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Abstract

Background

Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with a 5% 5-year sur-

vival rate for metastatic disease, yet with limited therapeutic advancements due to insuffi-

cient understanding of and inability to accurately capture high-risk CRC patients who are

most likely to recur. We aimed to improve high-risk classification by identifying biological

pathways associated with outcome in adjuvant stage II/III CRC.

Methods and findings

We included 1062 patients with stage III or high-risk stage II colon carcinoma from the pro-

spective three-arm randomized phase 3 AVANT trial, and performed expression profiling to

identify a prognostic signature. Data from validation cohort GSE39582, The Cancer

Genome Atlas, and cell lines were used to further validate the prognostic biology. Our retro-

spective analysis of the adjuvant AVANT trial uncovered a prognostic signature capturing

three biological functions—stromal, proliferative and immune—that outperformed the Con-

sensus Molecular Subtypes (CMS) and recurrence prediction signatures like Oncotype Dx
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in an independent cohort. Importantly, within the immune component, high granzyme B

(GZMB) expression had a significant prognostic impact while other individual T-effector

genes were less or not prognostic. In addition, we found GZMB to be endogenously

expressed in CMS2 tumor cells and to be prognostic in a T cell independent fashion. A limi-

tation of our study is that these results, although robust and derived from a large dataset,

still need to be clinically validated in a prospective study.

Conclusions

This work furthers our understanding of the underlying biology that propagates stage II/III

CRC disease progression and provides scientific rationale for future high-risk stratification

and targeted treatment evaluation in biomarker defined subpopulations of resectable high-

risk CRC. Our results also shed light on an alternative GZMB source with context-specific

implications on the disease’s unique biology.

Introduction

Over the past several decades major improvements in outcome for patients with early stage (I,

II and III) CRC have been achieved with adjuvant chemotherapy and improved surgical tech-

niques, with 5-year overall survival (OS) ranging from 92% in stage I to 30–70% in stage III

[1]. Intervention with chemotherapy in the adjuvant setting has become common practice to

improve cure rates for patients with high-risk primary disease. However the method used to

classify patients with resectable CRC, the AJCC/UICC-TNM system based on tumor size (T),

lymph node spread (N) and metastasis (M) [2–4], has poor specificity in describing prognostic

CRC biology and in capturing high-risk CRC patients who recur [5]. This is evidenced by the

low number of disease-free survival (DFS) events (182, 17% at 5 years) and OS events (76, 7%

at 5 years) in the 1062 biomarker evaluable patients with stage III or high-risk stage II colon

carcinoma from the AVANT trial (S1 Fig). Since most stage II and III CRC patients have good

prognosis with surgery alone and over 75% of patients with stage II CRC never recur, a sample

size of 10,000 patients would be required in a clinical trial to detect a 10% survival benefit from

adjuvant therapy with 90% power [6]. This complexity in combination with lack of therapeutic

options has prevented changes in the standard of care in this setting. Therefore 3–5 month

treatment with oxaliplatin infusion added to Fluorocil and Leucovorin (FOLFOX4) has con-

tinued to be common practice over the past decades for surgically resected, stage III or high-

risk stage II CRC [7–10]. Thus, a majority of patients who never recur and are not high-risk

continue to receive aggressive adjuvant chemotherapy. Furthermore, despite the improve-

ments in patient survival, CRC continues to be a leading cause of cancer-related deaths with

more than 500,000 deaths annually, and five-year survival rates in patients with metastatic dis-

ease are less than 5% [11].

Several prognostic and recurrence prediction signatures for CRC have been published, such

as Oncotype Dx, as well as tumor classification systems with biological interpretability such as

the CMS subtypes [12–21], but none have been clinically validated to guide treatment deci-

sions for CRC in the adjuvant setting. Some of these tumor classifications capture tumor-tissue

based characteristics, such as the TNM staging system [2–4]. Immunoscore was more recently

proposed as a new component of a TNM-Immune classification, based on the observation that

the immune contexture of a primary CRC tumor is prognostic [22, 23]. Separate research

revealed a negative prognostic role for the stromal compartment as measured by signatures of
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cancer-associated fibroblasts (CAF) and stromal TGFβ signaling (F-TBRS) [24, 25]. There is a

need for a robust and clinically validated assay to more accurately stratify patients with non-

metastatic CRC into low- and high-risk groups for more effective management of the disease.

Here we present a retrospective analysis of the phase 3 AVANT trial for uncovering the biology

of poor prognosis patients in early CRC, and for identifying a de novo prognostic signature

that captures early CRC patients at high risk of relapse (S2 Fig). This signature uncovered

three key biological functions associated with disease progression in high-risk adjuvant CRC

patients: (1) proliferative, (2) stromal and (3) immune. Furthermore, we describe a novel and

unique role for Granzyme B (GZMB) as a highly prognostic gene in CMS1 and CMS2 CRC,

with immune cells being a major source of GZMB in CMS1, while GZMB expression in CMS2

CRC is rather a tumor-intrinsic property, and hence an alternative GZMB source that is worth

exploring as a biomarker and to uncover novel biology in CRC.

