematuria, and 2/3 (67%) had proteinuria (Table 2). A few patients had elevated 
urine specific gravity (25%) or positive nitrite levels (23%) (Table 2).

Comparison of SUC and M-PCR Results
Overall, M-PCR yielded more positive results than SUC did (40 vs 28) (Table 3). The difference in detection rates was 
25.0% (95% CI: 10.0–40.0). Because the lower bound of the CI was greater than the noninferiority margin (−5%), 
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noninferiority was demonstrated. Moreover, because the lower bound was greater than 0, the superiority of M-PCR over 
SUC in detecting pathogens was established. The two methods were two-thirds concordant (26 concordant positive and 
six concordant negative results) (Table 3). Of the 16 discordant results, 14 were M-PCR-positive/SUC-negative and only 
two were SUC-positive/M-PCR-negative (Table 3).

No SUC-positive specimens were reported to have polymicrobial results (≥2 individual species). M-PCR-positive 
specimens were 62.5% (n = 25) polymicrobial and 37.5% (n = 15) monomicrobial. Of the 14 M-PCR-positive/SUC- 
negative discordant specimens, 11 (79%) were polymicrobial, 13 (93%) contained a fastidious and/or emerging 
uropathogen (A. urinae, A. schaalii, G. vaginalis, C. riegelii, U. urealyticum, Viridans group Streptococci (VGS), and/ 
or Coagulase-negative Staphylococci (CoNS)), and all were from female participants (Table 4). In one case, E. coli was 
detected at a density of ≥105 cells/mL by M-PCR (equivalent to CFU/mL) but was reported as “negative” by SUC. Both 
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Figure 1 Distribution of Participant Ages. Age in years is plotted along the x-axis and data bars indicate the number of participants of that age along the y-axis.

Table 1 Symptom Prevalence

Symptom n %

Dysuria 21 44

Abdominal Pain 19 40

Fever 10 21

Flank Pain 10 21

Vomiting 8 17

Altered Urinary Frequency 8 17

Malodorous Urine 2 4

Nausea 2 4

Diarrhea 1 2

Only One of these Symptoms 22 46

Multiple (≥2) of these Symptoms 26 54
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SUC-positive/M-PCR-negative discordant specimens were obtained from male participants (Table 4). One was identified 
as K. oxytoca and the other as S. maltophilia, which is not targeted for detection by the M-PCR test (Table 4).

Neither symptom presentation nor urinalysis results differed significantly between participants with concordant 
positive results for UTI diagnosis and those with concordant negative results (non-UTI) (Table 5).

Table 2 Urinalysis Results

Specific Gravity n %

Normal 1.05 to < 1.03 36 75

Abnormal ≥ 1.030 12 25

White Blood Cells (WBC) n %

Normal 0–5 4 8

6–9 5 10

10–19 6 13

20–50 13 27

>50 20 42

Red Blood Cells (RBC) n %

Normal 0–2 21 44

Abnormal 3–5 5 10

6–9 4 8

10–19 4 8

20–50 8 17

>50 6 13

Leukocyte esterase (LE) n %

Normal negative 4 8

Abnormal trace 3 6

small 10 21

moderate 16 33

large 15 31

Nitrites n %

Normal Negative 37 77

Abnormal Positive 11 23

Protein n %

Normal negative 7 15

Abnormal trace 9 19

30 18 38

100 9 19

300 5 10
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Table 3 SUC and M-PCR Concordance

M-PCR  
Positive

M-PCR  
Negative

Total Agreement Wilson 95% CI

SUC Positive 26 (54%) 2 (4%) 28 (58%) 26/28 (92.9%) (77.4%, 98.0%)

SUC Negative* 14 (29%) 6 (13%) 20 (42%) 6/20 (30.0%) (14.5%, 51.9%)

Total 40 (83%) 8 (17%) n = 48 (26+6)/48 (66.7%) (52.5%, 78.3%)

Agreement 26/40 (65.5%) 6/8 (75%) (26+6)/48 (66.7%)

Wilson 95% CI (49.5%, 77.9%) (40.9%, 92.9%) (52.5%, 78.3%)

Notes: *Includes n = 14 “Negative”, n = 2 “Contaminated specimens”, n = 2 “non-significant flora”, and n = 2 “Non-uropathogenic gram-positive 
organisms”.

