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Abstract
Androgens	 are	 a	 group	 of	 steroid	 hormones	 that	 have	 long	 been	 proposed	 as	 a	
mechanism	 underpinning	 intergenerational	 plasticity.	 In	 birds,	maternally	 allocated	
egg	 testosterone,	 one	 of	 the	 main	 androgens	 in	 vertebrates,	 affects	 a	 wide	
variety	 of	 offspring	 phenotypic	 traits	 but	 the	mechanisms	 underlying	 this	 form	 of	
intergenerational	plasticity	are	not	yet	well	understood.	Recent	 in	vitro	and	animal	
model	 studies	 have	 shown	 that	 telomerase	 expression	 and	 activity	 are	 important	
targets	of	androgen	signaling.	The	telomerase	enzyme	is	known	for	its	repair	function	
on	 telomeres,	 the	 DNA–	protein	 complexes	 at	 the	 ends	 of	 chromosomes	 that	 are	
involved	in	genomic	integrity	and	cell	aging.	However,	the	role	of	maternal	testosterone	
in	influencing	offspring	telomerase	levels	in	natural	populations	and	its	consequences	
on	telomere	length	and	potentially	on	offspring	development	is	still	unknown.	Here,	
by	experimentally	modifying	the	level	of	egg	testosterone	in	a	natural	population	of	
yellow-	legged	gull	(Larus michahellis),	we	show	that	chicks	hatched	from	testosterone-	
treated	eggs	had	higher	average	levels	of	telomerase	and	faster	growth	than	controls	
during	the	first	week	of	life.	While	testosterone-	treated	chicks	also	tended	to	have	
longer	 telomeres	 than	controls	at	hatching	 this	difference	disappeared	by	day	6	of	
age.	 Overall,	 our	 results	 suggest	 that	 maternal	 testosterone	may	 have	 a	 potential	
adaptive	value	by	promoting	offspring	growth	and	presumably	telomerase	levels,	as	
this	enzyme	plays	other	important	physiological	functions	(e.g.,	stress	resistance,	cell	
signaling,	or	tissue	genesis)	besides	telomere	lengthening.	Nonetheless,	our	knowledge	
of	the	potential	adaptive	function	of	telomerase	in	natural	populations	is	scarce	and	so	
the	potential	pathways	linking	maternal	hormones,	offspring	telomerase,	and	fitness	
should	be	further	investigated.
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1  |  INTRODUC TION

In	many	organisms,	the	maternal	phenotype	has	a	significant	influ-
ence	on	a	variety	of	offspring	traits	through	mechanisms	other	than	
maternal	 inheritance,	 a	process	 that	 is	usually	known	as	 ‘maternal	
effects’	(Mousseau	et	al.,	2009;	Wolf	&	Wade,	2009).	Maternal	ef-
fects	are	ubiquitous	and	can	take	many	forms	but,	in	oviparous	spe-
cies,	one	important	pathway	is	through	changes	in	egg	composition,	
including	 the	 hormonal	 content	 (reviewed	 in	Gil,	2003;	 Groothuis	
et al., 2019;	Groothuis	&	Schwabl,	2008).	These	maternally	allocated	
egg	substances	can	be	very	 important	during	embryonic	develop-
ment,	as	this	is	an	especially	sensitive	time	window	of	development	
where	organisms	undergo	a	 fast	 rate	of	cell	division,	gene	expres-
sion,	and	physiological	changes	that	can	ultimately	affect	the	post-
natal	 phenotype	 (Vaiserman	 et	 al.,	 2017, 2018).	 Indeed,	 maternal	
hormones	have	been	shown	to	influence	a	wide	variety	of	offspring	
phenotypic	and	life-	history	traits	such	as	growth	and	survival	(von	
Engelhardt	 &	 Groothuis,	 2011)	 but	 the	mechanisms	 underpinning	
this	form	of	intergenerational	plasticity	are	not	yet	well	understood.

In	birds,	 it	has	been	shown	that	mothers	often	 transfer	a	vari-
ety	of	steroid	hormones	to	the	eggs	that	can	have	important	effects	
on	 offspring	 growth	 and	 survival	 (Hayward	 &	 Wingfield,	 2004; 
Tissier et al., 2014;	von	Engelhardt	et	al.,	2004)	and	can	even	mod-
ulate	 stress	 reactivity	 and	 cellular	 aging	 (Haussmann	 et	 al.,	2011; 
Hayward	et	al.,	2006; Tissier et al., 2014).	Notably,	among	these	ste-
roid	hormones,	many	studies	have	focused	on	maternal	androgens	
such	 as	 testosterone	 (Gil,	2003;	Groothuis	 et	 al.,	2019;	Groothuis	
&	 Schwabl,	 2008).	 Testosterone,	 one	 of	 the	 main	 androgens	 in	
vertebrates,	accumulates	 in	the	egg	yolk	during	follicle	maturation	
(Schwabl,	1993)	and	 its	 level	often	varies	with	 laying	order	and/or	
in	 response	 to	 environmental	 or	 social	 factors	 (see	 e.g.	Gil,	2003; 
Rubolini	 et	 al.,	 2011	 and	 references	 therein).	 Importantly,	 higher	
levels	 of	 testosterone	 in	 the	 yolk	 have	 repeatedly	 been	 shown	 to	
increase	offspring	pre	and	postnatal	development,	competitive	be-
havior	 or	 survival	 in	 different	 species	 (Eising	 et	 al.,	2001;	 Navara	
et al., 2006;	Rutkowska	&	Cichoń,	2006;	Schwabl,	1996),	effects	that	
have	 led	 to	suggest	 that	 testosterone	allocation	may	be	a	 form	of	
adaptive	maternal	manipulation	of	offspring	phenotype	and	perfor-
mance	(Groothuis	et	al.,	2005;	Groothuis	&	Schwabl,	2008).

