
royalsocietypublishing.org/journal/rsob
Research
Cite this article: Gebert D, Jehn J, Rosenkranz

D. 2019 Widespread selection for extremely

high and low levels of secondary structure

in coding sequences across all domains of life.

Open Biol. 9: 190020.

http://dx.doi.org/10.1098/rsob.190020
Received: 24 January 2019

Accepted: 1 May 2019
Subject Area:
bioinformatics/genomics/molecular biology

Keywords:
RNA secondary structure, natural selection,

mRNA backfolding, PACKEIS
Author for correspondence:
David Rosenkranz

e-mail: rosenkranz@uni-mainz.de
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4500548.
& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Widespread selection for extremely high
and low levels of secondary structure
in coding sequences across all domains
of life

Daniel Gebert, Julia Jehn and David Rosenkranz

Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz,
Anselm-Franz-von-Bentzel-Weg 7, 55099 Mainz, Germany

DR, 0000-0001-5781-6201

Codon composition, GC content and local RNA secondary structures can

have a profound effect on gene expression, and mutations affecting these

parameters, even though they do not alter the protein sequence, are not neu-

tral in terms of selection. Although evidence exists that, in some cases,

selection favours more stable RNA secondary structures, we currently lack

a concrete idea of how many genes are affected within a species, and

whether this is a universal phenomenon in nature. We searched for signs

of structural selection in a global manner, analysing a set of 1 million

coding sequences from 73 species representing all domains of life, as well

as viruses, by means of our newly developed software PACKEIS. We

show that codon composition and amino acid identity are main determi-

nants of RNA secondary structure. In addition, we show that the

arrangement of synonymous codons within coding sequences is non-

random, yielding extremely high, but also extremely low, RNA structured-

ness significantly more often than expected by chance. Taken together, we

demonstrate that selection for high and low levels of secondary structure

is a widespread phenomenon. Our results provide another line of evidence

that synonymous mutations are less neutral than commonly thought, which

is of importance for many evolutionary models.

1. Background
The genetic code of DNA uses units of three nucleotides (codons) to code for one

amino acid. Since the number of possible codons exceeds the number of proteo-

genic amino acids, most amino acids are encoded not by a single codon but by

several different codons. Therefore, mutations at the DNA level do not necess-

arily result in an altered amino acid sequence of the corresponding protein.

These silent (synonymous) substitutions have long been assumed to be neutral

in terms of natural selection [1]. However, silent substitutions will necessarily

result in altered codon composition of a gene and further have the potential to

alter a gene’s GC content, both of which are features that can indeed be subject

to selection [2]. Moreover, silent substitutions can change the secondary structure

of an mRNA, thereby affecting the process of translation [3–6], and non-random

patterns of secondary structures within protein coding genes in different species

have been explained by natural selection [7–10].

However, the currently available data do not allow us to assess whether

selection that acts on secondary structures within coding sequences represents

a peculiarity of a few genomic loci in a limited number of species, or rather a

widespread phenomenon affecting many genes in species throughout the

domains of life. It is also not known whether selection acts only in one direc-

tion, favouring strong secondary structures as suggested by previous studies,

or alternatively yields extremes at both ends of the spectrum.
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To address these issues, we analysed protein coding

sequences of 73 species representing all domains of life and

further included more than 240 000 non-identical viral

coding sequences. Using our newly developed software

PACKEIS, we compared the predicted secondary structure

of the evolutionary realized variants with that of correspond-

ing artificial coding sequences that could have been realized

in order to encode the same peptide sequence. We show

that codon usage and amino acid identity both massively

influence secondary structures. Beyond that, we identified

protein coding sequences that exhibit extremely high or low

structuring, compared with their artificial counterparts, inde-

pendent of altered GC content or codon usage, which is due

to a non-random arrangement of synonymous codons within

the coding sequence. Importantly, these extreme solutions

occur significantly more often than we would expect when

assuming the absence of selection that favours structural

extremes (structural selection). For the species under examin-

ation, we conservatively evaluate the fraction of protein

coding sequences that are subject to structural selection to

be, on average, 2–3%. We propose that altered structures of

coding sequences affect a transcript’s stability and/or its

translation efficiency, which in turn are traits that evolution

can act on, yielding the unexpectedly high number of struc-

tural extremes. A remarkably high number of coding

sequences under structural selection was found in RNA

viruses and we speculate that small RNA-based host

immune systems have exerted a selective regime on viral gen-

omes favouring highly backfolded transcripts to avoid

targeting by anti-viral small RNAs [11,12].
2. Results
2.1. Approach and software development
Prior to our actual survey, we had to develop a software tool