Materials and methods

Study design

AVANT (ClinicalTrials.gov identifier NCT00112918) was a randomized, open-label, prospec-

tive, parallel three-arm, phase 3 trial sponsored by F. Hoffmann-La Roche and conducted in

accordance with the Declaration of Helsinki. The study design was published previously [7].

Patients (age > = 18 years with histologically confirmed stage III or high-risk stage II colon

carcinoma) were subject to surgery with curative intent 4–8 weeks before a 1:1:1 to one of

three treatment options: FOLFOX4 for 24 weeks followed by observation for 24 weeks; bevaci-

zumab–FOLFOX4 for 24 weeks followed by bevacizumab monotherapy for 24 weeks; or beva-

cizumab–XELOX for 24 weeks followed by bevacizumab monotherapy for 24 weeks

randomization. Stratification factors included geographic region and disease stage (high-risk

stage II vs stage III [N1] vs stage III [N2]). DFS was the primary endpoint and was defined as

the time between randomisation and recurrence of the colorectal cancer, new occurrence of

colorectal cancer, or death from any cause. From Dec 20, 2004 to June 8, 2007, 3451 patients

from 330 centers in 34 countries worldwide were randomly assigned to receive FOLFOX4

(n = 1151), bevacizumab-FOLFOX4 (n = 1155) or bevacizumab-XELOX (n = 1145) [7]. All

clinical data are available in S1 Table. All analyses presented herein were done in a retrospec-

tive manner and were not prespecified in a prospective analysis plan.

Sample collection

Baseline formalin-fixed, paraffin-embedded (FFPE) tumor samples were collected from

patients who consented to participate in exploratory translational research. Samples with suffi-

cient tissue were selected for further analysis. Of 3451 patients enrolled, 1256 had sufficient

material for analysis. Tumors were microdissected to minimize the amount of adjacent normal

tissue RNA included in the gene expression analysis. FFPE tissue blocks were sectioned at a

thickness of 4 to 6 microns and stored on slides at room temperature. After RNA extraction,

samples were stored at -70˚C.

Nanostring gene expression

RNA was extracted from the FFPE patient samples and run on a customized CRC codeset

comprised of 829 genes on the Nanostring gene expression platform (NanoString Technolo-

gies, Seattle, WA) (S2 Table). The raw probe intensities were corrected for background using

blank (water), and then normalized using the NanostringQCPro package in R [26]. Raw

counts for 1256 tumor samples were log2 transformed, normalized (common mean and
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standard deviation for all samples), and gene-wise expression scores were further standardized

across all samples by transformation to z-scores. Quality control failures were flagged based on

the first principal component of normalized counts; 67 outlier samples were identified. These

yielded low overall counts, indicating insufficient input material or another source of assay

failure and were removed from further analysis. 12 patients had 2 samples each, all of which

were excluded. 1165 samples were deemed biomarker-evaluable samples. For 102 subjects for

whom gene expression data was available, no matching clinical annotations were available.

The samples from these subjects were excluded from downstream analysis, leaving a final total

of 1062 samples. The normalized, z-scored expression data are available in S3 Table. The seven

most frequent mutations in codons 12 and 13 of KRAS were assessed with qPCR (12ALA,

12ARG, 12ASP, 12CYS, 12SER, 12VAL, 13ASP). BRAF c.1799T>A (p.V600E) genotyping was

performed at Sequenom Laboratories. MSI status was obtained by qPCR, and for our pur-

poses, MSI-low and MSS patients were merged into the MSS category.

Gene expression based assignment of published CMS subtypes

TCGA RNAseq paired-end data were downloaded from the National Cancer Institute Geno-

mic Data Commons (https://gdc.cancer.gov) and analyzed using HTSeqGenie [27]. KRAS and

BRAF mutation information for colon tumors was downloaded from www.cbioportal.org

(project Colorectal Adenocarcinoma TCGA provisional) on 09/18/2018. The GSE39582

microarray dataset was downloaded from GEO (GEO accession: GSE39582) [17]. RNAseq

data for cell lines were obtained from [28]. The random forest algorithm in the CMS classifier

R package [12] was used to assign CMS labels to TCGA and GSE39582 samples based on z-

scored log2 transformed gene expression data. Since the AVANT dataset is on a different plat-

form i.e NanoString, we first trained a PAM classifier on the TCGA CRC samples for the pre-

diction of CMS subtype, using expression of the 829 genes on the CRC NanoString panel and

the pamr R package. The 132 genes highly predictive of the CMS subtypes in the TCGA sub-

setted dataset were then used to perform unsupervised hierarchical clustering and tree cutting

to annotate the AVANT tumors. For colon cancer cell lines, CMS labels were determined with

the nearest-centroid single-sample predictor from the CMS classifier R package [12], assigning

a cell line to a CMS in case the correlation to the nearest centroid exceeded 0.15 and the mini-

mal difference between the correlation to the two nearest centroids exceeded 0.6.

