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Background. Previous studies explored the whole-brain functional connectome using the degree approach in patients with
obsessive-compulsive disorder (OCD). However, whether the altered degree values can be used to discriminate OCD from
healthy controls (HCs) remains unclear. Methods. A total of 40 medication-free patients with OCD and 38 HCs underwent
a resting-state functional magnetic resonance imaging (rs-fMRI) scan. Data were analyzed with the degree approach and a
support vector machine (SVM) classifier. Results. Patients with OCD showed increased degree values in the left thalamus
and left cerebellum Crus I and decreased degree values in the left dorsolateral prefrontal cortex, right precuneus, and left
postcentral gyrus. SVM classification analysis indicated that the increased degree value in the left thalamus is a marker of
OCD, with an acceptable accuracy of 88.46%, sensitivity of 87.50%, and specificity of 89.47%. Conclusion. Altered degree
values within and outside the cortical-striatal-thalamic-cortical (CSTC) circuit may cocontribute to the pathophysiology of
OCD. Increased degree values of the left thalamus can be used as a future marker for OCD understanding-classification.

1. Introduction

Obsessive-compulsive disorder (OCD) is defined as a combi-
nation of intrusive thoughts (obsessions) and repetitive
behaviors (compulsions), which affects social and occupa-
tional functions and imposes an economic burden on patients
and their families [1, 2]. Although the pathophysiological
mechanism of OCD remains unclear, neuroimaging studies
have highlighted abnormalities in the cortical-striatal-tha-
lamic-cortical (CSTC) circuit, including the anterior cingulate
cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal
cortex (DLPFC), thalamus, and striatum [3–6]. For example,
increased and decreased levels of gray matter volumes in the
left OFC and striatum and increased regional homogeneity

(ReHo) and global brain functional connectivity (FC) in the
lateral OFC and DLPFC were discovered at rest in OCD [7,
8]. Moreover, abnormal white matter within the CSTC cir-
cuit is associated with the clinical symptoms of OCD [9].

FC patterns at a resting state display a temporal correla-
tion and provide the communication and interaction
between spatially separated brain regions [10]. Previous
studies applied a region-of-interest (ROI) approach to inves-
tigate the FC alterations in given brain regions at rest in
OCD with inconsistent results [11–13]. The ROI analysis
estimates the strength and significant series of correlations
between a given brain region and all other brain regions.
However, it may miss the crucial brain regions related to
the pathophysiological mechanism of OCD [14]. The
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voxel-wise degree analysis which is data-driven and high-
resolution can be used to explore the pathophysiology of
OCD to remedy this shortage. Degree analysis calculates
the number of instantaneous FC of each voxel with other
voxels in the whole brain rather than the given ROIs [15].
Compared to other FC methods, the advantage of degree
analysis is obtaining FC throughout the whole brain in an
unbiased way. Therefore, it can be used as an important
index for evaluating the FC strength [15]. For this back-
ground, the degree analysis approach was used to investigate
the pathophysiological mechanism of OCD from the FC
alterations throughout the whole brain at rest in the present
study. Previous studies have delineated the degree values
from FC in schizophrenia [16] and Alzheimer’s disease
[17] to physical connectivity in patients with major depres-
sion [18], alcohol dependence [19], and schizophrenia [20].
In addition, increased degree values in the OFC and basal
ganglia were found at rest in OCD [21], and changes in
the degree of the right ventral frontal cortex were related
to the alleviation of OCD symptoms. Furthermore, a
decreased degree of the bilateral superficial amygdala can
be used in predicting the effect of cognitive behavior therapy
in OCD [22]. Although these studies used the degree
approach to explore the whole-brain functional connectome
in patients with OCD, whether the altered degree values can
be used in discriminating OCD from healthy controls (HCs)
remains unclear.

