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Abstract: The benefit and burden of contemporary techniques for the molecular characterization of
samples is the vast amount of data generated. In the era of “big data”, it has become imperative that
we develop multi-disciplinary teams combining scientists, clinicians, and data analysts. In this review,
we discuss a number of approaches developed by our University of Texas MD Anderson Lung Cancer
Multidisciplinary Program to process and utilize such large datasets with the goal of identifying
rational therapeutic options for biomarker-driven patient subsets. Large integrated datasets such as
the The Cancer Genome Atlas (TCGA) for patient samples and the Cancer Cell Line Encyclopedia
(CCLE) for tumor derived cell lines include genomic, transcriptomic, methylation, miRNA, and
proteomic profiling alongside clinical data. To best use these datasets to address urgent questions
such as whether we can define molecular subtypes of disease with specific therapeutic vulnerabilities,
to quantify states such as epithelial-to-mesenchymal transition that are associated with resistance
to treatment, or to identify potential therapeutic agents in models of cancer that are resistant to
standard treatments required the development of tools for systematic, unbiased high-throughput
analysis. Together, such tools, used in a multi-disciplinary environment, can be leveraged to identify
novel treatments for molecularly defined subsets of cancer patients, which can be easily and rapidly
translated from benchtop to bedside.
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1. Introduction

While many targeted therapies have been tested in lung cancers, the challenge remains to identify
the subset(s) of patients who will respond to these treatments. Integrated approaches are necessary
to combine in vitro, in vivo, in silico, and clinical data to identify and validate potential treatments
and the cohorts of patients in which these should be used. The University of Texas MD Anderson
Lung Cancer Multidisciplinary Program integrates a team of investigators with expertise in biologic,
bioinformatics, and clinical studies and has a track record of utilizing high-throughput “-omics” data
to identify new therapeutic targets and biomarkers. Here, we discuss three approaches to utilize large
datasets with the goal of identifying rational therapeutic options for biomarker-driven patient subsets.

2. Datasets

The approaches described in this manuscript use a combination of publically available clinical
datasets accessible through cBioPortal for Cancer Genomics (http://www.cbioportal.org/) or the
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National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/), and cell line
data from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) (https://portals.broadinstitute.
org/ccle), the Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/),
and the National Cancer Institute (NCI) Developmental Therapeutics Program (http://sclccelllines.
cancer.gov) summarized in Table 1, in additional to data generated at the University of Texas MD
Anderson Cancer Center as part of our cell line characterization efforts and clinical trials. The datasets
contain a variety of profiling data including genomic, transcriptomic (either array based or RNASeq),
methylation, miRNA expression, and protein expression (by reverse phase protein array (RPPA)),
as well as drug response for the cell lines and clinical data for patients (e.g., overall survival, progression
free survival, smoking history). Compatibility between datasets is crucial and requires taking into
account possible batch effects, probe selection in the use of array-based data [1], and fundamental
differences in technology (i.e., microarrays versus RNAseq). For example, when comparing cell line
drug sensitivity, the manner in which both single agent [2] and combination data [3–6] were generated
(e.g., length of experiment, drug dose, and dilution factors) must also be carefully considered, to ensure
that the approaches used are compatible, and that the analysis model chosen is adequately supported
by the data. Sample source must also be considered, regardless of the type of data available. While cell
lines can be used for drug sensitivity assays and candidate biomarker discovery, they do not reflect the
role of the tumor stroma and immune microenvironment. Patient derived data, however, do reflect
the tumor stroma and immune microenvironment and often include outcome data and other clinical
parameters, but do not allow for screening of candidate agents. These considerations highlight some
of the underlying reasons behind the assembly of the Multidisciplinary Program, drawing upon a
range of expertise from across the institution.

Table 1. Publically available datasets. Summary of publically available datasets used in the approaches
presented. * Datasets obtained from the National Center for Biotechnology Information (NCBI) for
these analyses include those from George et al., Sato et al. [7,8], BATTLE-1, BATTLE-2, and PROSPECT.
# Data types available vary by study. TCGA—The Cancer Genome Atlas; CCLE—Broad Institute
Cancer Cell Line Encyclopedia; GDSC—Genomics of Drug Sensitivity in Cancer; SCLC—small cell
lung cancer; EMT—epithelial-to-mesenchymal transition.