Prognostic signature analysis using elastic net regression

We used elastic net, a regularized regression method that is effective with small sample sizes

when the number of features exceeds the number of samples. It uses a grouping approach

where collinear or correlated features are represented by one feature and penalizes the remain-

ing collinear features. Using overall survival (OS) data, we built a generalized Cox-regression

model using the glmnet R package with alpha values of 0.1–0.9, seed reset in each run, and k-

fold cross-validation to reduce overfitting [29, 30]. Lower alpha values result in larger numbers

of selected genes. All regression runs provided the same core set of genes that were signifi-

cantly associated with OS. Additional genes were included for every jump in alpha. As a trade-

off between being inclusive of novel biological functions beyond the core set of genes (lower

alpha) and a more complex fitted model (higher alpha), we settled on an alpha value of 0.2. We

were able to use the complete AVANT dataset for training giving the utilization of GSE39582

as independent validation dataset. For validation of the signature in an independent dataset

(GSE39582), we used only the signs of the fitted coefficients, not the magnitudes, to calculate

an unweighted signature score per patient; this was intended to minimize the impact of gene

expression platform differences between AVANT and GSE39582. That said, using the fitted
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coefficients from the model to compute a weighted signature score per patient in GSE39582

yielded qualitatively similar results.

Pathway and published signature analysis

The four gene clusters within the AVANT signature were determined by correlation and hier-

archical clustering analysis. Pathway signatures were obtained from literature: the T-effector

signature [31], the stromal gene sets Fibroblast TGFb Response Signature (F-TBRS) [25] and

cancer-associated fibroblasts (CAF) [24], and the 12-gene Oncotype Dx Colon Recurrence

Score [32]. Representative markers of natural killer (NK) and plasmacytoid dendritic (pDC)

cells were manually curated from literature: NK markers KLRK1, KLRC2/3, KLRD1, NKG7,

and FCGR3A (CD16) [33–35], and pDC markers CLEC4C, IL3RA, TCF4 and NRP1 [36, 37].

Pathway signatures were calculated as the average Z-score of all the genes contained in each

signature, with the exception of the Oncotype Dx Colon Recurrence Score. An Oncotype Dx

score was calculated as 0.1263 x stromal group score (average Z-score of BGN, FAP, INHBA)–

0.3158 x cell cycle group score (average Z-score of MYC, MYBL2, MKI67) + 0.3406 x

GADD45B, as previously described [32]. In the case of the AVANT cohort, signatures were

first restricted to genes on the Nanostring platform before calculating a signature score (e.g. 4/

7 cancer-related Oncotype Dx genes, NK marker KLRK1, and pDC markers TCF4 and NRP1).

In the context of GZMB, the T-effector signature was modified by removing GZMB and

GZMA from the signature which we refer to as “modified T-effector” signature.

Statistical analysis

Survival analysis with Cox models for genes and pathway signatures were performed in R

using the survival package with either continuous values, binarized at median (high vs low

expression) or cut into quartiles. Kaplan-Meier curves were generated using the survminer

package in R. To test the additive effect of GZMB expression to the gene subsets of the

AVANT signature or the additive effect of one signature to another signature, likelihood ratio

test p values were calculated using ANOVA on nested models. Multivariate analysis in

AVANT was performed by adding the clinical covariates age, levels of Cancer Embryonic

Antigen (CEA) in the blood, ECOG status, sex, and a combination of AJCC tumor status (II

and III) and lymph node status (N1 and N2), referred to as strata. These covariates were indi-

vidually found to be prognostic in both OS and DFS. Multivariate analysis in GSE39582 was

performed by adding the clinical covariates age, sex, tumor stage (0–4), and lymph node status.

These covariates were individually found to be prognostic in both OS and RFS. Note that in

GSE39582, we did not have data for ECOG status and CEA blood levels. In GSE39582, the

type of adjuvant therapy as well as stage of metastasis were also prognostic clinical covariates.

Including them into the multivariate analysis for the AVANT signature yielded similar results

as above, hence were excluded from the model for consistency with the covariates in the

AVANT dataset. Pearson correlation plots were generated using the corrplot R package. Pair-

wise T-test was used to compute nominal p-values displayed in the insert tables for boxplots.

Chi-square test was used to compute the enrichment of clinical characteristics in CMS sub-

types. Most plots were generated using the ggplot2 R package.