A support vector machine (SVM) is the most commonly
used pattern of recognition algorithm in neuroimaging
research, providing optimally distinguished categories by
establishing a decision function or hyperplane based on
well-defined datasets. Then, it utilizes the generated decision
function or hyperplane to forecast a new observation
belonging to the predefined group [23]. In the SVM analysis,
feature selection is the key step to reduce the redundancy
and to select meaningful features from the original feature
sets [24]. The remaining meaningful features are integrated
into a specific classifier via an embedded manner for SVM
training [24]. Classification is the approach of classifying
the given input by training with an appropriate classifier
[25]. Many researchers suggested that SVM is an effective
method to construct classifiers [25, 26]. Therefore, our pres-
ent research applied the SVM method to detect whether
abnormal degree values can be used in classifying patients
with OCD from HCs.

In the current study, we compared the whole-brain func-
tional connectome at rest in OCD and HCs with the degree
approach. Moreover, SVM was used in determining whether
abnormal degree values could be used in discriminating
OCD from HCs. Based on previous studies, we hypothesized
that patients with OCD would show altered degree values in
the CSTC circuit at rest, and the altered degree values would
be correlated with the clinical symptoms of OCD and could
be used in differentiating OCD from HCs.

2. Materials and Methods

2.1. Subjects. We enrolled 40 medication-free patients with
OCD from the Fourth Affiliated Hospital of Qiqihar Medical

University and Qiqihar Mental Health Center, China, and 38
HCs from the community. The two groups were matched for
gender, age, and education level. Diagnoses of OCD were
confirmed with the Structured Clinical Interview for DMS-
IV (SCID) (patient version). HCs were screened with the
nonpatient version of SCID. The severity of OCD, anxiety,
and depressive symptoms was evaluated using the Yale-
Brown Obsessive-Compulsive Scale (Y-BOCS), Hamilton
Anxiety Rating Scale (HAMA), and 17-item Hamilton Rat-
ing Scale for Depression (HAMD), respectively. OCD
patients with Y-BOCS total scores of greater than 16 and
HAMD scores of less than 18 were considered eligible for
the study. All the patients were free of any medication for
at least 4 weeks before the brain image acquisition (18
patients were drug naïve, whereas 22 had a history of antiob-
sessive, antidepressant, or antipsychotic medication). The
inclusion criteria were as follows: (1) 16-50 years of age;
(2) Han Chinese, right-handed; (3) no acute physical disease
and psychiatric or neurological illness; (4) no alcohol or
drug dependence; (5) no contraindications for the MRI scan;
and (6) no movement distance of more than 2mm nor rota-
tion angle of more than 2°. HCs with first-degree relatives
suffering from any psychiatric disorder were excluded.

The current study was approved by the Medical Ethics
Committee of Qiqihar Medical University. The subjects
signed written informed consent forms after being informed
of the study procedures.

2.2. Image Acquisition and Preprocessing. All imaging data
were acquired using a 3.0-Tesla GE 750 Signa-HDX scanner
at the Third Affiliated Hospital of Qiqihar Medical Univer-
sity, China. None of the subjects had clinically significant
brain structural damage. The resting-state functional scans
were acquired using an echo-planar imaging sequence with
the following parameters: TR = 2000ms, TE = 30ms, FOV
= 200mm × 200mm, FA = 90°, 33 axial slices, thickness/
gap = 3:5mm/0:6mm, 64 × 64matrix, and 240 volumes col-
lected for 480 s.