Resource Malignancy Data Types Pre-Clinical/Clinical Approach

TCGA [9] Various

Genomic,
transcriptomic,
methylation, copy
number, proteomic,
and clinical #

Clinical EMT

NCBI * [10] Various

Genomic,
transcriptomic,
methylation, copy
number and
clinical #

Both EMT, SCLC
subgroups

CCLE [11] Various
Drug sensitivity,
genomic, and
transcriptomic

Pre-clinical SCLC subgroups,
DISARM

GDSC [12] Various
Drug sensitivity,
genomic, and
transcriptomic

Pre-clinical SCLC subgroups,
DISARM

NCI
Developmental
Therapeutics
Program [13]

SCLC Drug sensitivity,
and transcriptomic Pre-clinical SCLC subgroups,

DISARM

DISARM [14] Various Drug sensitivity Pre-clinical DISARM
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3. Approaches

3.1. Cancer EMT Signature

The concept of epithelial-to-mesenchymal transition (EMT), a process by which epithelial cells
lose cellular polarity and cell–cell adhesion and enter a mesenchymal state with enhanced migratory
and invasive properties, was first described more than a decade ago in cancer [15,16].

As EMT plays a role in resistance to standard treatments for non-small cell lung cancer (NSCLC)
(and other cancers), and no standard method existed to quantify the degree to which a tumor
had undergone EMT, we first developed a lung cancer-specific EMT signature, and subsequently a
pan-cancer derived signature based on transcriptomic profiling (Figure 1A) [17]. Using gene expression
in 54 NSCLC cell lines, the lung cancer EMT signature was first based on those genes whose mRNA
expression levels were significantly correlated (either positively or negatively) with at least one of four
putative EMT markers—E-cadherin, vimentin, N-cadherin, and/or fibronectin 1. These “seed genes”
were selected as they had previously been established as markers of EMT in lung cancers and other
epithelial tumor types. Second, the set of genes correlated to the EMT markers was further limited to
those with a bimodal expression pattern to facilitate the ability of the signature to dichotomize the cell
lines into distinct epithelial and mesenchymal groups. Third, genes correlated to the EMT markers
also had to correlate in an independent mRNA microarray dataset to reduce artifacts and identify
the most biologically and technically robust genes. We then used the epithelial or mesenchymal
status of the cell lines to determine if EMT predicted response to various targeted agents (Figure 1B).
As expected, EGFR inhibitors had greater activity in epithelial models. An interesting observation
was that the AXL inhibitor SGI7079 was more efficacious in the mesenchymal models. Expression of
AXL, a receptor-tyrosine kinase, was higher in the mesenchymal cell lines, suggesting AXL as a novel
target in mesenchymal NSCLC. We then tested the efficacy of SGI7079 in an epithelial mouse xenograft
model, where we observed single agent activity and a greater than additive effect when combined
with erlotinib (Figure 1C). As a clinical validation of our observations, we classified NSCLC patients
with prior systemic therapy and subsequent relapse enrolled to the BATTLE-1 (Biomarker-integrated
Approaches of Targeted Therapy for Lung Cancer Elimination) [18] clinical trial as either epithelial or
mesenchymal. As expected, EGFR wild-type patients with an epithelial tumor treated on the erlotinib
arm had significantly better eight-week disease control than those with mesenchymal tumors.

To account for the contribution of the tumor microenvironment to EMT, we built on the lung
cell line EMT score, to develop a pan-cancer, patient tumor-derived, EMT score [19]. Using an
approach similar to the lung-EMT score, we identified mRNAs best correlated with established “seed”
markers of EMT (E-cadherin, vimentin, fibronectin, and N-cadherin) across nine distinct, primarily
epithelial, solid tumor types from The Cancer Genome Atlas (TCGA) [9]. Using this approach, we
identified 77 genes across the nine tumor types tested (breast invasive carcinoma—BRCA, lung
squamous cell carcinoma—LUSC, basal-like breast cancer—basal, head and neck squamous cell
carcinoma—HNSC, lung adenocarcinoma—LUAD, ovarian carcinoma—OVCA, bladder urothelial
cancer—BLCA, uterine corpus endometrial carcinoma—UCEC, and colon adenocarcinoma—COAD).
Nineteen genes identified overlapped with the original lung cancer EMT signature, and when applied
over 11 tumor types (those used to derive the signature, plus kidney clear cell carcinoma—KIRC, and
rectal adenocarcinoma—READ), a wide range of the pan-cancer EMT signature gave a wide range of
scores (Figure 1D). As expected, the pan-cancer signatures identify KIRC as highly mesenchymal and
both READ and COAD as highly epithelial, in agreement with existing knowledge identifying these
cancer types as such.

