
Onogi et al. Genet Sel Evol           (2019) 51:19  
https://doi.org/10.1186/s12711-019-0461-y

RESEARCH ARTICLE

Development of a structural growth curve 
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Abstract 

Background:  Growth curves have been widely used in genetic analyses to gain insights into the growth characteris-
tics of both animals and plants. However, several questions remain unanswered, including how the initial phenotypes 
affect growth and what is the duration of any such impact. For beef cattle production in Japan, calves are procured 
from farms that specialize in reproduction and then moved to other farms where they are fattened to achieve their 
market/purchase value. However, the causal effect of growth, while calves are on the reproductive farms, on their 
growth during fattening remains unclear. To investigate this, we developed a model that combines a structural equa-
tion with a growth curve model. The causal effect was modeled with B-splines, which allows inference of the effect as 
a curve. We fitted the proposed structural growth curve model to repeated measures of body weight from a Japanese 
beef cattle population (n = 3831) to estimate the curve of the causal effect of the calves’ initial weight on their trajec-
tory of growth when they are on fattening farms.

Results:  Maternal and reproduction farm effects explained 26% of the phenotypic variance of initial weight at fatten-
ing farms. The structural growth curve model was fitted to remove the effects of these factors in growth curve analysis 
at fattening farms. The estimated curve of causal effects remained at approximately 0.8 for 200 d after the calves 
entered the fattening farms, which means that 64% of the phenotypic variance was explained by the initial weight. 
Then, the effect decreased linearly and disappeared approximately 620 d after entering the fattening farms, which 
corresponded to an average age of 871.5 d.

Conclusions:  The proposed model is expected to provide more accurate estimates of genetic values for growth pat-
terns because the confounding causal factors such as maternal and reproduction farm effects are removed. Moreover, 
examination of the inferred curve of the causal effect enabled us to estimate the effect of a calf’s initial weight at 
arbitrary times during growth, which could provide suitable information for decision-making when shifting the time 
of slaughter, building models for genetic evaluation, and selecting calves for market.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Fitting curves to longitudinal phenotypic data is a com-
mon methodology that is used in animal and plant 
genetics to gain insights into individual growth pat-
terns. Research on growth curves has a long history, 
and to date a number of curves have been used to model 
growth, including logistic [1], Richards [2], Gompertz [3], 

von Bertalanffy [4], and Brody [5] curves. These curves 
include three to four parameters that are often regarded 
as new traits and are subjected to various genetic analy-
ses, such as the estimation of genetic parameters or map-
ping of quantitative trait loci [6–10], to better understand 
the genetic architecture of growth patterns.

Regarding growth curve analysis, it is important to 
understand the impact of initial measures on subsequent 
growth and the duration of this impact. For example, 
birth weight is affected by various factors such as mater-
nal effects and the environment, which can have causal 
effects on subsequent growth. For beef cattle production 
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in Japan, calves are usually born on farms that special-
ize in reproduction, and then at about 9  months of age 
they are moved to other farms for fattening to achieve 
their market value at around 30 months of age. However, 
although the phenotypes of the calves when they enter 
the fattening farms are known to influence their growth 
patterns during the fattening phase, the duration of this 
impact is unclear. The causal effect of a phenotype such 
as initial weight will interfere with growth curve analyses 
if it is affected by factors that are not considered in the 
growth curves, such as maternal effects.

Therefore, to address this issue, we developed a growth 
curve model that considers the causal effect of initial 
weight by combining a structural equation for causality 
inference with growth curves in a Bayesian framework. 
In quantitative genetics, structural equations are often 
used to infer causal relationships between phenotypes in 
multivariate mixed models [11–13]. In the current study, 
we applied structural equation modeling to longitudinal 
data and inferred the causal effect of the initial pheno-
typic value as a curve over time by using B-splines. We 
fitted this structural growth curve (SGC) model to real 
data on weight from a beef cattle population in Japan to 
reveal the causal effect of calf weight at entry to the fat-
tening farms.

