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Abstract  
Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the 

use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells 
derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were 
pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM 

β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and    
5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with 
formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and 

immunofluorescence staining showed neuron specific enolase positive cells were present in each 
group except the control group. A greater number of neuron specific enolase positive cells were 
observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 

hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups 
except the control group and Nissl body numbers were greatest in human placenta-derived 
mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. 

These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal 
stem cells into neuronal-like cells in a time- and concentration-dependent manner. 
Key Words: uric acid; human placenta-derived mesenchymal stem cells; differentiation; neural cells  

Abbreviations: hPMSCs, human placenta-derived mesenchymal stem cells; BME, 
β-mercaptoethanol; NSE, neuron specific enolase 

  

 

INTRODUCTION 
    

Human placenta-derived mesenchymal 

stem cells (hPMSCs) have the potential to 

differentiate in vitro and in vivo, into neural 

cells, therefore providing a novel, 

therapeutic stem cell source for the 

treatment of neurodegenerative diseases, 

including Parkinson’s disease, brain 

ischemia and amyotrophic lateral 

sclerosis
[1-3]

. 

Uric acid is the end product of purine 

nucleotide metabolism. Experimental, 

clinical and epidemiologic evidence suggest 

that hyperuricemia plays a role in the 

pathogenesis of certain disease processes, 

including hypertension, insulin resistance, 

type II diabetes, cardiovascular and 

cerebrovascular evens
[4-8]

. Recent studies 

have shown uric acid to be an important 

serum antioxidant involved in the 

scavenging of single oxygen, peroxyl and 

hydroxyl radicals, thus protecting cells from 

oxidative damage
[9-10]

 and delaying the 

onset of Alzheimer’s disease and 

dementia
[11-12]

. Uric acid also stimulates 

proliferation of some cell types including T 

cells
[13]

 and endothelial progenitor cells
[14]

 

and has been shown to protect 

dopaminergic neurons
[15]

. That is, uric acid 

has dual effects within the human body. 

Neuronal differentiation of mesenchymal 

stem cells (MSCs) is typically promoted 

using antioxidants including 

β-mercaptoethanol (BME), dimethyl 

sulfoxide and butylated hydroxyanisole
[16]

. In 

the present study, uric acid and BME were 

used to induce differentiation of hPMSCs 

into nerve cells in order to investigate the 

effects of uric acid during the differentiation 

process.  

 

RESULTS 
 

Morphology of isolated and cultured 

hPMSCs  

Five days after initial hPMSCs seeding, 

phase-contrast microscopy revealed small, 

adherent cell colonies with fibroblast-like 

morphology (Figure 1A). Fibroblast-like cells 

continued to proliferate forming a 

homogeneous layer. hPMSCs reached 

80-90% confluence 2 weeks later. Cell 
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passaging significantly accelerated cell growth and 

expansion, resulting in a more homogeneous culture with 

predominantly spindle-shaped morphology (Figure 1B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phenotyping of cultured hPMSCs  

Immunofluorescence analysis revealed that hPMSCs 

were positive for CD44, a marker for mesenchymal stem 

cells (Figure 2A) and negative for CD34, a marker for 

hematopoietic cells (Figure 2B), indicating that the 

isolated cells were hPMSCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of uric acid on hPMSCs proliferation  

A methyl thiazolyl tetrazolium (MTT) assay indicated 

hPMSC proliferation was enhanced by uric acid in a 

dose-dependent manner (0.2, 0.4 and 0.8 mM). However, 

hPMSCs treated with 1.2 mM uric acid resulted in 

decreased proliferation. These results indicate that low 

and high concentrations of uric acid can accelerate and 

inhibit proliferation of hPMSCs respectively. The 

logarithmic growth phase of hPMSCs began at day 3 

(Figure 3). 

