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Abstract

Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease char-

acterized by a malfunction of the α-L-iduronidase (IDUA) enzyme leading to

the storage of glycosaminoglycans in the lysosomes. This disease has longtime

been studied as a therapeutic target for those studying gene therapy and many

studies have been done using various vectors to deliver the IDUA gene for cor-

rective treatment. Many vectors have difficulties with efficacy and insertional

mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies

of AAV vectors treating MPS I have seemed promising, but recent deaths in

gene therapy clinical trials for other inherited diseases using AAV vectors have

left questions about their safety. Additionally, the recent modifications to ade-

noviral vectors leading them to target the vascular endothelium minimizing

the risk of hepatotoxicity could lead to them being a viable option for MPS I

gene therapy when coupled with gene editing technologies like CRISPR/Cas9.
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1 | INTRODUCTION

Throughout the past few decades, gene therapy for mono-
genic diseases has been thoroughly explored due to their
perceived ease of correction.1 In this regard, muco-
polysaccharidosis type I (MPS I) is an interesting disease
to the field due to its monogenic status, devastating
patient outcomes, and limited current treatment options.
Attempts have been made to deliver the corrective gene
via several different vector types both through ex vivo
and in vivo methods with limited success. Recently, how-
ever, gene editing-based therapy has led to new investiga-
tion of genetic correction. This new technology has

potential for a long term in vivo gene therapy not requir-
ing subsequent treatments for MPS I.1 Utilizing gene
editing tools to treat this disease has opened up a new
and exciting avenue for those studying gene therapy
of MPS I.

1.1 | Mucopolysaccharidosis type I

MPS I is characterized by malfunctioning α-L-iduronidase
(IDUA) enzyme which normally catabolizes the glycos-
aminoglycans (GAGs) dermatan sulfate and heparan sul-
fate.2 Active IDUA deficiency causes cellular lysosomes
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to accumulate GAGs as oligosaccharides terminating in
iduronic acid, causing disease. IDUA has over 100 known
mutations in patients with the disease.3 Due to the vari-
ety of possible genotypes, a spectrum of clinical severity
is found in MPS I.4 In the most severe form of MPS I
(Hurler syndrome), patients exhibit progressive devel-
opmental delay, corneal clouding, airway obstruction,
cardiac disease, enlargement of organs, severe joint
restrictions, and have an untreated life expectancy of
10 years.5 Patients with MPS I require a coordinated
team of specialists to address symptoms as they became
apparent. In addition to the specialty care required,
patients currently have intensive, noncurative, expen-
sive treatment options.3,6

1.2 | Current treatments

There are two clinically available treatments for MPS I:
enzyme replacement therapy (ERT; laronidase) and hema-
topoietic stem cell transplantation (HSCT).3,7 Laronidase
is a human recombinant IDUA enzyme intravenously
administered and endocytosed into the bloodstream and
endocytosed into cells to catabolize accumulated GAGs in
lysosomes. However, laronidase has limitations related to
the blood brain barrier (BBB) leading to continued pro-
gression of neurological disease, lifelong re-administration,
and the high cost of over $200 000 per year.3,6,7 HSCT,
when successful, is an effective approach for treating
MPS I.3 However, HSCT has high morbidity and mortality
related to the procedure, needs to employ preparative che-
motherapy, and has potential for graft failure.3 Due to

these risks, HSCT is typically reserved for Hurler patients
aged two or under.3 In addition to the issues with these
treatments individually, neither treatments fully eliminate
the clinical manifestations of the disease and patients may
still require intervention through surgery or symptom-
specific specialists.3

Due to the limitations of current treatments, gene ther-
apy has been explored as a potential therapeutic for this
disease.8 Gene therapy has shown promise in treating
inherited diseases characterized by loss of function, and
there is precedent for clinical use.9 Here, we will examine
different gene therapy approaches attempted in MPS I and
end by presenting a novel approach.