CyTOF data generation and analysis

Disaggregated CRC tumor samples (stage II or III, pre-treated) were procured from an exter-

nal vendor (Conversant Bio) and analyzed by mass cytometry as previously described [38]. In

short, CRC single-cell suspensions were incubated with a cisplatin-based viability dye (Flui-

digm), and Human Trustain FcX™ block (Biolegend), prior to staining with a 37-parameter
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isotope conjugated panel of mABs (see S4 Table for clones and vendors). Initial staining of cell

surface markers was conducted on live cells and intracellular targets were probed following fix-

ation and permeabilization with the Human Foxp3 Staining Buffer Set (eBioscience). Follow-

ing intracellular staining cells were fixed with 1.6% paraformaldehyde (Electron Microscopy

Sciences) and treated with Cell-ID™ Intercalator (Fluidigm). Cells were resuspended in water

containing EQ™ Calibration Beads prior to acquisition on a Helios upgraded CyTOF 2 (Flui-

digm). Signal normalization was conducted as previously described [39].

For each sample, CD45+ viable singlet cells were exported into new.FCS files using FlowJo

software. Using 37 immune markers (excluding pan-markers like EPCAM and CD45; markers

with broad signal like CD66 and Foxp3) and singlet viable CD45+ populations across the 12

CRC patients, the tSNE dimensionality reduction algorithm (adjClust package, from https://

bitbucket.org/cbolen1/adjclust) was used to obtain a tSNE map. Density-based spatial cluster-

ing of applications with noise (DBSCAN) via the DBSCAN package in R was applied to the 37

immune markers supplemented with the two axes of the tSNE map, the latter to allow map-

ping of the DBSCAN clusters onto the tSNE map. Cluster information together with litera-

ture-derived knowledge of cell type markers was used to annotate the clusters in the tSNE

space. The average of each protein marker was calculated per immune cell type for correlation

analysis and heatmaps. In fluorescence-based cytometry experiments, fresh healthy human

PBMCs were procured from the Genentech Blood Donors program and processed with a simi-

lar protocol as that used for mass cytometry with the exception that fluorophore conjugated

mAbs were used and data were acquired on a Canto II instrument.

Results

Patient characteristics and tumor profiling

We explored a collection of 1062 FFPE derived patient archival tumors from AVANT, a pro-

spective three-arm randomized phase 3 trial (S2 Fig). The AVANT trial was designed to com-

pare bevacizumab plus oxaliplatin in combination with either FOLFOX4 or capecitabine

(XELOX) vs. FOLFOX4 alone, with DFS as a primary endpoint in histologically confirmed

stage III or high-risk stage II colon carcinoma [7]. Clinical characteristics in the biomarker

evaluable population (BEP) were similar to those in the intent-to-treat population (S5 Table).

Since the AVANT trial did not show a significant DFS difference among the arms after a mini-

mum of 3 years follow-up (S1 Fig), we combined all arms in the BEP population for the pur-

pose of identifying a prognostic gene signature in stage II and stage III CRC (S2 Fig). We

carried out transcriptional profiling of the FFPE tissues using a customized, CRC-focused

NanoString panel (S2 and S3 Tables). The AVANT high risk stage II/III population was com-

parable to other early stage populations such as GSE39582 [17] and TCGA [16] in terms of

prevalence of the four CMS subtypes [12], the enrichment of microsatellite instability high

(MSI-H) and BRAF mutations in the CMS1 group, and the enrichment of KRAS mutations in

CMS3 (S3 and S4 Figs, S1 Table).

Identification and performance of a de novo prognostic signature for

adjuvant CRC

To interrogate the biological processes associated with survival in adjuvant CRC, we applied

an elastic net Cox penalized regression model to the AVANT BEP expression data using OS as

the outcome (see Materials and methods and S5 Fig). We identified a highly prognostic de
novo signature, referred to as the AVANT signature (S6 Table), where high expression of the

signature genes was associated with poor prognosis in AVANT for both OS, as expected, and
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DFS (Fig 1a). This signature showed comparable association with OS and DFS in the three

treatment arms of the AVANT trial (S6 Fig; ANOVA signature + treatment arm vs. signature

alone, p = 0.25 for OS and p = 0.24 for DFS), confirming the prognostic nature of the signature

in the context of standard adjuvant chemotherapy with or without bevacizumab. The signa-

ture’s ability to identify a high-risk adjuvant CRC population was validated for recurrence-free

survival (RFS) in the independent GSE39582 cohort of stage I-IV colon cancer (Fig 1b, S7 Fig).

Importantly, this real-world cohort was not selected for high-risk CRC patients and rather cap-

tured patients with stage 0–4 colon cancer. While TNM staging was prognostic in the

GSE39582 cohort (HR 2.73, p< 2e-16), the AVANT signature remained prognostic after

accounting for stage (ANOVA, p = 7.6e-5), suggestive of the signature’s ability to broadly cap-

ture high risk of recurrence across all stages of CRC.