An	 important	 route	by	which	maternal	 testosterone	may	 favor	
offspring	performance	is	through	changes	in	physiological	pathways	
involved	 in	 the	correct	 functioning	of	cells,	 tissues,	and	organs.	 In	
this	regard,	recent	in	vitro	and	animal	model	studies	have	shown	that	
telomerase	gene	expression	and	activity	are	important	targets	of	an-
drogen	signaling	(Calado	et	al.,	2009;	Martínez	&	Blasco,	2017; Vasko 
et al., 2017),	 including	 testosterone	 (Bär	 et	 al.,	 2015;	Nourbakhsh	
et al., 2010; Vieri et al., 2020).	Telomerase	is	known	to	catalyze	the	
elongation	 and	 maintenance	 of	 telomeres	 (Criscuolo	 et	 al.,	 2018; 
Smith	et	al.,	2021).	These	noncoding	nucleotide	sequences	cap	the	
ends	 of	 chromosomes	 and	 in	 the	 absence	 of	 restoration,	 shorten	
with	each	cell	division	and	in	response	to	other	factors	such	as	oxi-
dative	stress	(Reichert	&	Stier,	2017; Von Zglinicki, 2002).	Notably,	
evidence	 indicates	that,	at	 least	 in	 large-	size	mammals	and	several	

bird	 species,	 individuals	with	 shorter	 telomeres	 or	 experiencing	 a	
greater	loss	of	telomere	length	show	lower	short-	term	survival	and	
lifespan	(e.g.,	Heidinger	et	al.,	2012;	Noguera	et	al.,	2020;	Wilbourn	
et al., 2018;	 but	 see	 also	 e.g.	 Tricola	 et	 al.,	 2018	 and	 references	
therein).

Although	often	overlooked,	telomerase	has	also	been	shown	to	
have	several	other	important	physiological	functions	besides	its	role	
in	telomere	lengthening	(reviewed	in	Ségal-	Bendirdjian	&	Geli,	2019; 
Thompson	 &	Wong,	 2020).	 For	 instance,	 evidence	 indicates	 that	
telomerase	is	implicated	in	redox	homeostasis	and	stress	resistance	
because	 under	 oxidative	 stress	 conditions,	 the	 catalytic	 subunit	
of	 telomerase	 (hTERT)	 is	 transported	 into	 the	mitochondria	 to	 re-
duce	ROS	production	 and	protect	 normal	mitochondrial	 functions	
(Ahmed	et	al.,	2008;	Ale-	Agha	et	al.,	2014; Rosen et al., 2020 and 
references	therein).	Moreover,	telomerase	plays	an	important	role	in	
cell	signaling	and	gene	expression,	specifically	interacting	with	key	
transcriptional	factors	essential	for	cell	proliferation,	tissue	genesis,	
and	 immune	 regulation	 (see	e.g.	 de	Punder	 et	 al.,	2019	 and	 refer-
ences	 therein)	 or	 even	 affects	 important	 epigenetic	 mechanisms	
such	as	DNA	methylation	 (Yuan	&	Xu,	2019).	Maternally	allocated	
testosterone	may	therefore	favor	different	important	aspects	of	an	
individual's	phenotype	through	its	action	on	this	enzyme.

In	 humans	 and	 large	 placental	 mammals,	 telomerase	 is	 highly	
active	 during	 embryonic	 development	 but	 later	 on,	 its	 activity	 is	
down-	regulated	 in	 most	 differentiated	 somatic	 cells	 after	 birth	
(Blackburn,	 2005).	 However,	 the	 regulation	 of	 telomerase	 is	 not	
equal	 across	 taxa.	 Indeed,	 it	 has	 been	 shown	 that	 long-	lived	 bird	
species	 (e.g.,	 seabirds)	 can	maintain	 significant	 telomerase	activity	
after	hatching	even	in	differentiated	cells	lacking	proliferative	capac-
ity	such	as	red	blood	cells	(RBCs)	(Haussmann	et	al.,	2007;	Noguera	
&	 Velando,	 2021)	 and	 recent	 evidence	 suggests	 that	 this	 activity	
might	be,	at	 least	partially,	under	 the	maternal	 influence	 (Noguera	
et al., 2020).	Despite	its	recognized	cellular	functions	and	its	poten-
tial	 role	 on	 individual	 fitness	 (Criscuolo	 et	 al.,	2018),	 the	 study	 of	
telomerase	in	wild	animal	populations	has	largely	been	ignored	and	
so,	it	is	still	unknown	whether	maternal	testosterone	may	influence	
offspring	telomerase	levels	and	which	are	the	consequences	on	off-
spring	development.