All fMRI data were preprocessed using the Data Process-
ing & Analysis for Brain Imaging (DPABI) software [27].
The following main steps were performed. First, the first
10 volumes were removed. The remaining 230 volumes were
collected, and slice timing was corrected. Second, the head
motion was corrected, and subjects with more than 2mm
of maximal translation and 2° of maximal rotation were
excluded. Two HCs were excluded from further analysis
due to excessive head motion. Third, the motion-corrected
functional volumes were spatially normalized to the MNI
space and resampled to an isotropic voxel size of 3mm.
Fourth, the processed images were smoothed with a 4mm
full width at half maximum (FWHM) Gaussian kernel, line-
arly detrended, and band-pass filtered (0.01-0.08Hz). Fifth,
the nuisance covariates, including white matter, 24 head
motion parameters, and cerebrospinal fluid time course,
were regressed out. Global signal regression (GSR) is a con-
troversial issue in the resting-state fMRI preprocessing.
Many researches clarified that the global signal contains
some physiological signals, which are important and cannot
be regressed out in the resting-state fMRI preprocessing [28,
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29]. For this reason, we did not regress out the global signal
in the current research. To verify whether the global signal
has an impact on the current results, we reanalyzed the data
with GSR. Finally, we scrubbed with a framewise displace-
ment (FD) measure using a threshold of 0.2 together with
one preceding and two subsequent volumes [30]. The mean
FD for each participant was calculated, and no difference
was observed between patients with OCD and HCs
(Table 1).

2.3. Degree Analysis. Degree values represent the number of
direct functional connections of a node with other nodes
within the entire brain connectivity matrix. A correlation
matrix is constructed by calculating the Pearson correlation
coefficients of each voxel’s time series to all other voxels’
time series within a predefined gray matter mask. A thresh-
old of 0.2 was used to remove the weak correlations when we
constructed the voxel-voxel connectivity matrix [31]. Given
the ambiguous explanation of negative correlations and det-
rimental effects of negative correlations on test-retest reli-
ability, the present analyses were restricted to positive
correlations by setting the negative correlations to 0 as
described in the previous studies [17, 32, 33]. The degree
value of a voxel was further computed as the sum of the con-
nections at the individual level. Finally, the degree values
were transformed into a Z-score map with the Fisher Z
transformation in the whole brain voxel-wise for the
improvement of normality.

2.4. SVM Analysis. SVM was conducted with the LIBSVM
software (http://www.csie.ntu.edu.tw/cjlin/libsvm/). A
“leave-one-out” cross-validation approach was used in veri-
fying the performance of the SVM [34, 35]. One sample in
each group was designated as the test sample, and the
remaining samples were used as the training classifier. Then,
the excluded subject pairs were used in testing the classifier’s
ability to reliably distinguish the groups (OCD/HCs). The

step was repeated until the highest values for specificity
and sensitivity were obtained [34, 35]. The global classifica-
tion accuracy was obtained through the permutation testing,
which was run 10,000 times for each sample (OCD/HCs).

2.5. Statistical Analysis. The clinical and demographic data
of OCD and HCs were compared using two-sample t-tests
and the chi-square test with SPSS Statistics 20.0 (IBM Corp.,
Armonk, NY, USA).

Two-sample t-tests were conducted using the DPABI
software for the identification of difference in degree values
between OCD and HCs. The potential influences of the
mean framewise displacement (FD), age, gender, and
HAMD and HAMA scores were reduced by using them as
covariates. The threshold was set at p < 0:05 corrected by
the Gaussian random field (GRF) theory for multiple
comparisons.

Partial correlation analyses were performed between
degree values showing between-group differences and clini-
cal variables (i.e., Y-BOCS total score, obsessive thinking
score, compulsive behavior score, HAMD, and HAMA

Table 1: Demographic and clinical characteristics of participants.

OCD patients (n = 40) HCs (n = 38) X2/t p

Age (years) 27:28 ± 8:16 27:18 ± 8:33 0.05 0.71

Sex (male/female) 27/13 25/13 0.026 0.87∗

Education (years) 13:40 ± 2:87 13:74 ± 3:03 -0.50 0.83

Illness duration (months) 66:68 ± 75:54

Y-BOCS total score 24:90 ± 5:73 1:13 ± 0:88 25.27 <0.001
Y-BOCS obsessive thinking 12:85 ± 4:25 0:37 ± 0:49 17.98 <0.001
Y-BOCS compulsive behavior 12:05 ± 4:62 0:74 ± 0:72 14.92 <0.001
HAMD 8:05 ± 4:40 1:45 ± 0:95 9.04 <0.001
HAMA 10:83 ± 6:55 1:16 ± 1:00 9.00 <0.001
FD 0:04 ± 0:02 0:03 ± 0:01 1.25 0.13