Methods
Data
The Livestock Improvement Association of Japan, Inc. 
(LIAJ) measured the weight of 3831 Japanese black cat-
tle, a major beef cattle breed in Japan, as part of their 
progeny-testing program (see Table  1 for a data sum-
mary). These animals comprised 1600 heifers and 2231 
steers born between 2006 and 2013 on 1845 farms, which 
were moved to three experimental stations for fatten-
ing at a mean (± SD) age of 251.5 (± 20.4)  d. After fat-
tening, these animals were slaughtered at a mean age of 

886.8 ± 46.7 d. The weight of each animal was measured 
on the day of entry to the station and several times dur-
ing fattening and before shipment for slaughter (weight at 
slaughter). One to six weight records were available per 
animal during the fattening period (mean = 4.4 ± 0.7). It 
should be noted that the frequency and age of measure-
ment differed between stations and years, which resulted 
in a dispersed distribution of weight records after entry 
to the stations (Fig.  1). All animals were reared and 
slaughtered according to the Japanese rules and regula-
tions for animal care.

Structural growth curve model
In the SGC model, the phenotypes of the trait of inter-
est are chronologically measured at time t = 0, 1, . . . ,T  , 
and the phenotypic values at t = 0 have a causal effect 
on the phenotypes at subsequent times. The SGC model 
for individual i can be represented by the following two-
equation system:

where Yi,0 and Yi,t are the phenotypic values at times 0 and 
t , respectively; xi,0 is the incidence row vector; β0 is the 
vector of fixed effects; ui,0 is the additive genetic effect; 
vj,i is a random effect, such as a maternal effect; J  is the 
number of random effects other than the additive genetic 
effect; ei,0 and ei,t are the residuals; �(t) is the magnitude 
of the causal effect of Yi,0 at time t ; and f  is the function 
of the growth curve with parameters Ai , Bi and Ki . In 
this study, xi,0 included sex, birth year, and birth season 
(winter, spring, summer, and fall), as well as age, which 
was standardized and added as a covariate. The mater-
nal effect and the effects of the reproductive farms were 

(1)Yi,0 = xi,0β0 + ui,0 +

J
∑

j=1

vj,i + ei,0,

(2)Yi,t = Yi,0�(t)+ f (t,Ai,Bi,Ki)+ ei,t ,

Table 1  Data summary

Animals were born on reproduction farms and moved to the experimental stations (fattening farms) at an average age of 251.5 d. The weight of each animal was 
first measured on the day of entry to the stations. Because the frequency and age of measurement differed between stations and years, weights had a dispersed 
distribution across the days after entry, as shown in Fig. 1
a  Mean values are presented ± SD

Characteristic Valuea

Number of animals with weight records 3831 (1600 heifers and 2231 steers)

Number of animals in the numerator relationship matrix 24,284

Mean number of weight records per animal 4.4 ± 0.7

Number of reproduction farms 1845

Number of experimental stations (fattening farms) 3

Average age at entry to the stations (d) 251.5 ± 20.4

Average age at slaughter (d) 886.8 ± 46.7

Average weight on the day of entry to the stations (kg) 236.0 ± 39.0 (heifers: 221.3 ± 35.4; steers: 246.6 ± 38.0)

Average weight at slaughter (kg) 729.8 ± 81.5 (heifers: 699.2 ± 76.5; steers: 751.8 ± 77.7)
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added as v1 and v2 , respectively. The Gompertz function 
was used for f :

where Ai represents the asymptotic value at t = ∞ , Bi 
is a scaling parameter that shifts the curves back and 
forth, and Ki represents the maximum growth speed (i.e., 
maturing rate).