Table 4 Details of Discordant Results

SUC Result M-PCR Result Sex Age

Negative A.schaalii (>100,000 cells/mL) F 4

E. faecalis (>100,000 cells/mL)

E. coli (>100,000 cells/mL)

Negative E. coli (>100,000 cells/mL) F 9

Non-uropathogenic gram-positive organism CoNS (>100,000 cells/mL) F 9

G. vaginalis (>100,000 cells/mL)

E. coli (10,000–49,999 cells/mL)

S. aureus (10,000–49,999 cells/mL)

Contaminated specimen A. schaalii (10,000–49,999 cells/mL) F 10

CoNS (10,000–49,999 cells/mL)

Non-uropathogenic gram-positive Organism E. coli (>100,000 cells/mL) F 10

A. urinae (10,000–49,999 cells/mL)

Non-significant flora E. faecalis (>100,000 cells/mL) F 13

K. oxytoca (>100,000 cells/mL)

CoNS (10,000–49,999 cells/mL)

Negative CoNS (>100,000 cells/mL) F 14

VGS (>100,000 cells/mL)

Negative E. coli (>100,000 cells/mL) F 15

E. faecalis (>100,000 cells/mL)

G. vaginalis (50,000–100,000 cells/mL)

CoNS (10,000–49,999 cells/mL)

U. urealyticum (10,000–49,999 cells/mL)

C. albicans (10,000–49,999 cells/mL)

(Continued)
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Table 4 (Continued). 

SUC Result M-PCR Result Sex Age

Negative G. vaginalis (>100,000 cells/mL) F 15

Non-significant flora VGS (>100,000 cells/mL) F 16

Contaminated specimen C. riegelii (>100,000 cells/mL) F 18

CoNS (>100,000 cells/mL)

E. faecalis (>100,000 cells/mL)

E. coli (>100,000 cells/mL)

VGS (50,000–100,000 cells/mL)

A. schaalii (10,000–49,999 cells/mL)

Negative E. coli (>100,000 cells/mL) F 19

G. vaginalis (50,000–100,000 cells/mL)

Negative C. koseri (>100,000 cells/mL) F 20

K. pneumonia (>100,000 cells/mL)

G. vaginalis (10,000–49,999 cells/mL)

C. albicans (10,000–49,999 cells/mL)

Negative G. vaginalis (>100,000 cells/mL) F 21

Klebsiella oxytoca Negative M 9

Stenotrophomonas maltophilia Negative M 9

Table 5 Comparison of Symptoms and Urinalysis Criteria Between UTI and Non- 
UTI Cases

Diagnostic Criterion Concordant  
Positives 
(n = 26)

Concordant  
Negatives 

(n = 6)

p-value

n % n %

Symptoms Fever 6 23 2 33 0.625

Abdominal Pain 9 35 1 17 0.637

Flank Pain 8 31 1 17 0.648

Nausea 1 4 0 0 1.000

Vomiting 3 12 2 33 0.228

Diarrhea 0 0 1 17 0.188

Dysuria 14 54 2 33 0.654

Malodorous Urine 1 4 0 0 1.000

Altered Urinary 
Frequency

6 23 0 0 0.564

(Continued)
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SUC detected gram-negative bacteria in 20 specimens, gram-positive bacteria in seven specimens, and yeast in one 
specimen, but did not detect fastidious bacteria in any specimen (Figure 2). M-PCR detected gram-negative bacteria in 35 
specimens, gram-positive bacteria in 32 specimens, yeast in three specimens, and fastidious bacteria in 28 specimens 
(Figure 2). According to both the SUC (29%, n = 14) and M-PCR (50%, n = 24) results, E. coli was the most prevalent 
organism (Figure 2). The next most prevalent organisms according to the SUC results were Staphylococcus species other 

Table 5 (Continued). 

Diagnostic Criterion Concordant  
Positives 
(n = 26)

Concordant  
Negatives 

(n = 6)

p-value

n % n %

Urinalysis Specific Gravity 5 19 2 33 0.590

Pyuria 24 92 6 100 1.000

Hematuria 17 65 3 50 0.647

Proteinuria 25 96 5 83 0.345

+ Leukocyte esterase 24 92 5 83 0.476

+ Nitrites 8 31 1 17 0.648

Figure 2 Comparison of Organism Prevalences as Detected by SUC Versus M-PCR. 
Notes: * Enterobacter Group includes Klebsiella aerogenes (formally Enterobacter aerogenes) and Enterobacter cloacae. ** VGS includes Streptococcus anginosus, Streptococcus 
oralis, and Streptococcus pasteurianus. *** CoNS includes Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus lugdunensis, and Staphylococcus saprophyticus. # 

SUC results reported for Staphylococcus species other than S. aureus are included. ^ Stenotrophomonas maltophilia was not targeted for detection by the M-PCR assay.
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than S. aureus (10%, n = 5) and Enterobacter group organisms, including Klebsiella aerogenes (6%, n = 3) (Figure 2). 
According to M-PCR results, the most prevalent organisms other than E. coli were G. vaginalis (31%, n = 15), CoNS 
(23%, n = 11), VGS (21%, n = 10), E. faecalis (17%, n = 8), and A. schaalii (15%, n = 7) (Figure 2). There were no 
major trends in prevalence with age or sex, except for G. vaginalis, which was only detected in females aged ≥9 years. 
There were no viruses or microorganisms associated with sexually transmitted infections detected by M-PCR.