that allowed us to assess whether or not a realized open read-

ing frame (original ORF, oORF) represents an extreme

solution in terms of backfolding (base pairing with itself

through self-complementarity), considering the alternative

ORFs (aORFs) that could have been realized in order to

encode the given peptide sequence based on the usage of

synonymous codons. To this end, we have developed the

highly parallelizable software PACKEIS, which compares

the degree of backfolding (DBF) of the oORFs with that of

a defined number of aORFs, yielding a DBF score ranging

from 0 to 1; this score refers to the DBF in the light of alterna-

tive codon usage, with 0 representing extremely low

structuredness and 1 representing extremely high structured-

ness. Details on the PACKEIS algorithm can be found in the

Methods section.

2.2. ORFs exhibit extreme structures more often than
expected by chance

Initially, we speculated that particularly ORFs of viral genes

may exhibit high levels of backfolding in order to escape

small RNA-based anti-viral responses of host immune sys-

tems. A piRNA-based immunity against viruses has been

described in mosquito species such as Aedes aegyptii, and

virus-derived siRNAs that confer anti-viral immunity can

be found in plants and mosquitoes as well as in mice and
human somatic cells [11–15]. We thus started our analyses

with ORFs of polyproteins from 13 human-pathogenic mos-

quito-borne viruses [16]. Contrasting our expectation, we

found that only the Edge Hill virus ORF exhibits DBF

scores that imply a significant high DBF (DBF scoremodel0 ¼

0.99, DBF scoremodel2 ¼ 1.00), while the ORFs of the other

tested viral polyproteins have unremarkable DBF scores in

the range of greater than 0.05 to less than 0.95 (figure 1a).

In order to assess whether ORFs with extremely high or

low DBF scores occur significantly more often than expected

by chance, we extended our analyses to a complete collection

of non-identical viral ORFs (n ¼ 244 314) that are deposited at

the GenBank sequence database managed by the National

Center for Biotechnology Information (NCBI). Indeed, we

observed a significant enrichment for ORFs with high DBF

scores (figure 1b). While we would expect that, under neutral

conditions, each DBF score from 0 to 1 in steps of 0.01 accounts

for roughly the same number (1/101) of analysed ORFs, the

fraction of ORFs with a DBF score of 1 accounts for 6.2%,

5.3% and 2.3% of all viral ORFs according to model0,

model1 and model2, respectively (figure 1b). Despite the sig-

nificant enrichment for ORFs with high DBF scores, the fact

that the large majority of ORFs showed no signs of selection

for strong secondary structures cast doubt on our initial specu-

lation that small RNA-based immune responses have exerted

strong selective regimes favouring highly backfolded ORFs.

Alternative explanations for favouring extreme levels of

secondary structures are based on altered RNA stability and

altered translation efficiency or a trade-off between both,

which would be a fundamental principle whose footprints

should be present in all organisms. We thus sampled 73 repre-

sentatives from all domains of life and calculated DBF scores of

their ORFs in a genome-wide manner (electronic supplemen-

tary material, table S1). We found that applying model2

yielded the most modest results and we will thus refer to the

results that are based on model2 in the following, in order to

give conservative estimates of the number of ORFs that we

assume to be under structural selection and to exclude any

effects related to GC content and biased codon usage. For

the entirety of the analysed aORFs, the fraction of paired

bases relative to the oORF follows a Gaussian distribution,

ranging from 91% to 109% compared with the oORF. For 59

species, we observed a significant enrichment of ORFs with

a DBF scoremodel2 . 0.95 (figure 1c). Of these, nine species

additionally showed a significant enrichment of ORFs with a

DBF scoremodel2 , 0.05. Nine species exhibited only a signifi-

cant enrichment of ORFs with a DBF scoremodel2 , 0.05 but

not ORFs with a DBF scoremodel2 . 0.95. For the remaining

five species, significant enrichment for neither extremely

high nor extremely low DBF scores could be observed

(figure 1c; electronic supplementary material, table S1).