To	 investigate	 to	what	 extent	maternally	 derived	 testosterone	
may	 influence	 offspring	 telomerase	 activity,	 telomere	 length,	 and	
postnatal	development,	we	conducted	a	field	experiment	 in	a	wild	
breeding	 population	 of	 yellow-	legged	 gull	 (Larus michahellis)	 and	
used	testosterone	injections	to	increase	the	level	of	egg	testoster-
one	within	its	natural	physiological	range.	We	predict	that	if	yolk	tes-
tosterone	positively	affects	chick	growth	and	the	pathways	involved	
in	telomerase	expression,	chicks	hatched	from	testosterone-	treated	
eggs	should	show	faster	growth	and	have	a	higher	 telomerase	ac-
tivity	than	sham-	injected	(i.e.,	control)	chicks.	Although	it	is	unlikely	
telomerase	mediates	telomere	elongation	long	after	RBCs	are	differ-
entiated,	in	birds,	hatchlings'	RBCs	are	produced	by	the	hematopoi-
etic	stem	cells	in	the	bone	marrow	during	embryonic	development	
(Sturkie,	2012)	and	RBCs	have,	on	average,	a	longer	lifespan	than	the	
time	needed	for	gull	embryos	to	develop	(Rodnan	et	al.,	1957).	Thus,	
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we	further	predict	that	our	experimental	treatment	should	 lead	to	
longer	telomeres	early	after	hatching,	at	least,	whenever	any	post-
natal	variation	in	telomerase	activity	reflects	changes	that	occur	in	
other	cell	types	and	tissues	during	embryonic	development.

Additionally,	 as	 postnatal	 telomerase	may	mediate	 the	 effects	
of	growth	on	 telomere	dynamics	and	also	play	other	physiological	
functions	(i.e.,	different	than	telomere	lengthening),	we	further	ex-
plore	the	covariation	pattern	between	offspring	telomerase	dynam-
ics,	 telomere	 length,	 and	 postnatal	 growth.	Here,	we	 predict	 that	
the	postnatal	 variation	 in	 telomerase	activity	and	 telomere	 length	
should	be	positively	correlated	whenever	the	variation	in	RBCs	telo-
merase	 activity	 reflects	 that	 occurring	 in	 other	 tissues	 (e.g.,	 bone	
marrow).	Yet,	 if	telomerase	plays	other	functions	besides	telomere	
maintenance	 (e.g.,	 improving	 stress	 resistance	 or	 tissue	 genesis),	
then	 this	 should	be	evidenced	 in	 a	 positive	pattern	of	 covariation	
between	telomerase	activity	levels	and	postnatal	growth.

2  |  MATERIAL AND METHODS

2.1  |  Study area and general procedures

We	 conducted	 the	 experiment	 from	 April	 to	 June	 2021	 in	 a	 gull	
breeding	 colony	 on	 Sálvora	 Island,	 Parque	 Nacional	 de	 las	 Illas	
Atlánticas	de	Galicia,	Spain	(42o28′N,	09o00′W).	We	visited	the	study	
area	daily	during	the	egg-	laying	period	and	looked	for	nests	with	one	
laid	 egg.	We	 then	 followed	 the	 nests	 daily	 to	mark	 the	 following	
eggs	and	register	their	exact	laying	date.	In	this	species,	the	modal	
clutch	 size	 is	 three	eggs	 and	 so,	 only	 clutches	of	 three	eggs	were	
used	for	the	experiment.	Once	the	third	egg	was	laid,	we	collected	
the	second	eggs	from	50	three-	egg	clutches	and	transported	them	
in	an	isothermal	box	to	a	field	laboratory	located	outside	the	colony	
(<500 m).	 We	 focused	 on	 only	 one	 egg	 per	 clutch	 (i.e.,	 second-	
laid	 eggs)	 for	 practical	 and	 ethical	 reasons.	 First,	 we	 were	 only	
confident	of	the	exact	laying	date	of	the	second	and	third-	laid	eggs	
and	although	within	a	clutch	both	eggs	show	higher	 levels	of	yolk	
testosterone	than	the	first	egg	(Rubolini	et	al.,	2011),	the	second	egg	
has	 a	 substantially	 higher	 hatching	 success	 and	 postnatal	 survival	
than	the	third	egg	(Noguera	&	Velando,	2020).	Yolk	injections	often	
result	in	a	percentage	of	eggs	failing	to	hatch	(Noguera	et	al.,	2011; 
Rubolini	 et	 al.,	2006)	 and	 so,	 by	 focusing	 on	 the	 second	 eggs	we	
aimed	to	minimize	the	number	of	eggs	that	had	to	be	manipulated	
but	maximizing	 our	 final	 sample	 size.	We	weighed	 the	 eggs	 in	 an	
electronic	balance	 (±0.01 g)	and	randomly	assigned	them	to	either	
a	“testosterone”	(T)	or	“control”	(C)	treatment	(N =	25	eggs	in	each	
group).	 In	 the	testosterone	group,	we	 injected	the	egg	yolk	with	a	
known	amount	of	testosterone	(Merck	KGaA,	Germany)	dissolved	in	
20 μl	of	sterile	sesame	oil	(for	details	of	the	egg	injection	protocol	see	
Noguera	et	al.,	2012).	Because	yolk	testosterone	varies	according	to	
egg	size	and	laying	order,	we	scaled	the	testosterone	dose	according	
to	egg	mass	and	laying	order	as	previously	described	for	this	species	
(Parolini	et	al.,	2017).	The	doses	(ng)	were	as	follows	depending	on	
the	egg	size	class	(g):	80–	88 g:	74 ng,	89–	92 g:	73 ng,	93–	99 g:	81 ng.	