Discussion
We compared SUC and M-PCR for UTI diagnostic testing in a pediatric population (≤21 years).

Symptoms and Urinalysis are Insufficient Diagnostic Tools
Approximately half of the participants presented with ≥2 of the specified symptoms, with dysuria being the most 
prevalent symptom. Most participants had positive urinalysis results, with the majority having pyuria, as evidenced by 
elevated WBC counts and/or positive LE. More than half of the patients had hematuria, and 2/3 had proteinuria, but 
relatively few had elevated urine-specific gravity or positive nitrites. Ultimately, no individual symptoms or urinalysis 
results differed significantly between participants with concordant positive results for UTI diagnosis and those with 
concordant negative results (non-UTI group). Consistent with previous reports,35–37 these findings demonstrate that these 
indicators are likely to be individually insufficient for UTI diagnosis. However, this finding is unsurprising given that the 
signs and symptoms of UTI were the inclusion criteria for this study. Additionally, the concordant negative group “n” 
was small. Future studies utilizing a robust control group will be more appropriately powered to ascertain the utility of 
individual symptoms and urinalysis findings as well as combinations with the potential to differentiate UTI.

Comparison of SUC and M-PCR Detection Sensitivity
According to both SUC and M-PCR, E. coli is the most prevalent organism. Although the prevalence (50% of SUC- 
positive and 60% of M-PCR-positive detections) was considerably lower than the traditionally presumed prevalence of 
up to 95%,38,39 it was consistent with the previously reported prevalence of E. coli in adult populations.26,27,40–42

SUC detected gram-negative bacteria in 42%, gram-positive bacteria in 15%, and yeast in 2% of specimens but did 
not detect fastidious bacteria in any specimen. M-PCR detected gram-negative bacteria in 73%, gram-positive bacteria in 
67% of specimens, yeast in 6%, and fastidious bacteria in 58% of specimens. SUC detected exclusively non-E. coli 
infections in 29% of the specimens compared to 33% by M-PCR. These results are consistent with previous reports, 
showing that M-PCR is more sensitive than SUC, particularly for the detection of non-E. coli infection in older 
adults.40,43–45

No SUC-positive specimens were reported to have polymicrobial results (≥2 individual species). In contrast, 62.5% of 
M-PCR-positive specimens were polymicrobial, which is consistent with the rate of polymicrobial identification reported 
by M-PCR in urine specimens from adults aged ≥60 years with symptoms of UTI.16,25,26,40,45–48 Few studies have 
examined the clinical impact of polymicrobial infections, particularly in infrequent circumstances when more than two or 
three individual species are identified. In adults, those treated according to M-PCR/P-AST results, particularly those with 
polymicrobial infections identified by M-PCR, had significantly better outcomes, indicating the clinical significance of 
accurately recognizing polymicrobial UTIs.25,49 To the best of our knowledge, no studies on polymicrobial UTIs in 
pediatric populations have been conducted to date.

SUC and M-PCR Concordance
The results of the two methods were concordant for two-thirds of the specimens. Of the 16 discordant results, 14 were 
M-PCR-positive/SUC-negative. All but one of the 14 M-PCR-positive/SUC-negative discordant specimens were poly
microbial and/or contained a fastidious and/or emerging uropathogen (A. urinae, A. schaalii, G. vaginalis, C. riegelii, 
U. urealyticum, VGS, and/or CoNS), consistent with reports that M-PCR is more sensitive than SUC for the detection of 
non-E. coli or polymicrobial infections in older adults.40,43–45 In the remaining case, E. coli was detected at a high 
density by M-PCR but was reported as “negative” by SUC. Unpublished P-AST results confirmed that E. coli from this 
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specimen were viable in culture. This case demonstrates that M-PCR can also detect classical gram-negative uropatho
gens missed by SUC, as previously reported.50

In contrast, two specimens had positive microbial identifications by SUC but not by M-PCR; highlighting methodo
logical differences between the two approaches. Although SUC-based detection and identification is limited to organisms 
that can grow under specific culture conditions, M-PCR-based detection and identification are limited to organisms for 
which probes and primers are included in the assay. The solution to this limitation of M-PCR is to continually refine the 
assay targets for scientific understanding of the prevalence and clinical relevance of different organisms in the urinary 
tract.