When comparing the DBF scores of homologous genes

across different species, we did not find any significant corre-

lations, suggesting fluctuating structural selective forces on

homologous genes along different phylogenetic branches

(electronic supplementary material, table S2). In addition,

we found no correlation between DBF scoresmodel2 and gene

expression, neither at the transcript nor at the protein level

(electronic supplementary material, table S3).

Remarkably, an enrichment for ORFs with DBF

scoremodel2 , 0.05, suggesting selection that favours low

levels of secondary structure, is present in 16 out of 33

sampled eukaryotic species (and seven out of eight plant
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Figure 1. (a) DBF of aORFs from mosquito-borne RNA viruses for the purpose of illustration. The X-axis shows the distribution of DBFs relative to the average value
of all aORFs. Genomes of the yellow fever virus and the Edge Hill virus both encode a single polyprotein. DBFs and the corresponding DBF scores are indicated in red.
Only the ORF of the Edge Hill virus shows an exceptional DBF which is considerably higher than the corresponding aORFs (DBF scoremodel0 ¼ 0.99, DBF
scoremodel2 ¼ 1.00). (b) The analysis of DBF scores for all available viral ORF sequences reveals a consistent and significant enrichment for extremely high DBF
scores. (c) Lines in the heatmap represent species; rows represent DBF scores from 0 to 1 in steps of 0.01 using model2 (shuffle). The colour indicates row Z-
scores with Z-scores above 1.96 ( p , 0.05 for the two-tailed hypothesis) indicated in shades from yellow to red. Lines for viruses represent dsDNA, dsRNA,
ssDNA, ssRNA(2) and ssRNA(þ) viruses.
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species), while the same applies to only one out of 20

sampled archaeal and one out of 20 sampled bacterial

species. To quantify the fraction of ORFs that is presumably

subject to structural selection within a given species, we

summed up the fraction of ORFs with DBF scoresmodel2 ,

0.05 and DBF scoresmodel2 . 0.95, taking only quantiles

with Z-score � 1.96 ( p , 0.05 for the two-tailed hypothesis)

into account. We then subtracted the share of ORFs expected

to be allotted to the corresponding quantiles, assuming a uni-

form distribution of DBF scores in the absence of selection

(see Methods). On average, we obtained similar fractions of

ORFs under structural selection per species in the three

domains of life ranging from 1.98% in archaea to 2.06% in

eukaryotes and 2.54% in bacteria (figure 3a; electronic sup-

plementary material, table S4).

Interestingly, the number of ORFs under structural selec-

tion from species representing all three domains of life is

considerably lower than what we initially observed for

virus ORFs, reviving the idea that small RNA-based

immune systems may have contributed to the realized struc-

turing patterns. If so, we would expect that particularly

viruses that encode their genome in the form of single-

stranded RNA, which represents a putative target for anti-

sense small RNAs of a host, would be exposed to selective

pressure that favours highly structured ORFs. We thus

grouped viruses according to virus types into five classes

(double-stranded (ds) DNA viruses, single-stranded (ss)

DNA viruses, dsRNA viruses, ssRNA plus-strand viruses

and ssRNA minus-strand viruses) and checked the structur-

ing patterns of ORFs for each class separately (figure 2a).
Remarkably, the fraction of genes under structural selection

is significantly higher in viruses and on average more than

twice as high as in any of the three domains of life

(figure 2b). Moreover, we found that ssDNA and dsDNA

viruses show the lowest number of ORFs under structural

selection within viruses, while ssRNA plus-strand and

ssRNA minus-strand viruses exhibit the highest number of

ORFs under structural selection. Notably, 11.5% of ORFs

from ssRNA minus-strand viruses are presumably subject

to structural selection, a value that surpasses that of any

other of the 73 species under examination (figure 2a).
2.3. Codon composition and amino acid identity
contribute to extreme secondary structures in ORFs