2 | MPS I GENE THERAPY
STRATEGIES

2.1 | Retroviral vectors

Gene therapy for MPS I was first attempted by groups
using retroviral vectors to deliver the IDUA gene.10 Retro-
viral vectors are RNA viruses that interact with the outer
glycoprotein envelope to gain entry into a cell and con-
vert its single-stranded genome into double-stranded
DNA to be incorporated into the host's genome.11 In a
gene therapy context, this mechanism can be used to
introduce a corrective gene into the genome of the
patient.11 Once retroviral vectors began being used in
1992 to deliver IDUA in vitro, they were then investigated
for their potential use both in ex vivo and in vivo
methods (Figure 1).10

FIGURE 1 Ex vivo vs in vivo gene therapy. Ex vivo gene therapies follow a method in which one harvests cells from the patient and

then makes the necessary correction with a system to deliver the gene therapy in a petri dish. Following correction, the cells are cultured in

a sterile setting before ultimately being returned to the patient. Ex vivo gene therapy methods for mucopolysaccharidoses type (MPS I) have

been attempted to improve upon hematopoietic stem cell transplantation (HSCT) and lessen the possibility of graft failure without worrying

about dose-dependent reactions in vivo. In contrast, in vivo gene therapies are less invasive than ex vivo methods and typically involve a

patient receiving a single dose with the gene therapy via injection. The gene therapy is then delivered by a vector to the target cell. The target

cells then produce the corrective protein and secrete them to allow for cross correction to other unmodified cells. In MPS I, an in vivo

strategy is highly desirable due to the minimally invasive process for patients and potential long-term effects
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To lessen risks related to HSCT, Fairbairn et al sought
to use autologous hematopoietic stem cells (HSCs) trans-
duced with a retroviral vector carrying the IDUA gene in
an ex vivo approach to gene therapy.12 In vitro, they were
able to show successful gene transfer to MPS I patients'
CD34+ cells, but had efficiency limitations because retro-
viral vectors only transduce cycling cells and, when
harvested, many HSCs are out of cycle.12 To address this
concern, they recommend using long-term bone marrow
cultures; however, this would ultimately lead to a delay
for patients whose disease may progress during the
waiting period.12 As a response to Fairbairn et al's original
study, Stewart et al and Huang et al reported that IDUA-
deficient cells absorb IDUA enzyme from the supernatant
of fibroblasts transduced with a retrovirus expressing
IDUA due to a mannose-6-phosphate interaction on the
cells' surface.13,14 Additionally, Stewart et al concluded
that IDUA uptake was more efficient in immature cells
and treatment is preferred early in development, but the
exact point in developmental reimplantation which occur
to lead best clinical outcomes was unclear.13

Retroviral in vivo approaches have also been explored
for MPS I with a team of researchers focusing on a liver-
directed gene therapy for neonatal MPS I mice.15-18 In
one study, they compare the use of high (109 transducing
units/kg) and a low (108 transducing units/kg) dose of
retroviral vector delivered via tail vein injection.15 While
both were able to achieve some stable IDUA expression
in treated animals, 4 of 17 animals receiving the low dose
were unable to establish substantial IDUA expression.15

They evaluated the effectiveness of the two doses, finding
the high-dose-corrected lysosomal storage in several
organ systems while the lower dose failed to establish the
same improvement.15,16 These results showed that a high
dose of the retroviral therapy is necessary to see improve-
ment in MPS I symptoms in the neonatal murine model
for the disease.16 In a later study, the group evaluated the
effects in more mature, 6-week old mice and attempted
to increase the efficacy of their vectors in these mice by
inhibiting CD28 with CTLA4-Ig to minimize the cyto-
toxic T lymphocyte (CTL) response against transduced
cells.17 The application of CTLA4-Ig in conjunction with
their vectors led to a stable expression of IDUA with simi-
lar results related to lysosomal storage in these more
mature mice as was seen in previous studies.15-17

Traas et al followed up this work in mice by deliver-
ing retroviral vectors expressing the canine IDUA with
the liver-specific α1-antitrypsin (hAAT) promoter in the
canine model for MPS I.18 When administered to
the canines, the retroviral vector therapy led to >18%
normal IDUA function in treated animals with improve-
ment in musculoskeletal and cardiovascular symptoms of
MPS I.18 The vectors in this study were also designed to
implement a long-terminal repeat (LTR); DNA that

flanks a retroviral sequence mediating insertion into a
host's genome and includes transcription factor binding
sites that can autonomously drive expression.19 They the-
orize this LTR drove expression in nonhepatic cells,
potentially leading to the increased retroviral RNA found
in neurons 1 year after treatment.18 Concern about the
possibility of insertional mutagenesis due to the use of an
LTR led to a follow-up study focused on improving the
vector design for less CTL response.18,20 Herati et al
inverted the expression cassette in the gamma-retroviral
vector, so hAAT drove expression of the canine IDUA
rather than the LTR.20 By doing this inversion, they were
able to isolate whether their expression levels previously
were a result of the LTR.18,20 They tested this vector in
the MPS I murine model and found high expression
levels in the liver with stable serum IDUA levels, but had
relatively low IDUA activity levels in blood.20 Six and a
half months post-treatment, they found most organs had
normalized GAG levels with improvements to vision and
hearing abnormalities along with musculoskeletal symp-
toms of MPS I, but the low overall activity levels of IDUA
using this treatment led to concerns about the effective-
ness of the treatment.20