Presence of Non-Classical Uropathogens
Fastidious emerging uropathogens43,51 detected by M-PCR in this pediatric population included A. urinae, A. schaalii, 
C. riegelii, U. urealyticum, and G. vaginalis. Both A. urinae and A. schaalii have been primarily reported in urine 
specimens from geriatric UTI patients with case reports of severe complications, including bacteremia and infective 
endocarditis.52–54 Despite the association with geriatric patients, case reports and series have previously identified both 
organisms in pediatric UTI.55–58 Interestingly, although A. urinae has been associated with malodorous urine,57 the two 
subjects who reported these symptoms were both found to have E. coli infections by M-PCR and/or SUC, and neither of 
the two subjects with A. urinae detected by M-PCR reported malodorous urine as a symptom. C. riegelii has previously 
been reported to be associated with UTI and urosepsis in adults,59–61 whereas case reports of hyperammonemic 
encephalopathy resulting from C. riegelii UTI in pediatric patients support the importance of identifying this organism 
in children.62,63 Although not previously associated with pediatric UTI, U. urealyticum has been associated with chronic 
unexplained urinary symptoms in adult women and invasive infections in immunocompromised individuals.64,65 All 
three subjects with U. urealyticum detected in their urine had polymicrobial infections with to 4–6 individual species 
detected. Two of these polymicrobial infections contained E. coli, whereas the third did not contain any classical 
uropathogens. G. vaginalis was the only organism that exhibited trends in prevalence with age or sex and was only 
detected in females aged ≥9 years. This is consistent with reports that G. vaginalis has an approximately 30% prevalence 
in adolescent females and is more prevalent in the vaginal microbiome after the onset of menarche and sexual 
contact.66,67 Although primarily considered a part of the vaginal microbiome, G. vaginalis can enter the urinary tract 
and, when detected, can be associated with recurrent UTI.68–70 Additionally, VGS and CoNS, non-fastidious organisms, 
were detected. Traditionally considered contaminants of the urogenital microbiome,15,71 these organisms can be found in 
catheter-collected urine specimens41 and are becoming increasingly recognized as opportunistic uropathogens in both 
adults and children.72–79

Strengths, Limitations, and Future Directions
Existing studies on advanced molecular diagnostic testing for UTIs have focused primarily on high-risk adult popula
tions. This study expands into the pediatric population and sets the stage for future studies to evaluate whether the higher 
sensitivity of M-PCR translates to improved clinical outcomes, as have been demonstrated in older adults.25 Future 
studies will examine the impact of the improved sensitivity of M-PCR coupled with the rapid 24-hour turnaround time 
for pooled antibiotic susceptibility testing (P-AST) on clinical outcomes in the pediatric population. Such P-AST data, 
including the companion P-AST data from this study, will also facilitate the generation of pediatric-UTI-specific 
antibiograms. In addition to their clinical value in the selection of empiric antibiotic therapies, an understanding of 
such antibiograms provides population-specific epidemiological data80,81 which informs antibiotic stewardship efforts.

The main limitation of this study is its single-site design, which resulted in a relatively small sample size. The study 
population was heavily skewed toward adolescent females and did not include infants under the age of three. Given that 
the infant population exhibits a unique epidemiology with a higher prevalence of UTI in male infants,1 future studies 
specifically in this population are warranted. Furthermore, because the infant population presents additional diagnostic 
challenges owing to the vagueness of atypical symptom presentation and nonverbal symptom communication,82 the 
evaluation of M-PCR in conjunction with diagnostic urine biomarkers of UTI83 is a particularly promising direction for 
future studies.
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Conclusion
In this pediatric population, similar to previous findings in an older adult population, M-PCR is more sensitive than SUC 
for UTI diagnosis. The two methods were concordant in two-thirds of the cases, with a difference in detection rates of 
25.0% (95% CI: 10.0–40.0). Since the lower bound of the confidence interval was greater than 0, M-PCR established not 
only noninferiority but also superiority over SUC for detecting microorganisms in urine.
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CFU, colony forming unit; CoNS, Coagulase-negative Staphylococci; M-PCR, multiplex-polymerase chain reaction; 
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