Gene clustering revealed four clusters of genes in the signature that, based on manual cura-

tion of the genes per cluster, meaningfully capture three primary biological functions: stromal,

proliferative, and immune signaling (Fig 1c, S8 Fig). Although our elastic net approach inte-

grated multiple biological functions into a single signature, we were also interested in the clus-

ters’ individual prognostic contributions. High expression of stromal genes (combining the

two stromal clusters) was correlated with poor prognosis while high expression of immune

genes was correlated with good prognosis (Fig 1d and 1e). Expression of the proliferative

genes was not significantly associated with DFS on its own (Fig 1f). The immune and both sets

of stromal genes displayed high expression in the lowest and highest quartile of the AVANT

signature respectively, thus further delineating the individual prognostic contributions to the

AVANT signature (S8 Fig, Fig 1d–1f). Importantly, the association of immune gene expression

with DFS was not only observed in MSI-H patients (HR = 0.31, p = 0.024), which more highly

express the immune genes (S9 Fig), but also in MSS patients, though to a lesser extent

(HR = 0.74, p = 0.053). In the independent GSE39582 dataset, the stromal and proliferative

gene sets were prognostic of RFS, while the immune gene set was not, possibly due to clinical

and/or biological inter-cohort variability including tumor stage (S10 Fig).

The AVANT signature was significantly more effective at predicting survival, and thus at

identifying a high-risk subpopulation, than other prognostic signatures (Oncotype Dx, T-

effector, CAF, F-TBRS) [13, 24, 25] and the CMS subtypes, not only in AVANT as expected

(S11 Fig), but more importantly in GSE39582, an independent dataset in which patients were

not selected to be high-risk (Fig 1g, S3 Fig). The AVANT signature conferred significant addi-

tional prognostic value when combined with each of the previously published prognostic sig-

natures we considered (Fig 1g, bottom table). In contrast, although the oncotype Dx score and

CMS subtypes captured recurrence signal beyond what was captured by the AVANT signa-

ture, it was still a less significant improvement in RFS prediction compared to adding the

AVANT signature to either oncotype Dx score or CMS subtype in both the GSE39582 and

AVANT datasets (Fig 1g and S11 Fig). None of the other signatures captured significant addi-

tional recurrence signal when combined with the AVANT signature. This suggests that the

AVANT signature incorporates the primary drivers of prognosis, and that other signatures

offer no or limited additional prognostic value. In addition, multivariate analysis of the

AVANT signature incorporating clinical covariates that are prognostic in CRC (listed in Mate-

rials and methods) still showed prognostic value of the signature, in AVANT as well as in the

independent GSE39582 dataset (S12 Fig).

GZMB as a highly prognostic, T cell independent biomarker in CRC

There is preceding evidence for a role of CD8+ T cells in early disease prognosis in CRC [40–

43]. Interestingly, GZMB, a key marker of T-effector cells, is part of our AVANT signature
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Fig 1. De novo prognostic signature for adjuvant CRC. (a) Kaplan-Meier curves for the AVANT signature in the

AVANT BEP dataset for DFS. The p-value corresponds to a log-rank test. (b) Kaplan-Meier curves for the AVANT

signature in an independent validation cohort GSE39582 for RFS. (c) Correlation plot for the genes in the AVANT

signature. Blue denotes positive and red denotes negative Pearson correlation. Color intensity denotes the strength of

the correlation. Signature genes were assigned to one of four clusters. Red denotes proliferative genes, light and dark

green denote stromal genes, and purple denotes immune genes. (d-f) Kaplan-Meier curves for the prognosis of (d) the

immune genes, (e) stromal genes, and (f) proliferative genes of the AVANT signature divided at the median in the

AVANT BEP dataset. (g) RFS forest plot for validation dataset GSE39582 shows hazard ratios and associated p-values

for each individual signature. In the table below for GSE39582, column (1) assesses significance of added prognostic
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(Fig 1c). Hence we explored the prognostic relevance of singleton GZMB expression versus a

previously defined CD8+ T-effector signature [31] in the AVANT and GSE39582 studies.

GZMB alone had a significant relationship to prognosis: high expression of GZMB was associ-

ated with good prognosis in both the AVANT and GSE39582 datasets (Fig 2a and 2b). In con-

trast, the T-effector signature as a whole (with GZMB included) was less prognostic in both

datasets (Fig 2c and 2d), and the T-effector signature without GZMB added no statistical prog-

nostic value beyond that provided by GZMB alone (Fig 2e and 2f). These observations suggest

that GZMB has a distinct prognostic role in CRC that is not captured by other T-effector

genes.

We therefore investigated the prognostic value of GZMB in the context of the stromal and

proliferative biological functions captured by the AVANT signature. Concurrent high expres-

sion of GZMB and the proliferative gene set was associated with the best prognosis in AVANT

(Fig 2g). However, this prognostic benefit was lost in patients with a high proliferative gene set

but low GZMB expression (Fig 2g). Similarly, high expression of the stromal gene set with low

GZMB had the poorest prognosis in AVANT (Fig 2h). Yet, tumors with concurrent high stro-

mal and high GZMB expression were associated with better outcome despite the stromal gene

set on its own being associated with poor survival (Fig 2h). The same was true for the prognos-

tic impact of GZMB expression among tumors with a low stromal score. GZMB significantly

added prognostic value to the proliferative and stromal gene sets in the AVANT dataset (Fig

2g and 2h; likelihood ratio tests for improvement of fit when adding GZMB expression to the

stromal set, p = 4.1e-5, or the proliferative set, p = 1.4e-5), and did not capture significant addi-

tional recurrence signal in GSE39582 (Fig 2i and 2j; p = 0.11 and 0.20, resp.). These results

indicate that in the AVANT dataset enriched for high-risk patients, high expression of GZMB

by itself is consistently associated with favorable outcomes, independent of the proliferative

and stromal context.