Gamma-retroviral vectors expressing IDUA can be
used in conjunction with a transient immune suppressant
to prevent immune responses and induce long-term
expression in vivo.20,21 However, immunosuppressants
are not ideal in clinical settings, and, to avoid the use of
one, Metcalf et al established a self-inactivating gamma-
retroviral vector using the hAAT promoter expressing
canine IDUA and an optimized woodchuck hepatitis
post-transcriptional regulatory element.21 This vector
contains a deletion in the U3 region of the 30 viral LTR
resulting in the deletion of promoting and enhancing ele-
ments after transduction and reducing the insertional
mutagenesis potential.21 By modifying the LTR, the risk
of insertional mutagenesis is potentially lessened.19,21

While they saw a reduction in insertional mutagenesis
potential when compared to other gamma-retroviral vec-
tors employing a LTR, it was significantly less effective at
treating MPS I, likely due to lower transduction
levels.20,21 Retroviral vectors are known to have a gener-
ally low transduction rate when the LTR is modified to
combat insertional mutagenesis.8,11

2.2 | Lentiviral vectors

Lentiviral vectors, originally derived from the human
immunodeficiency virus type-1 (HIV-1) lentivirus, can be
used to deliver genes because they are nonreplicating and
can stably integrate into the genome of many mammalian
cell types.22 In the context of MPS I, lentiviral vectors were
first studied by Natale et al to deliver the IDUA cDNA to
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MPS I fibroblasts in vitro, which led to a 1.5� normal level
of IDUA in transduced cells with reduced intracellular
GAGs.23 A follow-up in vivo study was conducted where
the IDUA expressing lentivirus was delivered to the
murine model for MPS I leading to an observance of
increased IDUA activity in the liver and spleen and
decreased GAG excretion with minimal immune
response.23,24 They also conducted a study on IDUA expres-
sion longevity with a single injection of the lentivirus find-
ing, after 6 months, that the mice had no detectable IDUA
levels and GAG accumulation remained consistent.24 A
major limitation is the inability to establish long-term treat-
ment with a single injection via lentiviral vector.24

Hypothesizing loss of expression may be prevented by
neonatal administration, another in vivo study focused
on treating MPS I mice to compare the efficacy of a liver-
directed lentiviral vector in neonatal and adult mice
found that neonates were able to more effectively clear
lysosomal storage after treatment than their adult coun-
terparts.25 Additionally, they concluded mice treated as
neonates developed less skeletal abnormalities than their
adult counterparts and concluded that, in a clinical set-
ting, this treatment would be best utilized in patients
who were diagnosed prenatally and longitudinal studies
would need to be conducted to establish the duration of
the therapeutic effects.25 This study also looked at how
the treatment affected the central nervous system (CNS)
by visualizing transduced cells using green fluorescent
protein (GFP) and found that, while neurons had been
transduced, astroglia showed very little GFP expression
indicating limited transduction to those cells.25

A potential ex vivo gene therapy options using autolo-
gous hematopoietic stem and progenitor cells (HSPCs)
transduced with lentiviral vectors were compared to stan-
dard nonautologous HSPC transfer and found that the
transduced HSPCs achieved high levels of lysosomal stor-
age clearance in several cell types.26 However, they note
that obtaining robust IDUA activity in the brain and skel-
eton would require a lentivirus with more efficient trans-
duction to HSPCs.26 Lentiviral vectors have several
known limitations when used to treat a metabolic disease
like MPS I including the risk of insertional mutagenesis
and immunogenicity.27,28

2.3 | Adeno-associated viral vectors

Much of the research on gene therapy for MPS I has been
conducted using adeno-associated viral (AAV) vectors
which lack viral DNA and have been engineered to
deliver DNA cargo through the cell membrane.29 Many
studies have been able to show success in transducing
MPS I cells both in vitro and in vivo using AAV
vectors.30-39