These	doses	of	testosterone	have	previously	been	shown	to	increase	
the	final	yolk	concentration	by	1	SD	of	the	concentration	recorded	
in	other	colonies	of	the	same	species	(Parolini	et	al.,	2017; Parolini 
et al., 2019).	In	the	control	group,	we	injected	the	eggs	with	20 μl	of	
sesame	oil	using	the	same	procedure	as	for	the	testosterone	eggs.	
After	the	injections,	the	hole	in	the	shell	was	sealed	with	a	patch	of	
hen	eggshell	previously	 sterilized	as	previously	described	 (see	e.g.	
Noguera	et	al.,	2011).	The	eggs	were	then	returned	to	their	original	
nest	and	the	whole	clutch	was	then	cross-	fostered	between	pairs	of	
(experimental)	nests	that	had	the	same	laying	date	(±1	day).

We	checked	the	nests	twice	a	day,	beginning	2 days	before	the	
estimated	 hatching	 date.	 At	 hatching,	 we	 marked	 all	 chicks	 with	
numbered	leg	flags	for	their	identification.	Nine	eggs	did	not	hatch	
(4T	and	5C)	and	three	more	were	found	predated	(1T	and	2C),	but	
hatching	 success	did	not	differ	between	experimental	groups.	We	
blood	sampled	and	measured	all	experimental	chicks	at	two	different	
ages:	at	hatching	day	and	day	six	of	age.	Although	close	in	time,	the	
second	sampling	(day	6	of	age)	allowed	us	to	assess	whether	or	not	
any	effect	of	our	experimental	treatment	on	telomerase	activity	and	
telomere	length	remained	after	hatching	and	related	to	any	effect	of	
our	experimental	 treatment	on	postnatal	growth	 (see	e.g.	Rubolini	
et al., 2006).	We	collected	small	blood	samples	(approx.	90 μl)	from	
the	wing	vein	and	weighed	them	and	measured	them	with	a	spring	
balance	(±1	g)	and	a	caliper	(±0.001 mm),	respectively.	Blood	sam-
ples	were	immediately	transported	to	our	field	laboratory	in	a	cooler	
filled	with	ice	packs	(i.e.,	within	1	hr	after	collection),	centrifuged	and	
the	plasma	and	red	blood	cells	(RBCs)	fractions	were	stored	in	liquid	
nitrogen.	Once	in	the	laboratory,	samples	were	stored	at	−80°C	until	
the	laboratory	analyses	were	performed	(within	2–	3 weeks	after	the	
end	of	the	field	experiment).

2.2  |  Laboratory analyses

Telomerase	 activity	 in	 RBCs	was	measured	 using	 the	 quantitative	
telomeric	 repeat	 amplification	 protocol	 (Q-	TRAP)	 assay	 (Herbert	
et al., 2006),	 with	 some	 minor	 modifications	 described	 for	 this	
species	(see	Noguera	et	al.,	2020	for	further	details).	The	telomerase	
activity	of	each	sample	was	quantified	based	on	the	linear	equation	
of	the	standard	curve	derived	from	a	serially	diluted	positive	control	
sample	 (R2 > 0.99	 in	 all	 cases)	 and	 the	 values	were	 normalized	 to	
those	of	a	positive	reference	sample	and	expressed	as	a	percentage	
of	 relative	 telomerase	 activity	 (%RTA).	 Four	 samples	 (2T	 and	 2C)	
were	incorrectly	labeled	and	therefore	had	to	be	excluded	from	the	
analyses.	 All	 samples	 were	 run	 in	 triplicate	 and	 the	 repeatability	
(ICC)	of	%RTA	based	on	triplicates	was	0.78,	(N =	64,	p < .001)	and	
the	interplate	coefficient	of	variation	based	on	one	sample	repeated	
over	all	plates	was	5.6%.

Telomere	length	was	measured	in	RBCs	DNA	samples	using	the	
same	qPCR	device	 as	 above	 and	 following	 the	 real-	time	quantita-
tive	PCR	assay	described	by	Criscuolo	et	al.	(2009)	and	adapted	for	
yellow-	legged	gull	samples	(Kim	&	Velando,	2015).	The	qPCR	method	
“normalizes”	 the	quantity	of	 telomere	product	 (T)	 to	a	single-	copy	



4 of 10  |     NOGUERA and VELANDO

gene	(S)	to	provide	a	mean	telomere	length	for	the	cell	population	
(T/S	ratio).	The	yellow-	legged	gull	GAPDH	gene	was	used	as	a	single-	
copy	gene	in	all	analyses	and	the	efficiency	of	each	amplicon	(TEL	
and	 GAPDH)	 was	 estimated	 from	 the	 slopes	 of	 the	 amplification	
curves	 for	 each	 qPCR	 reaction	 using	 LinRegPCR	 software	 (range	
80–	82%)	(Ruijter	et	al.,	2009).	All	samples	were	run	in	triplicate	and	
the	repeatability	(ICC)	of	the	T/S	values	based	on	triplicates	was	0.87	
(N = 69, p < .001)	and	the	interplate	coefficient	of	variation	based	on	
one	sample	repeated	over	all	plates	was	5.5%.