Time points scrubbed out 1:13 ± 2:256 1:00 ± 2:418 0.25 0.95

OCD= obsessive-compulsive disorder; HCs = health controls; Y-BOCS = Yale-Brown Obsessive-Compulsive Scale; HAMD= 17-item Hamilton Depression
Rating Scale; HAMA=Hamilton Anxiety Rating Scale; FD = framewise displacement. Variables of age, education, Y-BOCS total score, subscale score,
HAMD score, HAMA score, and FD were tested by two-sample t-tests, and the results were indicated by t values. Categorical data such as gender was
tested using the chi-square test, and the result was indicated by Χ2.

Table 2: Regions with abnormal degree values in the patients with
OCD.

Cluster location
Peak (MNI)

Number of voxels t value
x y z

Left thalamus -12 -12 9 198 5.3545

Left cerebellum Crus I -30 -72 -27 64 4.7578

Left DLPFC -18 42 45 25 -4.7994

Right precuneus 6 -51 21 57 -4.7865

Left postcentral gyrus -66 -15 21 25 -5.2707

All effects survived a voxel-wise statistical threshold (p < 0:05) after
Gaussian random field (GRF) correction for multiple comparisons (voxel
significance: p < 0:001, cluster significance: p < 0:05). OCD= obsessive-
compulsive disorder; MNI =Montreal Neurological Institute; DLPFC =
dorsolateral prefrontal cortex.
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scores). Gender, age, illness duration, and education were
used as covariates in OCD. The significance level was p <
0:05 (Bonferroni corrected). Moreover, we conducted the
whole-brain voxel-based correlations between degree values
in the whole brain and clinical variables with gender, age, ill-
ness duration, and education as covariates in OCD.

3. Results

3.1. Demographics and Clinical Variables of Subjects. The
demographics and clinical characteristics are presented in
Table 1. Patients with OCD and HCs showed no significant
difference in FD values, gender, age, or education. However,
significant group differences in Y-BOCS, HAMD, and
HAMA scores were found.

3.2. Group Differences in Degree Values. In comparison with
HCs, patients with OCD had increased degree values in the
left thalamus and left cerebellum Crus I and decreased
degree values in the left DLPFC, right precuneus, and left
postcentral gyrus (Table 2 and Figure 1). Furthermore, the

results with GSR showed that patients with OCD had higher
degree values in the left thalamus and lower degree values in
the right precuneus (Table S1 and Figure S1 in
Supplementary Materials).
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Figure 1: Brain regions with abnormal degree values in patients with OCD. t values from two-sample t tests with p < 0:05 (GRF corrected).
Red denotes increased degree values; blue denotes decreased degree values. OCD=obsessive-compulsive disorder; GRF=Gaussian random
field; L = left; R = right.

0
65
70
75
80
85
90
95

Ac
cu

ra
cy

 (%
)

1
Brain regions with abnormal degree

2 3 4 5

Figure 2: Accuracy of SVM using the five brain regions with
abnormal degree values to separate OCD from HCs. The SVM
result showed that the highest accuracy is 5. 1 = left cerebellum
Crus I, 2 = right precuneus, 3 = left dorsolateral prefrontal cortex,
4 = left postcentral gyrus, and 5 = left thalamus. SVM= support
vector machine; OCD=obsessive-compulsive disorder; HCs =
health controls.
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3.3. Correlation Analysis. No relationship was observed
between degree values showing between-group differences
and clinical variables and dimensions in each clinical trait
(i.e., Y-BOCS, HAMD, or HAMA) in OCD. There was also
no correlation between any clusters and clinical variables
in the patients with the whole-brain voxel-based correlation
analyses.