Immune cells as a CMS1 and not CMS2-specific source of GZMB

Given the significant impact of this single gene on clinical outcome beyond the prognostic role

of other genes associated with CD8+ T cells, we investigated the link between sources of

GZMB expression and prognosis in CRC. GZMB was expressed in CMS1 and CMS2 patients

in both the AVANT and GSE39582 dataset (Fig 3a and 3b) and was more highly expressed in

MSI-H tumors (Fig 3c). Both T-effector and NK cells are established sources of GZMB [44–

47]. However, the T-effector signature, including GZMB, was only highly expressed in CMS1

and MSI-H patients (Fig 3d–3f), not in CMS2. T-effector gene GZMA maintained its strong

positive correlation with other T-effector genes across CMS subtypes and in both MSI-H and

MSS CRC patients (Fig 3g and 3h). GZMB on the other hand was strongly correlated with the

T-effector signature only in the CMS1 subtype and in MSI-H CRC patients (Fig 3g and 3h),

not in CMS2. Like the T-effector signature, expression of the NK signature (see Materials and

methods) was also restricted to primarily CMS1 and MSI-H tumors and showed lowest

median expression in CMS2 in both the AVANT and GSE39582 dataset (Fig 3i–3k). These

data suggest that the source of GZMB in CRC CMS2 is neither CD8+ T cells nor NK cells.

Intriguingly, the CMS2-specific source of GZMB expression has clinical implications: GZMB

expression is prognostic in CMS2 tumors with a low T-effector signature, in both AVANT and

GSE39582 (Fig 3l and S13 Fig). Taken together, these data suggest that, while CD8+ T and NK

value (if any) provided by each published signature when added to the AVANT signature; column (2) assesses

significance of added prognostic value provided by the AVANT signature when added to each of the individual

published signatures.

https://doi.org/10.1371/journal.pone.0262198.g001
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Fig 2. GZMB is a prognostic, T cell independent biomarker in CRC. (a-b) Kaplan-Meier curves for GZMB

expression stratified by median in (a) the AVANT BEP dataset for DFS and (b) GSE39582 for RFS. (c-d) Kaplan-Meier

curves for the T-effector signature stratified by median expression in (c) the AVANT BEP dataset and (d) GSE39582.

(e-f) Forest plots show hazard ratios and associated p-values for the T-effector signature without GZMB and for GZMB

expression in (e) the AVANT BEP dataset and (f) GSE39582. The tables below indicate the significance of added

prognostic value (if any) provided by the T-effector signature when added to GZMB (first column) and vice versa

(second column). Note that continuous GZMB expression in GSE39582 is not prognostic, contrary to high vs. low

GZMB expression in panel (b). (g-j) Kaplan-Meier curves showing the relationship between GZMB and (g) the

proliferative genes or (h) the stromal genes of the AVANT signature in the AVANT BEP dataset; and between GZMB

and (i) the proliferative genes or (j) the stromal genes of the AVANT signature in GSE39582. P-values correspond to a

log-rank test.

https://doi.org/10.1371/journal.pone.0262198.g002
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Fig 3. Immune cells are the source of GZMB in CMS1 CRC. (a-b) GZMB expression by CMS subtype in (a) the

AVANT BEP dataset and (b) GSE39582. (c) GZMB expression by MSI status in the AVANT BEP dataset. (d-e)

Expression of the T-effector signature by CMS subtype in (d) the AVANT BEP dataset and (e) GSE39582. (f)

Expression of the T-effector signature by MSI status in the AVANT BEP dataset. (g) Pearson correlation between the

modified T-effector signature (i.e. without GZMA/B) and GZMA or GZMB expression in AVANT patients, by CMS

subtype or MSI status. (h) Pearson correlation between the modified T-effector signature and GZMA or GZMB

expression in GSE39582 patients, by CMS subtype (MSI status was not available). (i) Expression of the NK cell marker

KLRK1 by CMS subtype in the AVANT BEP dataset. (j) Expression of the NK signature by CMS subtype in the

GSE39582 dataset. (k) Expression of the NK cell marker KLRK1 by MSI status in the AVANT BEP dataset. (l) Kaplan-
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cells are a major source of GZMB in CMS1 and MSI-H patients, other cell types may be the

source of GZMB—and thus of the prognostic relevance of GZMB expression—in CMS2

patients.