These growth curve parameters have a hierarchical 
structure:

where xi represents the incidence row vector; βA , βB , 
and βK are the vectors of fixed effects; ui,A , ui,B , and ui,K  
are the additive genetic effects; and ei,A , ei,B , and ei,K  are 
the random residual effects. In this study, xi included 
sex and station. The additive genetic effects uA = [ui,A] , 
uB = [ui,B] , uK = [ui,K ] , and u0 = [ui,0] for i = 1, . . . ,N  , 
where N  is the number of animals, follow a multivariate 
normal distribution:

where �u is the 4 × 4 genetic covariance, ⊗ represents 
the Kronecker product, and Au is the additive genetic 
relationship matrix. The random effect vj =

[

νj,i
]

 

(3)f (t,Ai,Bi,Ki) = Aiexp
{

−Biexp(−Kit)
}

,

(4)Ai = xiβA + ui,A + ei,A,

(5)Bi = xiβB + ui,B + ei,B,

(6)Ki = xiβK + ui,K + ei,K ,

(7)







uA
uB
uK
u0






∼ N(0,�u ⊗ Au),

for i = 1, . . . ,N  also follows a multivariate normal 
distribution:

where σ2vj is the variance component and Hvj is the matrix 
defining the covariance structure among individuals, 
which can be the additive genetic relationship or the 
identity matrix. In this study, we used a numerator rela-
tionship matrix for Au and Hv1 (i.e., relationship matrices 
for the animal and maternal effects) that was generated 
by using pedigree records that went back five generations 
(involving 24,284 animals) and an identity matrix for Hv2 
(matrix for the reproductive farm effect).

The residuals were assumed to follow a multivariate nor-
mal distribution or normal distributions:

The function �(t) was modeled using a B-spline, as devel-
oped in a previous study [14], and can be written as:

(8)vj ∼ N
(

0,Hvjσ
2
vj

)

,

(9)





eA
eB
eK



 ∼ N(0,�e ⊗ I),

(10)ei,0 ∼ N
(

0, σ2eo

)

,

(11)ei,t ∼ N
(

0, σ2e

)

.

(12)�(t) =

Np−1
∑

j=0

PjSj(t),

Fig. 1  Distribution of weights in Japanese black heifers and steers. The day of entry to the experimental station (the day of the first measurement) 
was set as the initial day (day 0)
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where Np is the number of splines, Pj is the weight of 
the j-th spline, and Sj(t) represents the cubic spline. We 
determined the number of splines and the positions of 
knots based on previously used methods [14]. Briefly, 
we set Np to 8 (indicating 12 knots) and set the first and 
last four knots at t = 0 and 5TL/4 , respectively, where TL 
is the time point of the last measurement. These knots 
were repeated to constrain the span of B-splines [15]. The 
remaining knots were set at t = TL/4, TL/2, 3TL/4 , and 
TL , respectively.

The likelihood of the SGC model was derived based 
on a method that was previously used in structural 
equation modeling [16]. Equations  (1) and (2) can be 
written as:

Then, the left-hand side of each of these equations can be 
combined in the matrix form:

Because the residuals ei,0 and ei,t are assumed to be 
independent (Eqs.  10 and 11), the density of �Yi for 
i = 1, . . . ,N  can be expressed as:

Then, the density of Yi can be obtained by transforming 
ΛYi to Yi . Because the determinant of the Jacobian of the 
transformation (i.e., |�| ) is 1, the likelihood of the SGC 
model is also given by Eq.  (16). Note that because the 
time points of the measurements of the animals included 
in our study can vary between animals, t and T  were 
indexed by i (i.e., ti and Ti , respectively). Also note that TL 
is the greatest value among all Ti.

The prior distributions of the fixed effects were 
assumed to be proportional to constant values. For 
σ
2
vj , σ

2
e0 , and σ2e , a non-informative scaled inverse Chi 

squared distribution was applied: χ−2(−2, 0) . For �u 
and �e , inverse Wishart distributions were applied: 
�u ∼ IW(νu, Su) and �e ∼ IW(νe, Se) , respectively, 

(13)Yi,0 = xi,0β0 + ui,0 +

J
∑

j=1

vj,i + ei,0,

(14)Yi,t − Yi,0�(t) = f (t,Ai,Bi,Ki)+ ei,t .