3.4. SVM Results. We used the altered degree values of the
five brain regions for SVM classification. SVM results
revealed that the accuracy of the left thalamus was the high-
est (Figure 2). Thus, the degree values in the left thalamus
can be used in distinguishing OCD with an accuracy of
88.46% (69/78), a sensitivity of 87.50% (35/40), and a speci-
ficity of 89.47% (34/38) (Figure 3).

4. Discussion

The current study examined the whole-brain functional con-
nectome in medication-free OCD at rest. Consistent with
our hypothesis, patients with OCD showed altered degree
values within the CSTC circuit (i.e., left DLPFC and left thal-
amus). In addition, the increased degree values in the left
thalamus can be used in differentiating OCD from HCs.
Moreover, OCD showed altered degree values outside the
CSTC circuit (i.e., left cerebellum Crus I, right precuneus,
and left postcentral gyrus).

The thalamus is a key region within the CSTC circuit,
and thalamic-cortical dysconnectivity has been reported in
OCD [36]. Increased gray matter volume and FC in the thal-
amus have been observed in OCD [8, 37–40]. Degree values
of weighted networks are more resilient to FC disturbances,
which are referred to as FC strength [15]. Previous studies
have suggested that increased degree values are linked with
increased FC strength by using the degree analysis to calcu-
late the FC strength [31, 32]. In the current study, increased
degree values in the left thalamus indicate increased func-

tional strength between the thalamus and other brain
regions at rest in OCD. Within the CSTC circuit, the thala-
mus is a gateway between the striatum and cortex, plays an
important role in the integration of executive function and
motor function, and controls the input and output of sen-
sory information between the cortical motor areas and the
basal ganglia [5, 36]. Increased functional strength in the
thalamus is commonly explained as the compensatory real-
location of the thalamus for the activation of the connected
brain areas [41, 42]. Therefore, increased functional strength
in the thalamus may lead to excessive cortical information
integration by activating the thalamic-cortical connectivity
and may distort the subsequent behavioral selection process
in OCD. Furthermore, the SVM classification is a binary
classification algorithm that maximizes the boundary
between classes in a high-dimensional space [43]. The cur-
rent SVM results manifested that the increased degree in
the left thalamus could be used as a future marker for
OCD understanding-classification.

Within the CSTC circuit, we also observed decreased
degree values in the left DLPFC, which is consistent with
our previous findings in another independent OCD sample
[44]. As an important brain region within the CSTC circuit,
the DLPFC has been considered to be involved in the OCD
pathophysiology [4, 44, 45]. Meanwhile, the DLPFC is the
major component of the execution control network, which
is related to executive functions during behavioral inhibition
[46]. The decreased degree values of the left DLPFC indicate
that the number of voxels located in the whole brain closely
related to the left DLPFC decreased. Therefore, the ability of
controlling intrusive thinking and repetitive behavior of
OCD may reduce.

Apart from the CSTC circuit, the current study revealed
increased degree values in the left cerebellum Crus I and
decreased degree values in the right precuneus and the left
postcentral gyrus at rest in OCD. The cerebellum is involved
in the cognitive and affective process, which correlates with
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Figure 3: Visualization of SVM results for discriminating patients from controls using the degree values of the left thalamus. (a) 3D view of
the classified accuracy with the best parameters. (b) Classified map of the degree values of the left thalamus. log 2c and log 2g mean the
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obsessive and ruminative behaviors [47]. Previous studies
found increased FC in the cerebellum in OCD [48, 49],
and our previous research reported increased cerebellar
and default-mode network connectivity at rest in OCD
[50]. Moreover, Sha et al. discovered that patients with
OCD showed increased FC in the cerebello-thalamo-
cortical networks [51]. Increased functional strength in the
cerebellum may be involved in the compensatory response
in the cognitive and affective process at rest in OCD [41,
42]. The precuneus is associated with self-awareness pro-
cessing [52]. Reduced degree values may disrupt the balance
of the precuneus and other brain regions and may result in
difficulty in integrating inner thought and external events
in OCD [53, 54]. As a key brain area of the somatosensory
network, the postcentral gyrus plays an important role in
sensory-motor integration and transmission [55]. Compared
with HCs, the degree values of the left postcentral gyrus are
reduced in patients with OCD in the current study. Previous
researches also reported decreased ReHo and voxel-
mirrored homotopic connectivity in the postcentral gyrus
at rest in OCD [56, 57]. The decreased degree values of the
left postcentral gyrus may reduce the efficiency of informa-
tion transmission within the sensory-motor pathway, there-
fore contributing to the repetitive and intrusive thoughts and
behaviors in patients with OCD [58].