To better understand tumor gene expression pathways globally dysregulated in the context of
EMT, we performed a pathway analysis of all genes correlated with the pan-cancer EMT score in all 11
tumor types. In addition to EMT pathways, among the top hits were pathways related to immune
cell signaling. In the context of data generated by our group showing a relationship between EMT
and immune escape [20], we investigated the relationship between the EMT score and expression
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of 20 potentially targetable immune checkpoint genes (Figure 1E). Across all the tumor types tested,
we observed a strong positive correlation between EMT score and expression of the targetable immune
checkpoint genes. This enrichment of immune target expression in mesenchymal tumors corroborated
other work in our group in lung cancer where lung adenocarcinomas with a high lung cell line EMT
score had high expression of PD-L1, which is a target of miR-200, which is also a suppressor of EMT
and metastasis [20].

As a validation of the association between EMT and immune checkpoint genes, we stained lung
adenocarcinoma sections included in a tissue microarray developed from the PROSPECT trial for
expression of PD-L1. Automated quantification of immunohistochemistry (IHC) staining (H-score,
calculated by multiplying extent and intensity of staining [21]) showed significantly higher expression
of PD-L1 in both tumor and non-tumors cells in tumors with a mesenchymal pan-cancer EMT score
(Figure 1F). As PD-L1 expression is a biomarker of response to PD-L1 blockade [22], by virtue of
mesenchymal tumors expressing higher PD-L1, our analyses indicate that patients with mesenchymal
tumors are more likely to be candidates for PD-L1 blockade, and other similar immune checkpoint
blockade treatments.
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3.2. Proteomic Subgrouping of SCLC 

Figure 1. Development of an epithelial-to-mesenchymal transition (EMT) signature. Schematic
describing the development of the lung-cancer and pan-cancer EMT scores (A). Using the lung-EMT
score, mesenchymal cells are less sensitive to EGFR and PI3K inhibition, but are more sensitive to
AXL inhibition (B). AXL blockade inhibits growth of mesenchymal (A549) non-small cell lung cancer
(NSCLC) xenografts (C). The Cancer Genome Atlas (TCGA) pan-cancer tumor types display a range of
EMT scores (D). A mesenchymal pan-cancer EMT score is correlated with higher expression of immune
checkpoint genes across multiple cancer types (E). Mesenchymal lung adenocarcinoma (LUAD) has
higher expression of PD-L1 in both tumor and non-tumor cells by immunohistochemistry (F). Adapted
from Byers et al. 2013 [17] and Mak et al. 2015 [19].
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The approach of using a “seed” to generate cell line and tumor-based signatures to quantify a
biological program has been demonstrated in our work both to define alterations in signaling pathways
and to identify therapeutic vulnerabilities. This signature generating approach has the potential to be
applied to any scenario in which a few known markers describing two distinct morphologies or states
have been defined.

3.2. Proteomic Subgrouping of SCLC

Proteomic profiling by RPPA measures a discrete number of targets enriched for druggable and
oncologically important pathways (typically around 200 total/phosphorylated proteins) [23,24], and
offers significant advantages over other profiling approaches. For example, proteomics, unlike DNA-
or RNA-based profiling, directly measures pathway activation and candidate target expression (i.e.,
the protein “target” itself) [25]. Furthermore, protein biomarkers, particularly those that can be assayed
by IHC have the potential for rapid translation into the clinic, as illustrated by the clinical use of PD-L1
IHC in NSCLC [22], and MET IHC in breast cancer [26].