Uric acid induced differentiation of hPMSCs into 

neurons 

Immunocytochemistry and immunofluorescence staining 

was used to detect neuron specific enolase (NSE) 

expression in differentiated hPMSCs. NSE expression 

was induced in the presence of 0.2, 0.4 or 0.8 mM uric 

acid in combination with 5 mM BME. NSE expression 

levels were greatest after exposure of hPMSCs to    

0.8 mM uric acid for 10 hours (Figures 4, 5, Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Uric acid induced Nissl bodies in hPMSCs 

After neural cell induction of hPMSCs for 24 hours with 0, 

0.2, 0.4 or 0.8 mM uric acid in combination with 5 mM 

BME, Giemsa staining was used to detect Nissl bodies in 

the cytoplasm of differentiated cells. Nissl bodies were 

detected in all groups except the control group (Figure 6). 

The quantity of Nissl bodies was most abundant in the 

0.8 mM uric acid group.  

 

DISCUSSION 
 

MSCs can be induced to differentiate into various kinds 

of cells in vitro, including osteoblasts, adipocytes and 

nerve cells
[17-20]

. In addition, MSCs can be used to treat 

nervous system diseases and myocardial injury
[21-23]

, 

promote the function of vascular cells and accelerate 

wound healing by promoting the formation of new blood 

vessel
[23-25]

. MSCs transplanted into animal models 

Figure 1  Morphology of human placenta-derived 
mesenchymal stem cells using phase-contrast inverted 
microscopy (× 100); 10 days after initial seeding (A) and 

after expansion to passage 3, showing homogeneous, 
spindle-shaped morphology (B).  

Cell homogeneity was significantly increased after 
passage 3. 

A B 

Figure 2  Immunophenotyping of human placenta-derived 
mesenchymal stem cells using immunofluorescence 
staining and immunofluorescence microscopy (× 100).  

Cells were positive for CD44 (A) and negative for CD34 (B). 

A B 

Figure 3  Effect of uric acid on the proliferation of human 
placenta-derived mesenchymal stem cells using a 
standard methyl thiazolyl tetrazolium assay.  

Data are expressed from a mean of 12 wells for each 
group. 0.2, 0.4 and 0.8 mM uric acid enhanced cell 
proliferation in a dose-dependent manner. 
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Figure 4  Neuron specific enolase expression in human 
placenta-derived mesenchymal stem cells induced with 
different concentrations of uric acid using 

diaminobenzidine immunocytochemical staining.  

Light microscopy (× 100), 0.8 mM (A), 0.4 mM (B), 0.2 mM 
(C), 0 mM (D) uric acid groups.  

Increased concentrations of uric acid resulted in increased 
diaminobenzidine staining (brown stain in cytoplasm), 
especially within the 0.8 mM uric acid group. 

A B 

C D 
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display a protective effect towards damaged brain and 

spinal cord tissues
[26-27]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data from this study indicate MSCs from placental tissue 

could act in an identical manner for similar therapeutic 

applications. 

MSCs have been harvested from a number of tissues, 

including adipose, cord blood, bone marrow and 

embryonic
[28-30]

. Recent evidence shows that cells 

derived from human placenta tissue have unlimited 

self-renewal capabilities, coupled with an ability to 

differentiate into many cell types, arousing increased 

attention for their use in regenerative medicine
[31]

. 

However, human placenta tissue is reported to contain 

limited numbers of mononuclear cells. Although hPMSCs 

can be successfully induced into nerve cells, the quantity 

of induced cells is not sufficient, therefore limiting their 

clinical application. Consequently, there is a requirement 

for obtaining sufficient hPMSC numbers and ensuring 

their efficient induction into neural cells. 

There is at present, no uniform standard for the 

identification of hPMSCs. hPMSCs are typically identified 

using cell morphology characteristics, cell surface 

marker expression and their ability to differentiate 

through various lineages
[32-33]

. In the present study, 

phase-contrast microscopy revealed hPMSCs with 

fibroblast-like morphology. Immunofluorescence analysis 

results showed that the cells were CD44 positive and 

CD34 negative, indicating a relatively pure hPMSCs 

population was obtained. 