Gull	 chicks	 were	 also	 sexed	 by	 molecular	 analysis	 using	 the	
primer	sequences	described	by	Fridolfsson	and	Ellegren	(1999).

2.3  |  Statistical analyses

Firstly,	 we	 used	 generalized	 linear	 models	 (with	 binomial	 error	
distribution;	GLM)	or	linear	models	(LM)	to	confirm	that	there	were	
no	 initial	between-	group	differences	 in	egg	mass	 (LM),	 laying	date	
(LM;	 in	 Julian),	 hatching	 success	 (GLM),	 or	 sex-	ratio	 (GLM).	 All	 of	
these	initial	models	included	the	experimental	treatment	as	a	fixed	
factor.

Secondly,	we	used	 linear	mixed-	effects	models	 (LMMs)	 to	 test	
the	 postnatal	 effect	 of	 the	 testosterone	 treatment	 on	 chick	 telo-
merase	activity,	telomere	length,	body	mass,	and	tarsus	length	mea-
sured	 at	 hatching	 day	 and	day	6	 of	 age.	 The	models	 included	 the	
experimental	treatment	(i.e.,	C	or	T),	chick	age	(two	levels;	day	0	or	
6	of	age)	and	their	two-	way	 interaction	as	fixed	factors,	and	chick	
identity	(ID)	as	a	random	factor.	In	all	models,	we	also	controlled	for	
chick	sex	and	egg	mass	but	we	did	not	include	additional	interactions	
for	which	we	had	no	a	priori	predictions	to	reduce	the	complexity	of	
the	models.	Additionally,	we	further	performed	complementary	cor-
relation	analyses	to	explore	whether	any	change	in	telomere	length	
and	growth	rates	was	related	to	an	age-	related	change	in	telomerase	
activity.

All	 analyses	were	 conducted	 using	 IBM	 SPSS	 Statistics	 26	 for	
Windows	(IBM	Corp.).	In	all	models,	Satterthwaite's	degrees	of	free-
dom	were	used	and	when	needed,	post	hoc	tests	were	performed	
and	 their	 FDR-		 adjusted	 and	 unadjusted	 P-	values	 were	 reported.	
In	all	models,	nonsignificant	 interactions	were	 removed	as	 recom-
mended	(Engqvist,	2005)	and	the	proportion	of	variance	explained	
for	 mixed	 models	 was	 assessed	 by	 calculating	 the	 marginal	 and	
conditional R2	 (i.e.,	 R2

m and R2c;	 Nakagawa	 &	 Schielzeth,	 2013).	
Normality	 and	 homoscedasticity	 assumptions	were	 checked	 in	 all	
models.	Slight	differences	 in	sample	sizes	 in	some	analyses	reflect	
missing	values	due	to	the	death	or	loss	of	chicks.	Unless	specified,	
data	are	presented	as	means	±	standard	errors	(SE),	and	the	signifi-
cance level was set at p = .05.

3  |  RESULTS

Our	preliminary	analyses	showed	that	neither	egg	mass	(F1,48 = 0.192,	
p = .663)	nor	 laying	date	 (F1,48 = 0.719,	p = .401),	hatching	 success	

(Wald-	χ2 = 0.194,	 df	= 1, p = .659)	 or	 sex-	ratio	 (Wald-	χ2 = 0.117,	
df	= 1, p = .732)	differed	between	testosterone-	treated	and	control	
eggs.

Early	 postnatal	 levels	 of	 telomerase	 activity	 differed	 between	
experimental	 groups	 (Table 1);	 on	 average,	 chicks	 hatched	 from	
testosterone-	treated	eggs	showed	higher	 telomerase	activity	 than	
control	 chicks	 during	 their	 first	 6 days	 of	 life	 (treatment	 × age: 
F1,32.30 = 0.001,	 p = .986;	 Table 1; Figure 1a).	We	 also	 found	 that	
telomere	 length	during	 the	early	postnatal	period	varied	between	
experimental	 groups,	 as	 evidenced	 by	 the	 significant	 interaction	
between	the	experimental	 treatment	and	age	 (Table 1; Figure 1b).	
Thus,	chicks	hatched	from	testosterone-	treated	eggs	tended	to	have	
longer	telomeres	than	control	chicks	at	hatching	(unadjusted	p = .07,	
FDR-	adjusted	 p = .26)	 but	 afterward,	 telomere	 length	 followed	 a	
contrasting	trend	 in	both	groups	which	 led	to	no	clear	differences	
between	groups	at	day	6	of	age	 (unadjusted	p = .47,	FDR-	adjusted	
p = .60).	The	rest	of	the	variables	included	in	the	above	models	were	
nonsignificant	(Table 1).	Our	supplementary	analyses	indicated	that	
the	observed	postnatal	variation	in	telomere	length	was	unrelated	to	
the	change	in	telomerase	activity	(Pearson's	correlation	coefficient:	
r = 0.06, p = .750).