To identify novel immune cell types that express GZMB, we conducted mass cytometry

analysis in 12 resected stage II or III CRC tumors using a comprehensive panel of 37 lineage

and functional markers of immune populations (S4 Table). We applied t-distributed stochastic

neighbor embedding (tSNE) analysis on the CD45+ viable singlet gated immune cell popula-

tions from all 12 CRC patients combined, followed by unsupervised density-based clustering

(Fig 4a, Materials and methods). B cells and CD4+ T cells were most prevalent in this cohort

of 12 CRC patients, followed by CD8+ T cells and monocytes (S14a and S14b Fig). Novel cell

types with average GZMB expression exceeding GZMA levels were CD16+ NK cells and plas-

macytoid dendritic cells (pDCs) (S14a Fig), and these cells had primarily low CD8 expression

(Fig 4b and 4c, S14c Fig). These data suggest that infiltration of CD16+ NK cells and pDCs

may contribute to total GZMB expression in the 12 CRC patients, and this is consistent with

an earlier observation of GZMB expression by the above cell types in the absence of detectable

Perforin [48, 49]. However, only 1% of the pooled immune cells of the 12 CRC patients are

CD16+ NK cells or pDCs. In addition to the low prevalence, both the NK signature (including

CD16, aka FCGR3A) and a transcriptional signature of pDCs (see Materials and methods) are

low expressed in CMS2 tumors in the AVANT and GSE39582 datasets (Fig 3i and 3j for NK,

Fig 4d and 4e for pDC). Together these results suggest that T-effector cells, NK cells and pDCs

are a source of GZMB expression in CMS1 tumors, but not in CMS2 tumors.

To address whether this observation is specific to CRC, we investigated the correlation of

GZMB expression with the T-effector, NK and pDC cell signatures in the TCGA dataset cover-

ing 14 cancer types (Fig 4f and 4g and S14d Fig). The T-effector and NK signature genes were

highly correlated in expression in all cancer types considered (Fig 4f and 4g). GZMB expres-

sion on the other hand correlated well with these signatures in all cancers except for CRC

CMS2 (Fig 4f and 4g), confirming this phenomenon to be CRC CMS2-specific. Correlation

among pDC signature genes was in general poor across cancer types (S14d Fig).

Unique characterization of CMS2 CRC by endogenous GZMB expression

Given these findings and the extensively profiled immune cell populations in Fig 4a, we

hypothesized that the source of GZMB expression in CMS2 tumors may be the tumor cells

themselves. Indeed, in a cohort of 72 colon cancer cell lines, GZMB was primarily expressed in

CMS2 cell lines (Fig 4h). Beyond CMS2 CRC, GZMB expression was also observed in mela-

noma tumor cell lines across a broader cell line panel covering 12 cancer types (Fig 4i). In con-

trast, other classical markers of T-effector, NK and pDC cells were not expressed in cancer cell

lines (S15 Fig), supporting the hypothesis that GZMB is produced by tumor cells in CMS2

CRC tumors and primarily by immune cells in CMS1 CRC tumors. Of note, cytolytic gene

perforin (PRF1) was uniquely expressed in colon cancer cell lines, with a trend towards higher

expression in CMS2 CRC lines (S15c and S15d Fig).

Meier curve for GZMB expression stratified by median in 279 CMS2 tumors with low T-effector score from the

AVANT BEP dataset for DFS. A T-effector score, excluding GZMB, below the mean score in the full cohort is

considered low. The p-value corresponds to a log-rank test.

https://doi.org/10.1371/journal.pone.0262198.g003
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Fig 4. CMS2 CRC expresses endogenous GZMB. (a) tSNE map of the CD45+ immune cell populations in 12

procured CRC samples. Clusters representing different cell types are denoted by distinct colors, based on marker

expression (see Materials and methods and S14a Fig). Outliers detected by density-based clustering were excluded. (b-

c) CD8 versus GZMB expression in (b) CD16+ NK cells and (c) pDCs. (d-e) Expression of the pDC signature by CMS

subtype in the (d) AVANT and (e) GSE39582 dataset. (f) Pearson correlation between expression of single genes from

the T-effector signature and the average expression of the other T-effector genes without the gene in question, by

cancer type and, for colon, by CMS subtype, in TCGA data. (g) Pearson correlation between expression of single genes

from the NK signature and the average expression of the other NK genes without the gene in question, by cancer type

and, for colon, by CMS subtype, in TCGA data. (h) GZMB expression (log2 nRPKM+1) by CMS subtype in CRC cell

lines. (i) GZMB expression (log2 nRPKM+1) by cancer type in a cohort of 671 cell lines covering 12 cancer types.

https://doi.org/10.1371/journal.pone.0262198.g004
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Discussion

This retrospective analysis of the phase 3 AVANT trial identified a prognostic signature that is

robust, reproducible and outperforms other established prognostic and recurrence prediction

signatures in CRC. Pending clinical validation in a prospective study, this prognostic signature

has potential clinical utility to guide therapeutic decisions for patients with stage II or III CRC,

to replace existing prognostic classification methods, and to complement the existing TNM

classification and also the newly adopted CMS tumor classification systems. Specifically, it

allowed us to define a patient population in early stage CRC that is most likely to relapse, as

well as to identify low-risk patients that are unlikely to benefit from adjuvant chemotherapy

after surgery. The AVANT signature further uncovered three key biological functions associ-

ated with disease progression in high-risk adjuvant CRC patients: (1) proliferative, (2) stromal

and (3) immune. Each of these has previously been shown to be relevant for prognosis in early

stage CRC in isolation [3, 13, 22, 24, 25], but here they are described together for the first time.