When we compared DBF scores obtained with different

models, we were surprised by the observation that a con-

siderable fraction of ORFs show extremely high or low

score values applying model0 and model1 while showing

only intermediate values when applying model2. Hence,

we considered it unlikely that these ORFs were in fact subject

to structural selection. Instead, we presumed that this pattern

is caused by features other than ORF structure alone, features

which must be differentially implemented in the different

models.

In contrast with model2, model0 and model1 allow

aORFs to be generated that differ in GC content and codon

usage from the oORF. This applies in particular to oORFs

that have an extremely biased codon usage compared with
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Figure 2. (a) Estimation on the fraction of ORFs under structural selection. (b) Virus ORFs are significantly more often under structural selection. p-values represent
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a random codon usage (in the case of model0) or the global

codon usage of the corresponding species (in the case of

model1). We thus assumed that aberrant codon usage can

lead to extreme structuring of ORFs and checked codon fre-

quencies of oORFs separately for each DBF score quantile
and species, using the three different models. Remarkably,

when applying model0 and model1, we observed that

codons of all amino acids (except for M and W, which are

encoded by only one codon) can be divided into those that

are found more frequently in highly structured oORFs and



or
ig

in
al

fr
ee

1

0.5f

0

st
ri

ct
sh

uf
fl

e
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position. When applying model0 (free), PACKEIS uses equal probabilities for all codons of a specific amino acid. When applying model1 (strict), the probabilities are
derived from the global codon usage of the species in question. When applying model2 (shuffle), codons of the oORF are randomly shuffled. Note that, in the above
example, valine can only be encoded by GUG when applying model2 since no alternative valine codons are present in the given ORF.

royalsocietypublishing.org/journal/rsob
Open

Biol.9:190020

5

those codons that are found more frequently in lowly struc-

tured oORFs, while a corresponding bias is absent when

applying model2 (figure 2c). Interestingly, we made an ana-

logous finding when focusing on different amino acids

instead of codons, suggesting that amino acid identity also

influences the degree of structuring (figure 2d ). The above

described division of codons for model0 and model1 invari-

ably follows the combined number of G and C bases in the

respective codons for each amino acid, where a higher

codon GC content correlates with greater frequency in

highly structured oORFs (electronic supplementary material,

figure S2a), an observation recently also made by Fricke et al.
[10]. Similarly, amino acids that are more frequently found in

highly structured oORFs tend to exhibit higher mean GC

shares in their respective codons ( p , 0.001, Mann–Whitney

U-test) (electronic supplementary material, figure S2b,c).

To verify the influence of divergent codon usage on sec-

ondary structure, we built a set of 10 000 random peptides

with a length of 500 amino acids each. For each peptide, we

constructed two corresponding aORFs, using only those

codons that are most frequent in lowly structured oORFs

(set 1) for the first aORF, and only those codons that are

most frequent in highly structured oORFs (set 2) for the

second aORF. Then we compared the DBF for both aORF

groups as measured in the number of paired bases. Confirm-

ing our observation on codon bias across highly and lowly

structured oORFs, we found that using different sets of

synonymous codons can have a massive effect on the DBF

with aORFs being composed of set 1 codons with an average

number of paired bases corresponding to 0.88-fold of the total

average (figure 2e). Accordingly, aORFs composed of set 2

codons have an average number of paired bases correspond-

ing to 1.12-fold of the total average (figure 2e). Since species

with large effective population size (Ne) are those where

codon preferences correlate strongly with tRNA abundance

[17], we checked for a connection between the number of

genes under structural selection and Ne but did not observe

any correlation.
To check whether amino acid identity also contributes to

oORF secondary structure, we built another two sets of

10 000 random peptides with a length of 500 amino acids

each. Peptides in the first set were composed of only those

10 amino acids which are more frequently encoded in lowly

structured oORFs (set 1 amino acids), while peptides in the

second set were composed of only those 10 amino acids

which are more frequently encoded in highly structured

oORFs (set 2 amino acids). Equal probabilities for each

codon of a given amino acid were used. As is the case for

divergent codon usage, we found that amino acid identity

is also an important determinant of oORF secondary struc-

ture, with aORFs of peptides being composed of set 1

amino acids with an average number of paired bases corre-

sponding to 0.82-fold of the total average (figure 2e).