Testosterone	treatment	also	affected	chick	body	mass	and	tar-
sus	 length	during	 the	early	 postnatal	 period,	 although	 in	 the	 case	
of	tarsus	length	there	was	a	significant	interaction	between	the	ex-
perimental	treatment	and	age	(Table 1).	Thus,	chicks	hatched	from	
testosterone-	treated	eggs	were,	on	average,	heavier	than	the	con-
trols	during	the	first	6 days	of	age	(treatment	× age: F1,36.42 = 0.60,	
p = .389;	 Table 1; Figure 2a)	 and	 also	 attained	 a	 bigger	 structural	
size	on	day	six	of	age	(unadjusted	p < .001,	FDR-	adjusted	p = .001;	
Table 1; Figure 1b).	Chick	body	mass	and	tarsus	length	did	not	differ	
between	sexes	but	were	positively	correlated	to	egg	mass	(Table 1).	
Our	complimentary	analysis	revealed	no	pattern	of	covariation	be-
tween	 the	 change	 in	 telomerase	 activity	 and	 postnatal	 growth	 in	
body	mass	(Pearson's	correlation	coefficient:	r =	0.247,	p = .206)	or	
tarsus	length	(Pearson's	correlation	coefficient:	r = 0.260, p = .181).

4  |  DISCUSSION

Here,	 we	 show	 that	 maternal	 testosterone	 can	 induce	 multiple	
effects	 affecting	 various	offspring	 traits,	 including	 early	 postnatal	
telomerase	activity,	telomere	length,	body	mass,	and	tarsus	length.	
During	 the	 first	 6 days	 after	 hatching,	 the	 chicks	 of	 testosterone-	
treated	eggs	had,	on	average,	higher	 levels	of	telomerase.	Such	an	
effect,	however,	was	not	mirrored	in	postnatal	telomere	length;	while	
testosterone-	treated	chicks	tended	to	have	a	longer	telomere	length	
than	controls	at	hatching,	by	6 days	of	age	telomere	length	was	similar	
in	 both	 experimental	 groups.	 Moreover,	 our	 additional	 analyses	
showed	that	the	early	postnatal	variation	in	telomerase	activity	did	
not	 correlate	with	 the	 change	 in	 telomere	 length,	 suggesting	 that	
changes	 in	 RBCs	 telomerase	 did	 not	 mirror	 processes	 governing	
changes	in	RBCs	telomere	length.	Yolk	testosterone	also	favored	the	
postnatal	growth	of	the	gull	chicks	but	this	effect	was	neither	related	
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to	the	observed	changes	in	telomerase	activity.	While	faster	growth	
during	early	postnatal	life	may	report	some	potential	benefits	to	the	
young	 birds,	 the	 benefits	 of	 having	 increased	 telomerase	 activity	
levels	still	need	to	be	confirmed	in	future	studies.

Our	results	show	that	yolk	testosterone	had	a	positive	effect	on	
early	postnatal	telomerase	activity.	This	interesting	result	supports	
previous	evidence	from	biomedical	studies	indicating	an	active	role	
of	androgens	 in	upregulating	 telomerase	activity	both	 in	vivo	 (Bär	
et al., 2015)	and	in	vitro	(Nourbakhsh	et	al.,	2010; Vieri et al., 2020).	
Although	 the	 exact	 mechanisms	 by	 which	 maternal	 testosterone	

stimulates	offspring	telomerase	activity	early	after	hatching	 is	still	
unknown,	a	possibility	is	that	increased	yolk	testosterone	triggered	
the	 prenatal	 and	 early	 post-	natal	 upregulation	 of	 the	 hTERT	 gene	
(Bär	 et	 al.,	 2015;	 Nourbakhsh	 et	 al.,	 2010),	 thereby	 favoring	 the	
catalytic	 subunit	 and	 the	 key	 determinant	 of	 telomerase	 activity	
(Cong	 et	 al.,	 2002).	 Furthermore,	 higher	 testosterone	 levels	 may	
have	 increased	metabolic	 activity	 (Tobler	et	 al.,	2007)	 and	 so,	 the	
production	of	reactive	oxygen	species	and/or	DNA	damage	(Treidel	
et al., 2013),	molecules	that	activate	signaling	pathways	involved	in	
telomerase	upregulation	 (Fouquerel	 et	 al.,	2016; Lee et al., 2017).	