2.3.1 | CNS directed

The CNS has been intensely studied for MPS I therapy
with AAV vectors. In 2004, Desmaris et al showed that
the neuropathology of MPS I was treatable and prevent-
able in MPS I mice using AAV serotype 2 or 5 to transfer
IDUA and, with a single injection of either vector,
showed IDUA persistence at 26 weeks postinjection.31

Ellinwood et al followed this work with an experiment
using the canine MPS I model to test each vector serotype
in different age groups of dogs and concluded that, while
both serotypes delivered the gene to large portions of the
brain after intracerebral injection, younger dogs showed
greater reduction in pathology markers than their older
counterparts.32 Despite the improvements in disease
pathology, the researchers observed major residual
lesions in some of the animals and limited treatment effi-
cacy in the cerebellum.32 Wolf et al continued the pursuit
of an AAV-mediated treatment for the CNS symptoms of
MPS I by delivering IDUA cDNA using AAV8 to the MPS
I murine model's CNS. They observed high levels of
IDUA activity and lysosomal storage reduction localized
to the CNS with limited effects in other organ systems.40

One group has done several studies delivering the
IDUA gene to the CNS via an AAV vector to feline and
canine models, and rhesus macaques.33,35 The feline
and canine models showed declining IDUA activity over
time post-treatment when cerebrospinal fluid samples
were analyzed with no loss of transduced cells which sug-
gests that an immune response aimed directly at the
IDUA enzyme may be responsible for the loss of effi-
cacy.33,35 To test this hypothesis, they performed neonatal
studies in canines that demonstrated lesser immune
response to the IDUA produced than their more mature
counterparts.35 To model the potential immune response
from human IDUA in patients lacking the enzyme endog-
enously, they conducted a study in rhesus macaques that
are not IDUA deficient with two test groups. One received
the IDUA gene and the other received an irrelevant trans-
gene at birth delivered via AAV vector.35 All groups
received AAV expressing IDUA at 1 month postnatal, and
those who received the IDUA AAV at birth produce no
antibodies to IDUA.35 They attempted to tolerize the
canines to human IDUA with the same method used on
the rhesus macaques in the hope of developing a better
clinical model with more accurate immune responses to
the human IDUA, but concluded that human IDUA sim-
ply was not favorable for the canine immune system.35,36

Belur et al explored an intranasal administration of
AAV vectors for IDUA expression in the CNS as a less
invasive option to prevent and treat CNS pathologies of
MPS I.38 After first showing possible transduction to the
nasal epithelium and olfactory bulb using AAV to deliver
GFP in mice, they delivered an AAV expressing IDUA
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and found high levels of IDUA in the olfactory bulb with
normal levels in the lung and liver.38 However, this
method was considerably less efficient than injection
directly to the CNS, and required a large dose to be effec-
tive.38 Another study by Belur et al compared AAV9 and
AAVrh10 CNS-directed gene therapy in MPS I mice
and found both serotypes could achieve IDUA expression
in all tissues tested, including the brain.39 They hypothe-
sized that the IDUA found in the CNS was a result of dif-
fusion after overexpression of IDUA from the CNS
vasculature due to IDUA immunofluorescence labeling
showing an association with blood vessels.39

2.3.2 | Cornea directed

Intrastromal injection of chimeric AAV8/9 vectors con-
taining the IDUA cDNA into human cornea explants was
investigated for the treatment of MPS I-related corneal
clouding.37 After observing restored expression of IDUA
in MPS I fibroblasts, they studied normal human corneas
in vitro and found normal TUNEL staining suggesting no
increase in apoptosis.37 However, in vivo studies are
needed before moving toward clinical trials.37

2.3.3 | Liver directed

The phenomenon of “cross-correction,” in which a lyso-
somal enzyme is secreted by a cell for uptake by neighbor-
ing cells, permits the exploration of methods of limited
gene correction, such as targeting single organ. In this strat-
egy, widespread biodistribution relies on high concentra-
tions of enzyme secreted into the bloodstream, with
delivery to tissues by means of the extensive capillary net-
work. Liver-directed gene therapy has been studied in
feline and murine models of MPS I.34,36,39 Hinderer et al
led a study in the feline model where four animals were
injected with an AAV vector designed to target the liver
and express IDUA, and sustained IDUA expression and
GAG clearance were recorded in three of those four.34 They
noted a reversal of myocardial and aortic valve lesions in
treated animals with high serum levels and that these ani-
mals' heart tissue was nearly indistinguishable from WT
controls.34 However, more research is needed before mov-
ing this method further due to the small sample size.34