Accordingly, ORFs of peptides composed of set 1 amino

acids have an average number of paired bases corresponding

to 1.28-fold of the total average (figure 2e).
3. Discussion
Owing to the degenerate nature of the genetic code, synon-

ymous substitutions were initially regarded as neutral in

terms of natural selection. Since then, a plethora of studies

have demonstrated that synonymous codon usage can ulti-

mately alter gene expression, clearly a trait that selection

can act on.

As early as 1988, Shields et al. [18] found that the usage of

synonymous codons among 91 Drosophila melanogaster genes

varied greatly. Further, they observed that enhanced GC con-

tent due to preference for C-ending synonymous codons

correlates with gene expression, a finding that was estab-

lished previously also for different unicellular organisms

[19–21]. Mechanistically, this can be explained by more

stable and efficient transcription of GC-rich genes and the

fact that unfavourable GC contents can trigger heterochro-

matization [22–24]. Apart from GC content, it is well
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known that codon usage also correlates with tRNA

abundance, which is likely to be the outcome of a coevolu-

tion of codon usage and tRNA expression to optimize

translation of highly expressed genes [25–28].

In contrast with our knowledge on how GC content and

synonymous codon usage affects gene expression, far less is

known about how secondary structure itself shapes gene

expression patterns, which is possibly due to the fact that it

is not trivial to disentangle these factors since one will influ-

ence the other and any difference in amino acid or

synonymous codon usage will likely result in different degrees

of RNA secondary structure [29]. In regard to this issue, we

show here that ORFs with unusual levels of backfolding are

indeed biased for specific sets of codons and amino acids,

and our analysis of artificial coding sequences using these

different codon and amino acid sets confirmed the close inter-

weaving of codon usage bias, amino acid identity and extreme

secondary structures. With these results in mind, we want to

point out that any inferences on which traits evolution in

fact acts on should be made with particular caution.

The possible role of mRNA secondary structure in the

regulation of gene expression has been evaluated previously,

though in a limited number of studies and species. Carlini

et al. [30] compared two related drosophilid genes, Adh and

Adhr, with respect to codon bias, expression and ability to

form secondary structures. They noticed that the weakly

expressed and weakly biased gene Adhr has a much stronger

potential for backfolding than its heavily expressed and

biased counterpart. Soon after, a more comprehensive study

that compared the folding energies of original and corre-

sponding artificial coding sequences generated by codon

shuffling reported widespread selection for local RNA sec-

ondary structure, particularly in bacterial species but also in

some archaeal and eukaryotic organisms [7]. Similar findings

were subsequently presented for mammals [8]. Functional

evidence for the importance of mRNA structures was pro-

vided by Kudla et al. [4], who showed that the stability of

mRNA folding near the ribosomal binding site is a major

determinant for the expression of a green fluorescent protein

reporter encoded by a set of mRNAs that randomly differ at

synonymous sites. A general correlation of folding energies

and profiles of ribosomal density in Escherichia coli and Sacchar-
omyces cerevisae emphasized the importance of mRNA

secondary structure and translation efficiency [31]. Finally, a

subtle large-scale analysis of coding sequences conducted by

Fricke et al. [10] revealed that not only the amount of secondary

structure but also its nature is non-random, with base pairing

events between the first bases of two opposing codons being

significantly underrepresented, suggesting the presence of

selective forces.

Noteworthily, Hoede et al. [9] have proposed that selec-

tion also acts at the level of DNA structure during

transcription and favours local intra-strand secondary struc-

tures to reduce the extent of transcriptional mutagenesis, a

phenomenon that can be particularly observed at highly

expressed genes. An important contribution to this complex

issue was recently made by Lai et al. [32], who demonstra-

ted that mRNAs as well as long non-coding RNAs

intrinsically form secondary structures that result in short

50- to 30-end distances, which possibly affects the process of

translation initiation.