Dependent 
variable

Source of 
variation Estimate F- value dfn,d p- value

Telomerase	
activity

Intercept 0.113

R2
(M) = 0.103 Treatment	(C) −0.037 4.364 1,33.32 .043

R2
(c) = 0.317 Age	(day	0) −0.022 2.402 1,33.30 .131

Sex	(female) −0.016 0.763 1,33.91 .388

Egg	mass 2.25e−4 0.024 1,32.35 .878

Random effect Variance

Chick ID 0.001

Residual 0.003

Telomere	
length

Intercept 1.074

R2
(M) = 0.058 Treatment	(C) 0.049 0.296 1,33.67 .590

R2
(c) = 0.461 Age	(day	0) 0.064 0.178 1,31.44 .676

Sex	(female) −0.033 0.341 1,34.03 .563

Egg	mass 0.004 0.009 1,33.02 .926

Treatment × age −0.159 5.056 1,31.61 .032

Random effect Variance

Chick ID 0.016

Residual 0.020

Body	mass Intercept 0.918

R2
(M) = 0.713 Treatment	(C) −4.305 4.921 1,35.95 .033

R2
(c) = 0.744 Age	(day	0) −20.264 132.829 1,37.46 <.001

Sex	(female) 2.332 1.353 1,36.34 .252

Egg	mass 0.9132 33.890 1,35.27 <.001

Random effect Variance

Chick ID 6.427

Residual 52.661

Tarsus	length Intercept 22.352

R2
(M) = 0.777 Treatment	(C) −1.459 7.170 1,36.21 .011

R2
(c) = 0.835 Age	(day	0) −4.560 270.154 1,35.72 <.001

Sex	(female) 0.336 1.144 1,36.52 .292

Egg	mass 0.085 12.172 1,35.49 <.001

Treatment × age 1.287 7.306 1,35.72 .010

Random effect Variance

Chick ID 0.259

Residual 1.126

Note:	Significant	results	(p < .05)	are	highlighted	in	bold.

TA B L E  1 Summary	of	LMMs	for	
the	effects	of	testosterone	treatment	
and	covariates	on	telomerase	activity,	
telomere	length,	body	mass,	and	tarsus	
length	of	yellow-	legged	gull	chicks	
between	hatching	day	(day	0)	and	day	6	
of	age.
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Yet,	the	latter	possibility	seems	less	likely,	as	increased	levels	of	yolk	
testosterone	do	not	appear	to	favor	the	production	of	pro-	oxidant	
molecules	during	the	first	days	after	hatching	in	this	species	(Noguera	
et al., 2011; Parolini et al., 2018).	Irrespective	of	the	mechanism,	our	
results	 suggest	 that	maternal	androgens	may	have	a	programming	
effect	on	offspring	telomerase	activity	early	after	hatching.

The	testosterone	treatment	in	interaction	with	age	also	affected	
early	postnatal	telomere	length	during	the	first	6 days	after	hatching.	
However,	 in	 contrast	 to	 our	 expectations,	 the	 effect	 of	 our	 treat-
ment	on	offspring	postnatal	telomere	length	did	not	match	with	that	
observed	in	telomerase.	This	was	further	corroborated	by	the	lack	
of	covariation	between	postnatal	variation	in	telomerase	and	telo-
mere	length.	These	results	are,	however,	not	surprising,	taking	into	
account	 that	 the	 repair	 capacity	 of	 telomerase	 takes	 place	 during	
cell	division	(Armstrong	&	Tomita,	2017;	Criscuolo	et	al.,	2018)	and	
bird	RBCs	do	not	longer	divide	once	differentiated.	Thus,	our	results	
suggest	that	postnatal	telomere	length	is	likely	to	be	modulated	by	
mechanisms	other	than	telomerase	expressed	 in	cells	 (and	tissues)	
with	low	or	null	proliferative	potential.	Indeed,	this	may	explain	why	
telomerase	 activity	 and	 telomere	 length	 do	 not	 always	 positively	
covary	during	the	postnatal	growth	period	in	this	species	(Noguera	
&	Velando,	2021).	Although	we	do	not	know	the	causes	of	the	con-
trasting	trends	in	telomere	length	between	the	experimental	groups,	

it	is	plausible	that	they	were	influenced	by	an	effect	of	our	hormonal	
treatment	on	other	(unmeasured)	phenotypic	traits.	For	instance,	if	
increased	yolk	testosterone	promoted	a	more	active	and	competi-
tive	chick	phenotype	(e.g.,	increasing	begging	behavior	and/or	activ-
ity levels; Gil, 2003),	these	behavioral	changes	might	have	increased	
the	demands	for	some	important	antioxidants	(Noguera	et	al.,	2010)	
and	favored	the	observed	decline,	although	not	significant,	of	telo-
mere	 length	with	 age	 (Kim	&	Velando,	2015).	 In	 any	 case,	 our	 re-
sults	suggest	that,	at	least	in	differentiated	somatic	cells	like	RBCs,	
telomerase	and	telomere	length	are	probably	not	as	closely	coupled	
as	expected	and	probably	deeply	influenced	by	other	(unmeasured)	
environmental	factors.

Our	results	also	show	that	our	testosterone	treatment	favored	
offspring	postnatal	growth,	an	effect	that	is	in	agreement	with	pre-
vious	studies	in	birds	(see	e.g.	Gil,	2003;	Groothuis	et	al.,	2005 and 
references	therein),	 including	this	and	other	seagull	species	 (Eising	
et al., 2001; Parolini et al., 2017).	 The	boosting	effect	of	 egg	 tes-
tosterone	on	early	postnatal	growth	may	be	the	result	of	the	well-	
known	anabolic	effects	that	androgens	have	on	muscles	and	bones	
in	 birds	 (Meyer,	 2001;	 Navara	 &	 Mendonça,	 2008),	 tissues	 with	
a	 high	 density	 of	 androgen	 receptors	 (Compston,	 2001; Corvol 
et al., 1992).	A	higher	level	of	egg	testosterone	may	have	stimulated	
chick	body	mass	and	bone	growth	via	different	pathways,	including	