However, liver-directed gene therapy carries risks related to
hepatotoxicity and has potential for safety concerns.39

2.3.4 | AAV safety

While AAV has been studied intensively and produced
phenotypic correction in several models for MPS I, some

safety and efficacy concerns exist for AAV including the
inability to integrate recombinant episomal DNA into
the genome leading to short-term expression and the
potential for anti-capsid and immune responses to the
vectors, often addressed with immune suppression.29,41-45

Insertional mutagenesis-related cancers and dorsal root
ganglion pathology without clinical signs have been seen
in experimental animal treated with AAV vectors and
require further study.46-49 In recent years, safety concerns
related to cell specificity and dose levels have also come
to the forefront.43,50-53 For example, Giles et al reported
that AAV vectors unpredictably experience deamidation
of amino acids on the surface of the viral capsid leading
to a reduction in AAV vector cell specificity and
decreased batch consistency during manufacturing.50,51

Dose-related concerns with AAV vectors have become
greater after deaths occurred due to high vector copy
dose-related hepatotoxicity during a gene therapy trial for
X-linked myotubular myopathy.43,52 Additional trials
have faced dose-related concerns including AveXis's trial
for spinal muscular atrophy (SMA) and Solid Biosciences'
and Pfizer's trials for duchenne muscular dystrophy
(DMD).52,53 However, AveXis's SMA treatment went on
to receive FDA approval despite some concerns with data
accuracy.54,55 As of October 2020, both DMD gene thera-
pies were continuing clinical trials.56,57

2.4 | Other methods

Nanocarriers have been investigated as a nonviral gene
therapy to deliver nucleic acids.58,59 Schuh et al used
nanoemulsions, polymers that interact with biological
membranes to promote internalization of the attached
nucleic acids, to deliver the IDUA cDNA to the CNS
through the nasal passages.58 When comparing treated
mice to an untreated control group, a twofold increase of
IDUA activity in brain tissue was observed along with
marginal IDUA activity in the spleen and kidney, likely
from drainage of the nasal passages leading to DNA inte-
gration into other areas.58 However, elevated levels of
IL-6 in serum shows potential immune responses and
local inflammation that would need to be better charac-
terized before moving into clinical settings.58

2.5 | Gene editing

Gene editing has the potential to permanently correct
IDUA deficiency in patients by using specialized nucle-
ases that recognize and cut specific DNA sequences and
reconstruct cleavage sites with nonhomologous end-
joining or homologous recombination (HR).1,60 With
these technologies, a gene can be delivered to a cell,
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incorporated into the genome in a targeted manner, and
expressed.1 CRISPR (Clustered Regulatory Interspaced
Palindromic Repeats)/Cas9 is one of the most promising
gene editing tools for gene therapy purposes due to its
targeting accuracy when mediating gene integration.60

Originally, an immune system for Streptococcus pyogenes,
CRISPR engineers DNA by utilizing a short nucleotide
sequence (called a guide RNA) found on the genome
directly upstream of a three nucleotide protospacer adja-
cent motif.60 Cas9 recognizes and nicks the DNA creating
a double-strand break (DSB) repaired via HR to insert a
gene, making a permanent change to the genome of the
organism.60 Gene editing does have the potential for on-
and off-target effects that can cause a mutational process
called chromothripsis, where chromosomes are exten-
sively rearranged and can give rise to cancer or human
congenital disease.61-63 When beginning the process of
gene editing, the possibility of these effects must be taken
into careful consideration and the guide RNA must be
fastidiously designed with these possibilities in mind.