Considering the available data, the unveiled widespread

selection for high or low levels of secondary structure in
coding sequences throughout the analysed species is not

surprising, and we propose that evolutionary adjustment of

the degree of secondary structure in ORFs contributes to

fine-tuning of gene expression. If at all, one could argue

that our estimates on the fraction of genes that are subject

to this kind of selection appears surprisingly small. However,

we want to emphasize that our estimates represent the lower

limit, deduced from the enrichment of genes with extremely

high or low DBF scores, additionally excluding those genes

where we cannot rule out that selection acts on the level of

codon usage and/or GC content instead of secondary struc-

ture alone. For these genes, we assume that restrictions on

the amino acid sequence level prevent mRNAs from being

optimally folded and that synonymous codon usage is

exhaustively used to shift the mRNA towards the optimum.

This would be a plausible explanation for the enrichment of

genes at both ends of the DBF score spectrum. For an indeter-

minable fraction of genes, the optimal folding might be

realized without requiring a suspicious arrangement of synon-

ymous codons, though possibly not being less subject to

structural selection that maintains the current state.

Interestingly, we found the highest number of genes

under structural selection in RNA viruses. Many viral RNA

structures, so-called cis-acting elements, are important for

viral replication but are typically restricted to non-translated

regions of the viral genome and the function of structures

within coding sequences is poorly understood [33]. We

speculate that highly structured viral coding sequences

could be at least in part promoted by anti-viral host RNAi

pathways. Many species have developed siRNA- and

piRNA-based defence strategies to combat viral infections

[11,12,34,35]. Since it has been shown that the target second-

ary structure is a major determinant of RNAi efficiency [36–

38], we assume that the evolutionary arms race between

viruses and hosts in many cases gives rise to viral transcripts

that are characterized by a high DBF in order to provide as

little attack surface as possible for single-stranded guiding

RNAs.

In summary, our results demonstrate the close connection

between codon usage bias, amino acid identity and RNA sec-

ondary structure. Moreover, using an as yet unrivalled broad

data basis and an algorithm that excludes the effect of altered

codon usage and GC content, we show that selection for

extreme secondary structures within coding sequences is a

widespread phenomenon throughout life and, with respect

to viral ORFs, even beyond. Finally, with PACKEIS, we pro-

vide a tool that allows other researchers to easily conduct

corresponding genome-wide analyses in any species of their

choice not considered in the course of this study.
4. Methods
4.1. Data selection
In total, 73 representative species from the three domains of

life (eukaryotes n ¼ 33, archaea n ¼ 20, bacteria n ¼ 20)

were selected, paying attention to a balanced representation

of subclades within a given domain. ORF sequences from

eukaryotes were downloaded from the Ensembl database

(release 94, [39]). The longest transcripts for each gene were

extracted using the custom Perl script select_longest_tran-

scripts.pl. For archaea and bacteria species, we downloaded
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cDNA data and peptide data from Ensembl (release 94). We

translated cDNA in all possible forward frames and checked

for the presence of the resulting peptide sequences in the

corresponding peptide dataset. Candidate ORFs with a

match in the peptide dataset were collected for each species.

The prediction of ORF sequences from cDNA and peptide

datasets was conducted using the custom Perl script

ORF_from_cDNA.pl.

Viral genome sequences were downloaded from NCBI

GenBank. ORF sequences were extracted from GenBank

files and converted into FASTA format using the custom

Perl script GB_2_FASTA.pl. Viral sequences were further

sorted into separate files according to viral classes (ssRNA

positive strand, ssRNA negative strand, dsRNA, ssDNA,

dsDNA) and hosts (algae, archaea, bacteria, environment,

human, invertebrates, plants, protozoa, vertebrates) using

the custom Perl script sort_viral_genomes.pl. All custom

Perl scripts used in the course of this study are available at

https://sourceforge.net/p/packeis.