This finding indicates that both a tumor’s underlying biology and that of its microenviron-

ment should be considered when classifying high-risk stage II/III colon cancer.

Despite the broad therapeutic benefit of checkpoint inhibitor (CPI) treatment across a vari-

ety of solid tumor indications, including MSI-high CRC [50], these agents have demonstrated

little activity in MSS CRC tumors. We therefore wanted to further investigate the cluster of

immune-related genes that were prognostic in MSS CRC tumors. As previously shown, Per-

forin-, Granzyme A (GZMA)- and GZMB-dependent cytolytic function is acquired during dif-

ferentiation of naive CD8+ T cells into CD8+ T-effector cells in response to antigenic

stimulation [51–56]. Importantly, several clinical studies have shown that high levels of base-

line T-effector signatures correlate with improved outcome in CPI treated patients [31, 57],

thus suggesting that CPI activity requires pre-existent tumor T-effector immunity. However,

our analyses show that GZMB alone can have a significant impact on survival and is associated

with good prognosis. In fact, the rest of the T-effector genes as a signature are not prognostic

without GZMB. These findings are important given the assumption so far that GZMB and the

T-effector signature or CD8 T cells are synonymous. We describe herein a novel and unique

role for GZMB as a highly prognostic gene in CMS1 and CMS2 CRC, one that extends beyond

the well-known prognostic role of CD8+ T-effector cells in CMS1. GZMB added significant

prognostic value to the stromal and proliferative subsets of the AVANT signature. This further

supports the need for a cohesive signature and not just immune or stromal to fully capture the

biology that drives prognosis and disease pathogenesis in CRC.

Next, in our search to identify non-CD8 T immune cell types that express GZMB, we real-

ized upon further analyses that none of the immune cells identified were the source of GZMB

expression in CMS2 CRC. The data from the cohort of 72 colon cancer cell lines, confirmed

that GZMB is primarily expressed in CMS2 cell lines and that GZMB expression there is rather

a tumor-intrinsic property. We hypothesize that as a potent extracellular matrix (ECM)

remodeling agent, GZMB efficiently cleaves vitronectin, fibronectin, and laminin [58]. As

shown before, GZMB pretreatment of a laminin matrix significantly inhibited cell spreading

of colon cancer cell line LIM1215 in vitro [58]. Thus, via disruption of integrin-dependent

adhesion, GZMB has been shown to inhibit tumor cell spreading, migration, and invasion on

ECM, thereby potentially inhibiting tumor growth and invasion. Here we identified CRC

CMS2 as one setting where GZMB is expressed by non-cytolytic cells, and this was established

in both CRC cell lines and multiple independent cohorts of CRC. GZMB’s putative role in

inhibiting tumor growth and invasion is consistent with our observation that endogenous

GZMB expression is associated with favorable outcome in adjuvant CRC (Fig 3l, S13 Fig). The

fact that we observed GZMB expression exclusively in in vitro CRC CMS2 and melanoma
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tumor cells across a cell line panel covering 12 cancer types (Fig 4i) emphasizes the need for

new research on GZMB function in tumors. This data suggests that the established Immuno-

score may only capture the proportion of patients whose tumors are driven by CD8+ T-effec-

tor biology and that harnessing this alternative GZMB source from tumor cells is worth

exploring as a biomarker and to uncover novel biology in CRC.

Key limitations of this study concern the use of the Nanostring platform with available

expression for 829 genes. Even though this gene set was customized for colorectal cancer and

hence is powered to capture biologies that are relevant to this disease, full-transcriptome profil-

ing with technologies such as RNA-sequencing could have revealed different individual prog-

nostic genes. We also may have used certain prognostic/predictive signatures and tumor

classification methods outside the scope of what they were originally designed for. Finally,

more research on the specific role of tumor-intrinsic GZMB in the CMS2 subtype is warranted.

That may be achieved through among others mechanistic studies in CMS2 CRC cell lines with

GZMB knockdown and/or pharmacologic inhibitors of processes such as ECM cleavage.

Conclusions

While few therapeutics have shown promise in CRC, the data described herein enabled the dis-

covery of new underlying biology in this indication and uncovered a tissue-based signature

that may not only guide treatment allocation but also help improve the selection of high-risk

resectable CRC patients in adjuvant trials.
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