Clinically, SCLC is currently treated as a single disease, with all patients receiving essentially
the same standard-of-care (SOC) treatment. The variability in response to SOC seen in the clinic,
however, suggested a need to identify subgroups of SCLC with specific vulnerabilities that could be
leveraged to develop more personalized approaches. Using proteomic data for 169 targets from a panel
of 63 SCLC cell lines [27], we used a model-based clustering method [28,29] to determine the optimal
number of clusters. Specifically, the cell lines were categorized into subgroups (range 1–20) using
six distinct models, and Bayesian index clustering (BIC) was then applied to determine to optimal
number of groups. The optimal model/group combination was then used to segregate the cell lines
into two groups. When separated into two groups, we used two sample t-tests to compare expression
of protein markers between the groups, identifying TTF1 and cMYC as the highest expressed proteins
in groups 1 and 2, respectively (Figure 2B). Differences in expression of total protein between the
cell line groups were then verified using publically available RNASeq data [30]. As cell culture may
impact gene/protein expression, we used two cohorts of human SCLC tumors with gene expression
data to validate our observations [7,8]. Using the 38 genes corresponding to total protein differences
observed in the cell lines, we clustered the human samples. At the highest level, both patient cohorts
separated into two groups, with striking differences in NKX2-1 (the gene name of TTF1) and MYC
between the groups.

Having identified two proteomically defined subsets of SCLC, we used a combination of
internal [27] and publically available drug sensitivity data [30,32] to determine if these groupings drove
differential responses to candidate treatments. Having identified a large number of targeted agents
with differential sensitivity between the two subgroups of SCLC, we were intrigued to see if we could
use information about the drug targets to identify targets common to multiple drugs. Adapting our
clustering data, as expression of TTF1 is bimodal, we segregated the cell lines into two groups (TTF1
high and low) and identified drugs that had a minimum three-fold difference in mean IC50 between
TTF1 high and low cell lines. We then used an in-house curated drug target database that includes
the primary, secondary, and tertiary targets of a given agent to generate a “Drug-TargEt ConsTellation
map” (DTECT map—Figure 3). The DTECT map identified multiple common targets including Aurora
Kinase and the PI3K/mTOR pathway, similar to the group-based analysis (Figure 2), confirming the
validity of the approach. DTECT mapping is an approach that can be used to identify high priority drug
targets in any situation where cell lines can be dichotomized on the basis of gene or protein expression,
or other statuses such as epithelial versus mesenchymal. The Aurora Kinase inhibitor alisertib has
shown pre-clinical and clinical activity in a number of cancer types, including SCLC [33,34]. However,
in a phase II study of paclitaxel with alisertib or placebo in an unselected relapsed/refractory SCLC
cohort, treatment with alisertib did not improve response rates or survival [35]. As our sub-group
comparisons, as well as DTECT mapping using both TTF1 and cMYC expression, had all indicated
that Aurora Kinase inhibition was more effective in cMYC high SCLC cell lines, we performed a
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supervised analysis of candidate proteomic biomarkers of response to single agent alisertib in a panel
of 51 SCLC cell lines [31]. Using two approaches (correlating IC50 values to protein expression, and
comparing protein expression between the most and least sensitive models), high cMYC expression
was the top biomarker of sensitivity to alisertib. A retrospective analysis of biopsies from patients
enrolled in the phase II trial of alisertib, based on our preliminary data, showed a strong association
between cMYC protein expression and improved progression free survival, validating our pre-clinical
analyses, despite only being evaluable in a small number of patients [35]. Alisertib is no longer in
clinical development for SCLC, in large part because of the lack of efficacy in the unselected phase II
trial. An alternative study in an SCLC population selected for patients with tumors that express high
levels of cMYC or low TTF1 (for which CLIA certified assays are available) may have yielded a positive
outcome and highlights the utility of high-throughput biomarker discovery in the development and
subsequent use of novel therapeutics.
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Figure 2. Proteomic subtyping of SCLC. Schematic of how SCLC was divided into two molecular
subgroups using proteomic profiling data from 63 cell lines (A). Supervised hierarchical analysis
shows distant protein expression patterns between the two cell line subgroups (B). Comparison of
MYC and NKX2-1 expression between the two subsets in patient tumors (C). Comparison of relative
IC50 values between the two subsets shows group 2 (TTF1 low) to be more sensitive to a range of
targeted agents (D). Working model of how SCLC patients may be divided into two groups (E) based
on immunohistochemistry (IHC) tests currently in clinical use with different therapeutic vulnerabilities
between the groups. Adapted from Cardnell et al 2017 [31]. RPPA—reverse phase protein array.
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Figure 3. Drug-target constellation (DTECT) mapping. DTECT map of drugs differentially sensitive
between TTF1 high and low SCLC cell line (Fold Change (FC) > 3.0, p < 0.001). Drugs with differential
sensitivity are mapped by their primary, secondary, and tertiary targets. Underlined drugs are either
FDA approved or licensed for use in Canada/Europe. Adapted from Cardnell et al. 2017 [31].