(15)













1 0 . . .

−�(1) 1
. . .

...
. . . 1

−�(T ) . . . 0

0
...
0
1





















Yi,0
Yi,1
...

Yi,T









= �Yi.

(16)

N
∏

i=1

(

σ
2
e0

)− 1
2
exp

[

−
1

2σ2e0

(

Yi,0 − xi,0β0 − ui,0 − vi

)2

]

×

N
∏

i=1

T
∏

t=1

(

σ
2
e

)− 1
2
exp

{

−
1

2σ2e
[Yi,t − �(t)Yi,0 − f(t,Ai ,Bi ,Ki)]

2

}

.

where νu and νe were set to 6, and Su and Se were deter-
mined as described in the next section (Comparison of 
models). For the weights of B-splines, Pj , we assumed 
normal distributions:

The variances of P0 and P1 were multiplied by an arbi-
trary value of 1000 to make the prior distributions vague, 
and χ−2(−2, 0) was applied to the prior distribution of σ2p.

Comparison of models
We compared the SGC model with the ordinal growth 
curve model, which does not consider causal effects. This 
model can be described by:

The hierarchical structure of this model is the same as 
that of the SGC model except that:

where �∗

u is the 3 × 3 genetic covariance. We assumed 
that �∗

u ∼ IW
(

v∗u, S
∗
u

)

 , where v∗u was equal to 5, and S∗u 
was determined as outlined below. This model is similar 
to those used in previous studies [17–19].

When fitting the SGC model to the data, the day of 
entry to the experimental stations was set as the initial day 
( t = 0 ). When fitting the ordinal growth curve model to the 
data, either the day of entry or the day of birth was set as 
the initial day [referred to as the growth curve model fitted 
to the entry day data (GC_A) and birth day data (GC_B), 
respectively]. The unit of time was  d in each model. We 
compared these models using the mean log-likelihood, the 
deviance information criterion (DIC) [20], and the widely 
applicable information criterion (WAIC) [21].

First, we fitted the GC_B model to the data using the 
scaling parameters S∗u and Se , which were arbitrarily 
determined as:

In the final analyses, S∗u , and Se were set following the 
posterior means of the preliminary analysis. In addition, 

(17)P0 ∼ N
(

0, 1000σ2p

)

,

(18)P1 ∼ N
(

0, 1000σ2p

)

,

(19)Pj ∼ N
(

2Pj−1 − Pj−2, σ
2
p

)

for j ≥ 2.

(20)Yi,t = f (t,Ai,Bi,Ki)+ ei,t .

(21)





uA
uB
uK



 ∼ N
�

0,�∗

u ⊗ Au

�

,

(22)S∗u = Se =





1e+ 4 0 0
0 0.65 0
0 0 5e− 7



.
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we fitted a linear mixed-effect model, which was the 
same as Eq. 1 in the SGC model, to the entry day weight 
using airemlf90 ver. 1.103 [22], with the default value of 
1e−10 as the convergence criterion. Su was determined 
from the estimates provided by these two preliminary 
analyses (the GC_B and linear mixed models for the 
weight on entry day). The off-diagonal elements in Su that 
corresponded to the covariances between u0 and uA , uB , 
and uK were determined as the empirical covariances of 
these random effects obtained from the two preliminary 
analyses.