In pursuit of treatment for MPS I, two studies using
CRISPR/Cas9 to integrate the IDUA cDNA with liposomal
complexes had varied success.64,65 In the first study, the
liposomal complexes containing vectors with CRISPR/Cas9
and the IDUA cDNA were injected into the superficial tem-
poral vein for integration into the ROSA26 site on the
genome and were retained in the lung, heart, and liver.64

There was significant IDUA activity in serum and reduction
of GAGs in several organ systems not including the brain.64

The second study with these complexes reported that
treated mice showed improved facial bone structure and
some recovery of respiratory function when measured with
plethysmography, but limited overall improvement to car-
diovascular pathologies.65 Researchers note that the low
transfer efficiency, need for better systemic IDUA levels,
and upscaling and storage difficulties make the transition to
clinical settings with this method difficult.65,66 Another
study utilized zinc-finger nuclease mediated gene editing
for the treatment of MPS I mice and found they were able
to induce expression of IDUA to reduce lysosomal storage
using liver-directed AAV vectors as their delivery system.67

They do note that, due to the necessity of including a pro-
moter for expression, the carrying capacity of AAV is near
its limit.67 A way to combat the concerns regarding effi-
ciency, carrying capacity, and scalability is to change the
vector systems.

An understudied vector for inherited metabolic dis-
ease gene therapy is adenovirus (Ad). This is owing in
part to a treatment-related death in 1999.68,69 This patient
received a very high dose (6 � 1011 viral particles per
kilogram) of an Ad vector expressing ornithine trans-
carbamylase to the right hepatic artery resulting in a

cytokine storm, multiple organ failures, and eventual
death of the patient.68,70 As of 2013, this patient is the
only out of >16 000 to have died as a result of an Ad
vector-mediated gene therapy and the severe dose-
dependent reaction has not been replicated in nonhuman
primates or patients receiving the same dose.68 Wold and
Toth hypothesize that a genetic predisposition and strong
memory response to the virus may be responsible for the
severe reaction to the Ad vector.68

Despite this history, Ad vectors have many benefits to
consider such as the ability to transduce replicating and
nonreplicating cells with high expression levels and long-
term episomal maintenance in nonreplicating cells.8,71

Additionally, Ad vectors do not integrate into the host
genome unless coupled with gene editing tools, such as
CRISPR/Cas9, and are unconnected with germ-line
mutagenesis, unlike AAV.71,72 While no study using Ads
in MPS I exist, a few studies using Ad vectors in MPS VII
were conducted with limited success.73-75 In 1995, Li and
Davidson delivered the corrective gene human
β-glucuronidase to eyes of MPS VII mice with an Ad vec-
tor observing a reduction in lysosomal storage in the cor-
neal endothelial cells (ECs) 3 weeks postinjection with
no improvement to the corneal keratocytes despite
observing higher levels of corrective protein histochemi-
cally.73,74 Following this work, in 1999, Ghodsi et al
reported limited success in treating the CNS symptoms of
MPS VII with Ad vectors.75 Both of these studies are
dated regarding Ad vectors' potential given recent
advancements in gene editing and cell targeting with
these vectors.72,76 For example, with a modification to the
Ad vector's fiber with a myeloid binding peptide (MBP),
Ad vectors can target vascular ECs and circumvent hepa-
totoxicity and lead to more widespread disease correction
due to the close proximity of vascular ECs with the
patient's bloodstream.72,76 When considering the cell
targetability with the potential use of CRISPR/Cas9 to
establish long-term correction, Ads seem like a promising
avenue.72,76 Ad vectors have been able to accomplish
long-term expression in hemophilia B with a similar
method using AAV vectors being successful in MPS I.6,72

Both Ou et al and Stephens et al utilize a two-vector sys-
tem that separates the corrective gene on one and the
Cas9 on the other; however, the AAV method from Ou
et al couples the gRNA with the Cas9 vector while the Ad
method incorporates the gRNA with the corrective gene
vector (Figure 2).6,72 Both strategies saw a therapeutic
effect when the gene was integrated into the genome;
however, with the inclusion of MBP-mediated vascular
EC targeting, potential hepatotoxicity could be circum-
vented and lead to an effective treatment strategy for
MPS I (Figure 3).6,72,76
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FIGURE 2 A gene editing approach to gene therapy. In the strategy pictured, based on Stephens et al's 2019 method to treat

hemophilia B, two vectors are delivered to the patient via intravenous injection for a gene editing therapy strategy.72 The donor vector

includes the corrective cDNA along with the gRNA for CRISPR purposes. The editor vector includes Cas9. Placing the Cas9 and gRNA on

separate vectors ensures that only cells that receive both vectors are edited. Once injected, the vectors would make their way to the liver

where the viral capsid would interact with hepatocytes to release the encapsulated DNA into the cell. Once both vectors have provided DNA

to the cell, the CRISPR/Cas9 system takes over to integrate the corrective gene into the albumin locus. These cells are then permanently

edited to produce and secrete the corrective protein and secrete it for cross correction to surrounding cells

FIGURE 3 A proposed improved method to utilize the CRISPR/Cas9 system for the treatment of mucopolysaccharidoses type (MPS I).