3.3. DISARM

Over recent years, a tremendous quantity of publically available drug-sensitivity data has been
generated using a plethora of therapeutic agents across multiple cancer types [30,32,36–38]. Our tools
and approaches to utilizing this data have, however, not developed at the same rate. Pre-clinical data
generated in unselected populations may result in potential therapies being discarded because of
their lack of efficacy in the overall population despite their potential efficacy in a targeted population
(e.g., Aurora Kinase inhibitors in MYC high SCLC). Similarly, answering the supposedly simple
question of, “if a group of tumor models are resistant to a given drug, to what are they sensitive?” is
not easily addressed and is often unintentionally biased by the researchers’ pre-existing knowledge.
To address this, we developed DISARM (Differential Sensitivity Analysis for Resistant Malignancies),
a bioinformatics tool designed to identify drugs with efficacy in models that are resistant to a reference
drug [39]. DISARM operates by comparing IC50 values for two drugs (the reference and candidate
drugs), placing them into a 2× 2 table to identify instances in which a significant number of models are
sensitive to a candidate drug and are resistant to the reference drug (Figure 4A). DISARM calculates a
score—the DISARM score—for each drug combination that follows a standard distribution. A higher
DISARM score corresponds to a higher significance level, the minimum score is zero and, while there
is no theoretical maximum to the score, a score of ≥2 is considered to be meaningful. This approach
was validated using two clinical paradigms where there is an approved treatment option (candidate
drug) for patients with tumors resistant to standard of care (reference drug). One such scenario is
the treatment of metastatic NSCLC with exon 19 deletions or L858R mutations in EGFR. Here, SOC
therapy includes the tyrosine kinase (TKI) inhibitor erlotinib (EGFR inhibitor), to which resistance
invariably develops, approximately half of which occurs through the acquisition of an additional
T790M mutation in EGFR. A second generation EGFR inhibitor—osimertinib—is, however, effective in
patients with EGFR T970M erlotinib-resistance mutations. Using response values to both erlotinib and
osimertinib from a previous study [40], DISARM successfully identified osimertinib as a candidate for
cell lines with T970M EGFR mutations (Figure 4A).
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Figure 4. DISARM. DISARM places cell lines, based on IC50 data, into a 2 × 2 grid. Using data for
erlotinib (reference) and osimertinib (candidate), DISARM correctly identifies osimertinib as a candidate
drug in erlotinib-resistant EGFR T970M mutant NSCLC (A). DTECT mapping of top candidate drugs
identified by DISARM in cisplatin-resistant SCLC (B). Venn diagrams depicting shared mRNA and
protein biomarkers of sensitivity to multiple PI3K inhibitors in platinum-resistant SCLC (C). Map
demonstrating the interrelatedness of drug targets identified as candidate drugs for cisplatin-resistant
disease across multiple cancer types (D). Adapted from Gay et al. 2018 [39].

We subsequently used DISARM to interrogate data from a large NCI funded drug screen effort in
SCLC [30]. Using sensitivity to platinum, the backbone to all frontline SOC treatments for SCLC [41] to
which resistance develops rapidly and almost universally, as the reference drug, we applied DISARM
to the problem of platinum-resistance in SCLC. Using cisplatin sensitivity data from our laboratory
and data from 526 FDA approved an investigational anti-cancer agent [30], DISARM selected 31
candidate drugs (including 26 with defined molecular targets) for use in platinum-resistant SCLC.
The 26 candidate drugs with defined molecular targets, all of which had DISARM scores ≥4.0 were
then plotted using a DTECT map of their primary target, which revealed a number of common targets
including PI3K, mTOR, and Aurora Kinase A (Figure 4B). We then tested if cell lines identified by
DISARM on the basis of their sensitivity to a candidate drugs targeting the same molecule shared
common biomarkers of sensitivity. Comparing mRNA [30] and protein expression data [27,42] between
cell lines identified as sensitive and resistant by DISARM, we identified low expression of the gene
NKX2-1 and its protein (TTF1) as common markers of sensitivity to PI3K inhibitors (Figure 4C), in
agreement with our proteomic subtyping of SCLC (Figure 2D) [31].