Estimation of parameters
The parameters in the SGC, GC_A, and GC_B models 
were estimated using the Markov chain Monte Carlo 
(MCMC) method. Gibbs sampling could be applied to 
all of the parameters except Ai , Bi , Ki , and Pj . β0 , βA , βB , 
and βK had normal posterior distributions, whereas vj , 
and uA , uB , uK , and u0 had multivariate normal poste-
rior distributions. The posterior distributions of βA , βB , 
βK , uA , uB , and uK could be derived by considering the 
growth curve parameters ( Ai , Bi and Ki ) as response vari-
ables. σ2vj , σ

2
e0 , σ

2
e , and σ2p had scaled inverse Chi squared 

posterior distributions, while �u , �∗

u , and �e had inverse 
Wishart posterior distributions, all of which were derived 
following a previous study [23]. Since the posterior distri-
butions of Ai , Bi , Ki , and Pj were not closed form expres-
sions, Metropolis–Hastings sampling was applied by 
adopting a random-walk algorithm.

The number of iterations for the SGC model was 2.5 
million with the first 2 million being discarded. By con-
trast, there were 1 million iterations for both the GC_A 
and GC_B models, with the first 0.6 million being dis-
carded. The sampling interval was 10 for each model. We 
ran three chains with different initial values and checked 
the convergence of MCMC, as described previously [24].

Parametric bootstrapping
To evaluate the accuracy of the parameter estimation 
of the SGC model, parametric bootstrapping was con-
ducted. The weight at slaughter of each animal was simu-
lated using the estimates of the variance components, the 
fixed effects, and the causal effect generated by the SGC 
model. A single-trait animal model that included sex and 
experimental station as fixed effects and age as a covari-
ate was then fitted to the simulated weights to estimate 
the heritability at slaughter. This procedure was repeated 
1000 times and the heritability that was estimated from 
the simulated data was compared with that estimated 
from the real data.

Results and discussion
Convergence of the MCMC chains
The R̂ statistics of the convergence diagnosis [24] were 
calculated for the log-likelihood values and the param-
eters for each model. The R̂ statistics decreased to 1.0 as 
the MCMC chains converged. The statistics for the log-
likelihood values were 1.047, 1.060, and 1.029 for the 
SGC, GC_A, and GC_B models, respectively; these val-
ues were lower than 1.1, which was previously suggested 
to be a rough threshold [24]. Most R̂ statistics for the 
parameters were also lower than the threshold, with the 
exception of a few parameters in the SGC model, includ-
ing P5 (1.153), P6 (1.185), and P7 (1.148), which are the 
weights of splines, and the additive genetic variances for 
parameters A (1.122) and Yi,0 (1.127). However, the statis-
tics for these parameters are close to 1.1, indicating that 
the MCMC chains for each model converged to station-
ary distributions. The SGC model took more than three 
times as many iterations as the other models to reach 
convergence (2 million vs. 0.6 million), which may be due 
to the model complexity.

Comparison of models using information criteria
The mean log-likelihood and two information crite-
ria (DIC and WAIC) were calculated for each model 
(Table 2). The mean log-likelihood was much higher and 
the information criteria were much lower for the SGC 
and GC_A models, in which the entry day was set as the 
initial day, than for the GC_B model, in which the day 
of birth was set as the initial day. Thus, it appears that 
setting the entry day as the initial day provides a bet-
ter description of the patterns of weight change. This 
result was expected because the GC_B model covered 
the growth periods on both the reproduction and fat-
tening farms without considering the transition between 
the two, while the SGC and GC_A models circumvented 
this issue by setting the entry day as the initial day. In 

Table 2  Mean log-likelihood and  information criteria 
for each model

a  Structural growth curve model fitted to the data with the day of entry to the 
experimental station set as the initial day
b  Growth curve model fitted to the data with the day of entry to the 
experimental station set as the initial day
c  Growth curve model fitted to the data with the day of birth set as the initial 
day
d  Deviation information criterion
e  Widely applicable information criterion

Model Mean log-likelihood DICd WAICe

SGCa − 5,523,358.6 7,871,834.7 12,466,275.7

GC_Ab − 5,574,092.6 7,872,045.8 12,567,909.0

GC_Bc − 7,335,939.9 10,341,550.1 16,537,364.6
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addition, the mean log-likelihood was higher and the 
information criteria were lower for the SGC model than 
for the GC_A model (Table  2), which suggests that the 
initial weight had a causal effect on subsequent growth 
that was effectively considered in the SGC model.