Gene expression data were downloaded from the PaxDb

Protein Abundance Database and EBI Expression Atlas [40,41].
4.2. The PACKEIS algorithm
In a first step, PACKEIS calculates the average probabilities

for base pairing in predicted local RNA structures using

algorithms of the ViennaRNA package [42]. Therefore, it

runs RNAfold or RNAplfold (depending on the input ORF

length) on a number of input sequences (FASTA file) and

parses the resulting output files. Next, it calculates the DBF

as measured in the fraction of paired bases within the

oORF defined by the sum of the average base pairing prob-

abilities for each position divided by the number of total

bases. In a second step, PACKEIS generates a set of aORFs

(default n ¼ 100), each of which still codes for the same

amino acid sequence, and calculates the DBF for each aORF

as described above. By comparing the DBF of the oORF

with those of the aORFs, PACKEIS outputs a measurand

(DBF score) that allows us to assess the probability that the

DBF of the oORF is a product of chance, where a DBF

score of 0 means that none of the aORFs exhibits a lower

DBF, while a DBF score of 1 means that none of the aORFs

exhibits a higher DBF. The DBF score is calculated according

to the following formula:

DBF � score ¼ i=ðiþ jþ k=2Þ
j=ðiþ jþ k=2Þ ,

where i refers to the number of aORFs with higher DBF and j
refers to the number of aORFs with lower DBF; k refers to the

number of aORFs with identical DBF compared with the

oORF, so that the DBF score amounts to 0.5 in the case that

all aORFs behave exactly as the oORF.

For the construction of aORFs, PACKEIS implements

three different models. Model0 (free) uses equal frequencies

for all synonymous codons of a specific amino acid. Model1

(strict) uses specified codon frequencies that reflect the

codon usage of the species in question (or alternatively

codon usage frequencies as defined by the user). Model2

(shuffle) constructs aORFs by shuffling those codons that

are already present in a given oORF. In contrast with

model0 and model1, codon frequencies and GC content are

perfectly preserved in each of the aORFs compared with
the oORF when applying model2 (figure 3). Thus, applying

model2 allows us to exclude the impact of aberrant codon

usage or the GC content of a given oORF and to assess

whether the present codons are arranged in a non-random

fashion regarding the effect on secondary structure (figure 3).

PACKEIS produces a number of output files including a

table that lists the DBF scores for each input sequence, a

text file that shows the distribution of DBF scores from 0 to

1 in steps of 0.01, a table that refers to codon composition,

amino acid identity and GC content for ORFs with a specific

DBF score, and finally one text file per input sequence that

lists the DBF scores for each of the corresponding aORFs.

To check whether the implemented models yield coherent

results, we pairwise compared DBF scores for 27 628

Arabidopsis thaliana ORFs obtained when applying the three

different models. Indeed, we observed a high degree of

correlation across the results obtained by applying the differ-

ent models as deduced from Pearson’s correlation coefficients

ranging from r ¼ 0.86 to r ¼ 0.97, supporting the general

validity of the results (electronic supplementary material,

figure S1).

The PACKEIS software including detailed documentation

and test datasets is freely available at https://sourceforge.

net/p/packeis and http://www.smallRNAgroup.uni-mainz.

de/software.html.
4.3. DBF score calculation with PACKEIS
DBF scores were calculated using the PACKEIS software

which was developed in the course of this study. PACKEIS

will use RNAplfold to calculate base pairing probabilities

based on local rather than global RNA folding, which is

more reliable for larger sequences. Therefore, we set the mini-

mum length [nt] of an input sequence for PACKEIS to run

RNAplfold instead of RNAfold to 100 with the option

-j 100. PACKEIS was run three times using different models

for the construction of aORFs applying the option -m 0,

-m 1 and -m 2, respectively.
4.4. Quantifying the number of ORFs under structural
selection