F I G U R E  1 (a)	Telomerase	activity	and	
(b)	telomere	length	at	hatching	day	and	
day	six	of	age	in	gull	chicks	from	control	
(yellow	bars)	and	testosterone-	treated	
(gray	bars)	eggs.	Data	show	mean ± SEM.
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F I G U R E  2 (a)	Body	mass	and	(b)	tarsus	
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the	secretion	of	growth	factors,	protein	synthesis,	or	increasing	min-
eral	absorption	(see	e.g.	Meyer,	2001;	Navara	&	Mendonça,	2008; 
Urban,	2011;	West	&	Phillips,	2010).	Postnatal	growth	did	not	cor-
relate	to	changes	in	telomerase	activity,	probably	indicating	that	any	
effect	of	telomerase	on	chick	postnatal	development	was	minor,	at	
least	during	the	first	days	after	hatching.	However,	we	cannot	dis-
card	the	possibility	that	increased	telomerase	activity	might	play	a	
role	later	on	when	energetic	demands	substantially	increase	to	sus-
tain	the	maximal	growth	rate.

While	 attaining	 more	 body	 mass	 and	 a	 bigger	 structural	 size	
might	involve	some	fitness	benefits	for	testosterone-	treated	chicks,	
a	faster	postnatal	growth	may	also	have	some	potential	costs.	For	
instance,	in	this	and	other	bird	species,	faster	postnatal	growth	has	
been	associated	with	increased	oxidative	stress	levels	during	devel-
opment	 (Kim	et	al.,	2011;	Metcalfe	&	Alonso-	Alvarez,	2010).	High	
levels	of	oxidative	stress	may	negatively	affect	chick	health	status	
and	 survival	 by	 either	 directly	 reducing	 the	 correct	 functioning	
of	 tissues	and	organs	 (Rahman	et	al.,	2012)	or	by	accelerating	 the	
rate	 of	 telomere	 shortening	 (Monaghan	 &	Ozanne,	2018;	 Salmón	
et al., 2021).	 Yet,	 as	 the	 change	 in	 postnatal	 telomere	 length	 did	
not	correlate	with	postnatal	growth,	the	impact	of	faster	growth	on	
postnatal	telomere	 length	was	probably	minor,	at	 least,	during	the	
first	days	after	hatching.

Egg	testosterone	increased	telomerase	activity	early	after	hatch-
ing	but	such	an	effect	did	not	relate	to	telomere	length	or	growth,	
suggesting	that	telomerase	may	play	other	functions.	In	this	regard,	
recent	studies	have	shown	that	telomerase	plays	a	key	antioxidant	
function	in	the	mitochondria,	especially	under	oxidative	conditions	
(Rosen	et	al.,	2020).	As	yellow-	legged	gull	chicks	are	often	exposed	
to	 increased	 levels	 of	 oxidative	 stress	 due	 to	 different	 environ-
mental	 and	 social	 factors	 (Noguera	 et	 al.,	2010, 2017;	Noguera	&	
Velando, 2020)	and	 increased	 levels	of	oxidative	stress	early	after	
hatching	can	compromise	 future	 survival	 (Noguera	et	al.,	2012),	 it	
might	be	possible	that	gull	chicks	benefit	of	maintaining	higher	lev-
els	 of	 telomerase	 early	 after	 hatching.	Additionally,	 as	 telomerase	
can	also	enhance	T-	cells	proliferation	(Qian	et	al.,	2014),	any	mater-
nally	mediated	increase	of	telomerase	expression	may	potentially	in-
crease	offspring	survival	by	favoring	early	immune	responses	(Norris	
&	Evans,	2000).	Yet,	our	understanding	of	the	non-	canonical	func-
tions	of	 telomerase	 (i.e.,	 beyond	 telomere	maintenance)	 in	natural	
populations	and	their	implications	in	wild	animal	populations	is	still	
in	its	infancy	and	so,	the	potential	adaptive	value	of	any	maternally	
mediated	increase	of	telomerase	still	needs	to	be	confirmed.

In	 conclusion,	 our	 findings	 demonstrate	 that	 maternally	 al-
located	 egg	 testosterone	 has	 multiple	 effects	 on	 the	 offspring,	
increasing	 telomerase	 activity	 and	 growth,	 and	 affecting	 postna-
tal	 telomere	 length.	 As	 more	 evidence	 emerges	 suggesting	 that	
telomerase	 may	 have	 a	 role	 in	 cell	 mitochondrial	 functioning	 or	
signaling	pathways,	 our	 results	 provide	 a	 new	mechanism	 for	ma-
ternal	 testosterone	 to	act	 as	a	 tool	 for	adjusting	offspring	pheno-
typic	 development	 and	 life-	history	 trajectories.	 Nonetheless,	 our	
knowledge	 of	 the	 potential	 adaptive	 value	 of	 this	 form	 of	mater-
nal	 programming	 of	 telomerase	 activity	 is	 still	 largely	 lacking	 and	

deserves	further	investigation.	Future	experimental	studies	should	
investigate	whether	the	observed	changes	in	telomere	maintenance	
mechanisms	vary	in	response	to	other	maternally	allocated	egg	com-
ponents	or	 the	prevailing	environmental	conditions,	and	relates	to	
important	aspects	of	offspring	fitness.
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