Causal effect of the initial weight
The curve of the causal effect of the initial weight, �(t) , 
that was inferred by the SGC model is shown in Fig.  2. 
�(t) remained at approximately 0.8 for 200  d after the 
calves had entered in the stations, then it exhibited a lin-
ear decrease until it disappeared at about day 620 after 
entry. Although many animals (1685 of the 3831 ani-
mals) were slaughtered before this time point, the causal 
effect on slaughter age was only 0.064 ± 0.058, which 
suggests that approximately 0.4% of the phenotypic vari-
ance of slaughter weight was explained by the variance 
of the initial weight (derived as the square of the average 
magnitude).

The causal effect of initial measures estimated as �(t) 
can provide valuable information when building models 
for genetic evaluation in progeny-testing programs: if the 
causal effect of the initial weight is high, the reproduction 

farm and maternal effects will be significant at the time 
of slaughter, because these effects represented a certain 
proportion of the variances of the initial weight (Table 3). 
Consequently, the reproduction farm and maternal 
effects need to be included in the evaluation model. The 
evaluation model for carcass traits of the Japanese black 
cattle breed that is currently used by LIAJ includes the 
effects of sex, fattening farm, birth month and year, and 
age as fixed effects but does not consider reproduction 
farm and maternal effects. Our results justify the use of 
such a model for the evaluation of carcass traits in this 
breed because the causal effect of the initial weight is 
not significant. Although this can be assessed by fitting 
ordinal mixed models to data obtained during the period 
of interest (e.g., between 200 and 300  d after entry), a 
key strength of the SGC model is that the length of the 
period that may affect the inference does not need to be 
determined.

Several animals showed a relatively high causal effect of 
the initial weight at the time of slaughter because of their 
(probably unintended) early slaughter. For example, 14 
animals had coefficients of causal effect that were higher 
than 0.316, which indicates that about 10% of the pheno-
typic variance at slaughter was explained by the variance 
of initial weight. Consequently, since approximately 21% 
of the variance of initial weight could be explained by 
the reproduction farm effect (Table 3), about 2.1% of the 
variance of slaughter weight of these 14 animals could be 
explained by the effect of reproduction farm, which is not 
considered in the current model for genetic evaluation. 
Consequently, since these animals may affect the results, 
they should be eliminated from the genetic evaluation.

The estimated curve suggests that if slaughter of calves 
is planned at approximately 620  d after purchase, their 
growth can be recovered on the fattening farm if it was 
less than optimal on the reproduction farm. However, if 
animals are slaughtered earlier than 620 d, e.g., to reduce 
feeding costs, the causal effect of the initial weight will 
linearly increase as the slaughter age decreases (Fig.  2). 
For example, if the animal is slaughtered 440 d after pur-
chase (approximately half a year earlier than 620 d), the 
effect of the initial phenotype increases to 0.405, suggest-
ing that 16.4% of the phenotypic variance at slaughter is 
explained by the variance of initial weight. Thus, growth 

Fig. 2  Estimated causal effect of the initial weight on the weight 
of Japanese black cattle during the fattening period. The y-axis 
denotes the magnitude of the causal effect. The day of entry to the 
experimental station was set as the initial day (day 0). Solid line: 
posterior mean; dotted line: 95% highest posterior density interval

Table 3  Variance components of the initial weight estimated by the structural growth curve model

Values are posterior means with the 95% highest posterior density interval shown in parentheses

Additive genetic effect Maternal effect Reproduction farm effect Residual

Variance 499.4 (432.3, 568.7) 49.6 (10.3, 90.5) 219.0 (180.8, 259.1) 265.0 (218.0, 310.7)

Proportion to phenotypic 
variance

0.48 (0.43, 0.54) 0.05 (0.01, 0.09) 0.21 (0.18, 0.25) 0.26 (0.21, 0.31)
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on reproduction farms should be considered with cau-
tion when selecting calves at market.