We sectioned DBF scores into 101 quantiles ranging from 0 to

1 in steps of 0.01 (Q0.00. . . Q1.00). ORFs that fell in the range

0–0.04 ( p , 0.05) were considered as candidates for being

subject to selection that favours low structuring. ORFs that

fell in the range 0.96–1 ( p . 0.95) were considered as candi-

dates for being subject to selection that favours high

structuring. The null hypothesis (absence of selection) was

rejected if any of the lower or upper five quantiles showed

a significant enrichment for ORFs. The summed fractions of

genes in the lower (slow) or upper (shigh) five quantiles with

Z-scores � 1.96, deducting the share of ORFs that would be

expected for each quantile assuming an even distribution in

the absence of selection (1/101), was considered as the frac-

tion of genes that is subject to structural selection (S ¼
slow þ shigh) according to the following formula:

slow=high ¼
Xj

k¼i

f zQ k
100

� �
� aQ k

100

� 1

101

� �
,

where f (Z , 1.96) ¼ 0 and f (Z � 1.96) ¼ 1. For slow i ¼ 0 and

https://sourceforge.net/p/packeis
https://sourceforge.net/p/packeis
https://sourceforge.net/p/packeis
https://sourceforge.net/p/packeis
https://sourceforge.net/p/packeis
http://www.smallRNAgroup.uni-mainz.de/software.html
http://www.smallRNAgroup.uni-mainz.de/software.html
http://www.smallRNAgroup.uni-mainz.de/software.html
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j ¼ 4; for shigh i ¼ 96 and j ¼ 100. a refers to the number of

ORFs within the specific quantile. According to the definition

of f, each of the lowest and highest five quantiles is taken into

account only if ORFs from the corresponding quantile are sig-

nificantly over-represented ( p , 0.05, Z � 1.96). The term

zQ k
100

refers to the Z-score of a specific quantile, e.g. Q1.00 for

k ¼ 100. The function value f zQ k
100

� �
becomes 0 for

zQ k
100

, 1:96. slow represents the number of genes where selec-

tion acts to reduce structuredness, while shigh represents the

number of genes where selection acts to enhance structured-

ness. Both fractions together represent the total number of

genes S that is subject to structural selection.

4.5. Generating random peptides and ORFs
To simulate the effect of using different sets of codons on sec-

ondary structure, we first sorted codons according to a bias in

codon frequency across oORFs with high and low DBF

scoresmodel1. A bias was attested in the case that we observed

a steady increase or decrease in the average codon frequency

from the upper five quantiles via the middle 91 quantiles to

the lower five quantiles. Since the observed bias was not

always consistent across all species under examination, we

decided this based on the status in the majority of species

(electronic supplementary material, table S5). Set 1 codons

were those that were more frequent in oORFs with DBF

scoresmodel1 ranging from 0 to 0.04 in the majority of species;

set 2 codons were those that were more frequent in oORFs

with DBF scoresmodel1 ranging from 0.96 to 1 in the majority

of species. Amino acids were grouped into set 1 and set 2

amino acids accordingly.

To analyse the effect of using different sets of codons on

secondary structure, we built a set of 10 000 random peptides

with a length of 500 amino acids each. The first amino acid of
each peptide was methionine. For each of the 10 000 random

peptides, we constructed one corresponding aORF using set 1

codons and one corresponding aORF using set 2 codons.

Then we predicted and compared the fraction of paired

bases for aORFs composed of set 1 codons and aORFs com-

posed of set 2 codons using the custom Perl script

test_codon_sets.pl.

To analyse the effect of using different sets of amino acids

on secondary structure, we built two sets of 10 000 random

peptides with a length of 500 amino acids each, with the

first peptide set being composed of set 1 amino acids and

the second peptide set being composed of set 2 amino

acids. One ORF for each of the 20 000 peptides was con-

structed with equal probabilities for possible codons of a

given amino acid. We predicted and compared the fraction

of paired bases for ORFs from set 1 peptides and ORFs from

set 2 peptides using the custom Perl script test_aa_sets.pl.

Note that, in contrast with the analysis of set 1 and set 2

codons, we did not compare sets of two aORFs that encode

an identical peptide, but rather independent ORFs that

code for different peptides (set 1 and set 2 peptides). All

custom Perl scripts used in the course of this study are

available at https://sourceforge.net/p/packeis.
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