As platinum-resistance is not unique to SCLC, we expanded our analysis to include nine solid
tumor types for which platinum-based therapy is an established frontline therapy according to National
Comprehensive Cancer Network (NCCN) guidelines [43]. These included SCLC, NSCLC, stomach
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adenocarcinoma (STAD), pancreatic adenocarcinoma (PAAD), ovarian (OV), head and neck squamous
cell carcinoma (HSC), esophageal carcinoma (ESCA), colon adenocarcinoma (COAD), and bladder
carcinoma (BLCA). Using IC50 data for 138 drugs for which there were adequate data across these
nine tumor types in the GDSC database [32], we used DISARM to identify common drugs and drug
targets across cisplatin-resistant models of different tumor types (Figure 4D). Although sensitivity to
many candidate drugs varies between cisplatin-sensitive and -resistant disease for many tumor types,
some patterns did emerge. For example, vinblastine and etoposide consistently performed better in
cisplatin-resistant models, with DISARM scores of ≥2 in 4/7 and 5/7 tumor types tested, respectively.
DISARM analyses also revealed a number of common drug targets across multiple platinum-resistant
malignancies including PI3K, mTOR, MEK, BCL-2, and HSP-90.

In order to make DISARM available to the broader cancer research community, we also developed
a Java-Script based webtool to all investigators to query the available databases with a disease,
reference drug, and cut-offs for sensitivity of their choice. The DISARM web-based tool is available
at http://ibl.mdanderson.org/DISARM/index. The analyses presented here and in the DISARM
manuscript are only the beginning of how this approach can be used to interrogate in vitro data
from datasets that are yet to be incorporated, such as the Connectivity Map [44] and from individual
investigators. While not yet explored in our analyses, DISARM has the potential to be applied beyond
the setting of in vitro drug response data. If properly adapted and validated, DISARM-like approaches
could be applied in the analysis of in vivo drug response data using parameters such as tumor volume
or ∆T/∆C in lieu of IC50 values. Taking the concept further, scenarios in which DISARM could be
used in the analysis of clinical data combining together tumor types with shared drug resistance can
also be envisioned.

4. Conclusions

The approaches reviewed here represent the work of a large multi-disciplinary team that
utilized large datasets to develop approaches for the unbiased classification of models/tumors and
identification of novel candidate drugs. These approaches have incorporated both large cell line
datasets (proteomic profiling, transcriptomic data, genomic data, and drug sensitivity data) from
multiple sources along with patient derived data (transcriptomic, genomic, immunohistochemical,
and clinical) from large collaborative efforts (TCGA), publically available data (George et al., Sato et
al.; [7,8]), as well as clinical trials (BATTLE-1, BATTLE-2, PROSPECT; [18,21,45]) from multiple cancer
types. One example of how these and related approaches have altered our approach to the treatment of
lung cancer patients is the discovery of SLFN11 as a biomarker of response to PARP inhibition in SCLC.
A proteomic comparison of NSCLC and SCLC led to the initial discovery of PARP1 as a potential
therapeutic target in SCLC [42], which was validated in vitro, in vivo, and in SCLC patients [46,47].
Further biomarker analysis using proteomic and transcriptomic profiling data in combination with
response data to PARP inhibition in cell lines and PDX models led to the identification of SLFN11 as
a biomarker of response [48]. Subsequent retrospective analysis of biopsies from patients enrolled
in a Phase II study of temozolomide with or without veliparib (a PARP inhibitor) showed a survival
advantage for patients with SLFN11 positive tumors (by IHC) who received veliparib [49].

The tools developed by the University of Texas MD Anderson Lung Cancer Multidisciplinary
Program have been highly productive for advancing our understanding of both thoracic and
extra-thoracic cancers, particular in expanding our knowledge of the mechanisms of resistance to
treatment and identifying new treatment options for patients for whom no treatment options currently
exist. These tools, used in the context of multi-disciplinary teams, have the potential to be further
leveraged to explore a variety of questions about the biology of lung and other cancers, but most
importantly, have the potential to translate into novel, biomarker-driven, personalized treatments for
our patients.

http://ibl.mdanderson.org/DISARM/index
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