This is the first report on the causal effect of an initial 
phenotype on subsequent growth. However, rough esti-
mates of this effect have been reported using multivariate 
analyses. For example, Meyer et  al. [25] used four-vari-
ate analyses consisting of the birth, weaning (120–300 d 
after birth), yearling (301–500 d), and final (501–700 d) 
weights to estimate maternal genetic correlations in 
Hereford cattle and in a synthetic breed, and found that 
the correlations between weaning and yearling weights 
were 0.97 and 0.99 in Hereford and the synthetic breed, 
respectively, while those between weaning and final 
weights were 0.92 and 0.88, respectively. Similarly, Eler 
et  al. [26] found that the maternal genetic correlation 
between weaning and yearling weights was 0.84 in Nelore 
cattle. In these studies, the maternal effects during the 
post-weaning periods were considered as a carry-over 
of those on the weaning weight. However, if the weaning 
weight is regarded as the initial phenotype, these corre-
lations can be regarded as estimates of the causal effect. 
The causal effect that was estimated by the SGC model 
(Fig.  2) was lower than these estimates, which is likely 
due to differences in breeds and management conditions 
such as the type of feed.

Genetic parameters
Estimates of the heritability and genetic correlations 
of the growth curve parameters ( A , B , and K  ) are in 
Table  4. High heritability estimates were obtained for 
each parameter in all three models. By contrast, Takeda 
et al. [27] obtained much lower estimates i.e., 0.61, 0.08, 
and 0.17 for A , B , and K  , respectively, in a population of 
Japanese black cattle. Two factors may explain this dis-
crepancy: (1) the inference approach that was used, i.e., 

Takeda et al. [27] estimated the growth curve parameters 
and variance components for the parameters separately 
(two-step approach), whereas we estimated these simul-
taneously in our models; the two-step approach was 
previously shown to underestimate heritability because 
uncertainty in the growth curve parameter estimation 
is added to the residual variance in the subsequent vari-
ance component estimation for the growth curve param-
eters [28]; and (2) the number of records per animal, i.e., 
in [27], eight weight records per animal were available, 
whereas an average of 4.4 records were available for each 
animal in our study. A smaller number of records per 
animal may lead to an overestimation of the heritabil-
ity because the growth curve parameters would tend to 
approach the prior means [i.e., xiβA + ui,A , xiβB + ui,B , 
and xiβK + ui,K  in Eqs.  (4), (5), and (6)], resulting in 
decreased residuals ( ei,A , ei,B , and ei,K  ). To investigate the 
possibility that we overestimated the heritability, we con-
ducted parametric bootstrapping, whereby the weights 
at slaughter were simulated with the parameter values 
estimated by the SGC model and the heritability was esti-
mated using an animal model. We found that the mean 
heritability was 0.89 (± 0.09), compared to 0.73 for the 
heritability estimated from real records, which suggests 
that overestimation was an issue. Nevertheless, since the 
observed heritability estimate was higher than the lower 
5% quantile of the simulated values (0.71), we consider 
that the heritability estimates generated in our study did 
not deviate substantially from the true values. Because 
heritabilities of body weight of Japanese Black cattle are 
often relatively high (e.g., 0.61 [29] and 0.56 [30] for car-
cass weight), high heritabilities for growth curve param-
eters would be plausible. However, we also admit that 
the heritabilities estimated in this study are higher than 

Table 4  Heritability (diagonal), genetic correlation (lower triangular), and  residual correlation (upper triangular) 
of the growth curve parameters A, B, and K estimated by each model

Values are posterior means, with the 95% highest posterior density interval shown in parentheses
a  Structural growth curve model fitted to the data with the entry day to the experimental station set as the initial day
b  Growth curve model fitted to the data with the entry day to the experimental station set as the initial day
c  Growth curve model fitted to the data with the birth day set as the initial day