Previous studies revealed that altered degree values were
mainly observed in the CSTC circuit (i.e., OFC and basal
ganglia) and emotional modulation network (i.e., ventral
frontal cortex and amygdala) in OCD [21, 22, 59]. Consis-
tent with the previous research, the present study discovered
altered degree values within the CSTC circuit (i.e., left
DLPFC and left thalamus) but failed to discover altered
degree values in the emotional modulation network at rest
in OCD. Different sample sizes, clinical symptoms, medica-
tion status, data analysis, and different OCD subtypes may
account for these inconsistencies [59–62]. Moreover, incon-
sistent with our hypothesis, the current study did not find
any relationship between degree values showing between-
group differences and clinical variables in OCD. We specu-
lated that the abnormal degree values were possibly trait
changes for OCD [63].

GSR is a controversial issue in the resting-state fMRI
preprocessing. Many researches clarified that the global sig-
nal contains some physiological signals, which are important
and cannot be regressed out in the resting-state fMRI pre-
processing [28, 29]. For this reason, we did not regress out
the global signal in the current research. Furthermore, differ-
ent from the results without GSR, the results with GSR
showed that patients with OCD had higher degree values
in the left thalamus and lower degree values in the right pre-
cuneus, suggesting that GSR has an impact on the resting-
state fMRI results [64].

Several limitations must be considered. First, 22 patients
had a history of psychotropic medication, and the current
results may be affected by psychotropic medication. Second,
we only discovered some brain regions showing altered
degree values at baseline in OCD. The effects of medication,
psychotherapy, and physical therapy on changes in degree
values in OCD should be investigated in future studies.

Third, the present study did not collect cognitive and behav-
ioral information. Fourth, the SVM results were not tested in
another independent sample, presumably leading to overfit-
ting and optimistic results. The leave-one-out approach was
used to construct the model and to perform the SVM analy-
sis due to the small sample size, which again could cause the
overfitting issue. Fifth, a previous study has found that the
SVM analysis needs at least 200 subjects to observe the reli-
able results [65]. The sample size of the current research was
relatively small, and the power of SVM classification was
limited, which was insufficient to draw strong conclusions
based on the identified anomalies. Therefore, further
researches are needed to use an alternate atlas for parcella-
tion in order to make wiser conclusions in a small dataset
[66]. Sixth, like degree analysis, the network homogeneity
(NH) method can be used as an important index for evalu-
ating the FC strength [67]. In a previous research, we used
the NH method to investigate the FC strength within the
default-mode network (DMN) in the same OCD sample
[68]. Some similar results (i.e., decreased FC strength in
the right PCC/PCu) were found between these two
researches, suggesting that the current results can be repro-
duced to a certain extent. However, due to small sample size,
the results (degree classifying neural areas) should be taken
with caution. Finally, we did not divide OCD into different
subtypes according to clinical symptoms. Future researches
should strictly control the heterogeneity of OCD samples.

In conclusion, the current study discovered altered
degree values within and outside the CSTC circuit at rest
in OCD. The increased degree values of the left thalamus
could be used as a future marker for OCD understand-
ing-classification.
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