The current method of gene editing therapy focuses on targeting the liver for cellular sourcing.6,72 However, this method could lead to

concerns with hepatotoxicity due to the targeting of the liver. A method targeting the vascular endothelium rather than the liver would

bypass hepatotoxicity concerns while also leading to secretion of the corrective protein directly into the blood stream for cross correction. By

utilizing an adenovirus (Ad) vector modified with a myeloid binding peptide (MBP), we can achieve this and potentially establish long-term,

stable correction of MPS I76
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3 | CONCLUSION

Current clinical treatments for MPS I are inadequate,
resulting in a residual disease burden, disability, and

early death in treated individuals. Preclinical studies of
gene therapy approaches to MPS I over the past few
decades have demonstrated that replacement of IDUA
activity is therapeutic, but have struggled with the

TABLE 1 A guide to the advantages and disadvantages of different gene therapy strategies

Gene therapy strategies Advantages Disadvantages

Retroviral vectors • Incorporates gene of interest into
host's genome for long-term
correction.10,11

• Use of a modified long terminal
repeat can reduce the risk of
insertional mutagenesis.19-21

• Possibility of insertional mutagenesis due to
nontargeted incorporation into the genome.21

• Ex vivo approaches may have a long waiting
period in which disease progression can worsen
the patient's condition.12

• High dose of retroviral vector necessary for in
vivo correction.15

• Immune suppressant necessary for long-term
expression in vivo.20,21

• A modified LTR can reduce transduction rates to
a point where their effectiveness is limited.8,11

Lentiviral vectors • Nonreplicating.22

• Stably integrate into genomes of
many mammalian cell types.22

• Unable to establish long-term correction with
single injection.24

• Treatment of neonates may be necessary for
long-term correction.25

• Low transduction efficiency to HSPCs.26

• Risks of insertional mutagenesis and
immunogenicity.27,28

AAV vectors • Lack viral DNA.29

• Engineered to deliver DNA cargo
through cell membrane.29

• Nonreplicating.29

• Able to target specific tissue
types.30-40

• When targeting the liver, hepatotoxicity is a
possibility.39

• Short-term expression without gene
editing.29,41,42

• May require use of immunosuppressant.43-45

• Possibility of inducing insertional mutagenesis
related cancers.46,48

• Possibility of inducing dorsal root ganglion
pathologies.47

• Concerns with cell specificity and necessary dose
levels.43,50-53

Nanocariers • Nonviral.58,59 • Not as well characterized as other methods.58

• Low cell specificity.58

• Potentially cause immune response.58

Liposomal complexes • Nonviral.64 • Low transfer efficiency.65,66

• Can be difficult to upscale and store.65,66

Adenovirus • Able to transduce replicating and
nonreplicating cells.8,71

• Do not integrate into host genome
without gene editing aids.71,72

• Possible to target specific cell types
with fiber modifications.72,76

• Unconnected with germ-line
mutagenesis.71,72

• Patient death in 1999 due to high dose and large
immune response.68,69

• Possibility of hepatotoxicity when liver-
targeting.72,76

Gene editing • Potential for permanent
correction.1,60

• The targeting ability of CRIPSR
allows for carefully designed changes
to the genome.60

• Requires a method for delivery to cells.64-67,72,77

• On- and off-target effects.61-63

Notes: Each gene therapy strategy has strengths and weaknesses. Here, we show the potential pitfalls and benefits of each.
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requirement for long-term IDUA restoration in both
the systemic and CNS compartments, as well as some
limitations due to safety concerns with certain vector-
based approaches (Table 1). Gene editing strategies that
yield high circulating concentrations of IDUA could be
very effective for physical disease manifestations and
could theoretically treat the CNS by penetrating the BBB
in low levels. It remains to be seen how successful gene
editing may be in achieving the necessary IDUA concen-
trations to produce a widespread therapeutic effect in the
brain as well as in the harder-to-treat parts of the body
such as heart valves, spinal meninges, and cartilage.
However, if success is achieved, the result could be a per-
manent, low-risk, “cure” for MPS I.
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