A B K

SGCa
A 0.97 (0.90, 1.00) 0.34 (− 0.20, 0.83) − 0.57 (− 0.96, − 0.05)

B 0.63 (0.57, 0.69) 0.91 (0.84, 0.97) − 0.30 (− 0.79, 0.22)

K − 0.69 (− 0.73, − 0.64) − 0.67 (− 0.76, − 0.58) 0.91 (0.78, 0.99)

GC_Ab
A 0.96 (0.89, 0.99) 0.35 (− 0.25, 0.83) − 0.42 (− 0.92, 0.20)

B 0.69 (0.59, 0.77) 0.66 (0.53, 0.78) − 0.26 (− 0.76, 0.34)

K − 0.77 (− 0.81, − 0.73) − 0.67 (− 0.75, − 0.58) 0.96 (0.91, 0.99)

GC_Bc
A 0.94 (0.89, 0.99) 0.61 (0.21, 0.91) − 0.51 (− 0.93, 0.03)

B − 0.30 (− 0.44, − 0.17) 0.69 (0.55, 0.84) − 0.28 (− 0.78, 0.30)

K − 0.75 (− 0.79, − 0.71) 0.65 (0.55, 0.74) 0.95 (0.91, 0.99)
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expected, and thus, further investigations are required to 
verify this issue.

The genetic correlations between growth curve param-
eters differed according to the model that was used. The 
correlations between A and B were positive in the SGC 
and GC_A models but negative in the GC_B model, 
whereas the correlations between B and K  were negative 
in the SGC and GC_A models but positive in the GC_B 
model. These opposite tendencies may be due to the day 
of entry in the stations being set as the initial day in the 
SGC and GC_A models, although the actual age of the 
calves’ at entry differed (251.5 ± 20.4 d). Because param-
eter B shifts the growth curve back and forth, setting the 
entry day as the initial day would affect the estimates of 
B and its correlation with the other parameters. Simi-
lar contrasting results in genetic correlations were also 
found in two independent pig studies: Koivula et  al. [8] 
reported strong negative genetic correlations between A 
and K  (− 0.80) and between B and K  (−0.80) but a posi-
tive correlation between A and B (0.88), whereas Coyne 
et al. [9] reported negative correlations between A and B 
(− 0.69) and between A and K  (− 0.78) but a positive cor-
relation between B and K  (0.76). Although the estimates 
in the latter study [9] differed depending on the method 
used for estimation, a negative correlation between A and 
B was consistently observed. Interestingly, Koivula et al. 
[8] used test age, starting from when the body weight was 
approximately 30 kg, which may have affected the estima-
tion of the genetic correlation, as observed in our study. 
It will be difficult to determine which day (birth or entry) 
is most valid as the initial day, and this may depend on 
the data. However, these findings indicate that genetic 
correlations between the parameters must be interpreted 
with caution.

The interpretation of genetic correlations is also com-
plicated by compensation between the parameters. For 
example, K  which increases the maximum growth speed, 
also increases the mature weight controlled by A . There-
fore, when fitting a curve to a measured value of mature 
weight, K  should decrease as A increases, and vice versa, 
resulting in a negative correlation between the two. This 
may explain why a negative correlation was consistently 
observed between these parameters in previous studies 
[8, 9] and the present study. Thus, the biological interpre-
tation of the genetic correlation between growth curve 
parameters may be controversial.

Conclusions
By fitting our newly developed SGC model to data on 
weight of beef cattle, we were able to estimate the causal 
effect of the initial weight (weight on the day of entry 
to the stations) on growth. Because all of the evaluated 
criteria supported the proposed model, we suggest that 

the SGC model can provide more accurate estimates of 
the genetic effects on growth, particularly for the cat-
tle cohort that was assessed in this study. Moreover, our 
data suggest that the inferred curve of the causal effect 
can provide valuable information for planning the time 
of slaughter, building models for genetic evaluation, and 
selecting calves at markets.
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