Both uric acid and BME are powerful antioxidants that 

exist naturally in the human body
[34]

. Using BME and 

dimethyl sulfoxide, Woodbury et al 
[35]

 reported that 

MSCs could be induced to differentiate into nerve cells. 

In the present study, we first investigated the influence of 

uric acid on promoting proliferation of hPMSCs. MTT 

assay data showed that uric acid used at low 

concentration (0.2, 0.4 and 0.8 mM) accelerates hPMSC 

proliferation, while at high concentration (1.2 mM), it 

inhibits hPMSC proliferation.  

Interestingly, uric acid was found to accelerate 

differentiation of hPMSCs into neural cells in a time- and 

concentration-dependent manner, predominantly in cells 

treated with 0.8 mM uric acid. 

In conclusion, uric acid accelerates proliferation of 

hPMSCs and their subsequent differentiation into 

neuronal-like cells in a time- and 

concentration-dependent manner. Using this method, we 

obtain greater numbers of hPMSCs and subsequent 

neuronal-like cells derived from hPMSCs. This may 

provide a new method for the scientific and clinical 

application of hPMSCs. 

 

MATERIALS AND METHODS 
 

Design 

An in vitro comparative observation of repetitive 

measurements.  

Time and setting 

Experiments were performed in the Gout Laboratory of 

the Affiliated Hospital of Qingdiao University Medical 

College, China, from March to August 2011. 

Materials 

Human placentas were provided by the Department of 

Obstetrics and Gynecology of Qingdao Marie Hospital, 

China. The parturient had no severe or communicable 

Figure 5  Neuron specific enolase expression in human 
placenta-derived mesenchymal stem cells induced with 
different concentrations of uric acid (immunofluorescence 
staining).  

Immunofluorescence microscopy (× 100) images showing 
0.8 mM (A), 0.4 mM (B), 0.2 mM (C), 0 mM (D) uric acid 
groups.  

Increased concentrations of uric acid resulted in increased 

fluorescein isothiocyanate staining (green), especially 
within the 0.8 mM uric acid group. 

A B 

C D 

Table 1  NSE positive cells (%) 

Group 6-hour induction 10-hour induction   

0.8 mM UA  62.9a 81.8b   

0.4 mM UA  40.2a 53.6b   

0.2 mM UA  25.0a 45.9b   

0 mM UA  17.2 32.9   

 
Ten fields of view were randomly selected and 100 cells were 

quantified using light microscopy (× 100).  

The ratio of NSE positive cells in each group was calculated. aP < 

0.05 vs. 0 mM UA group; bP < 0.05 vs. 6-hour induction (analysis of 

variance followed by post hoc analysis). NSE: Neuron specific 

enolase; UA: uric acid. 

Figure 6  Nissl body formation within human 
placenta-derived mesenchymal stem cells following 
induction with 0.8 mM uric acid and 5 mM 

β-mercaptoethanol for 24 hours (Giemsa staining, light 
microscopy, × 200).  

Nissl bodies stained dark blue in cytoplasm (arrows). 
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diseases. Informed consent was obtained from the 

parturient (including abortion and voluntarily donation). 

Methods  

Isolation and culture of hPMSCs 

Harvested placentas were washed several times in 

phosphate buffered saline (PBS) to remove blood cells 

and subsequently sheared into 1 mm × 1 mm × 1 mm 

pieces using eye scissors. Tissue digestion was 

performed using 0.1% collagenase II (Sigma, St. Louis, 

MO, USA) solution at 37°C for 45 minutes and cell 

filtration was performed using a 200 mesh sieve. The 

resulting cell sediment was obtained by centrifugation at 

1 000 r/min for 5 minutes at room temperature. The 

mononuclear cell fraction was separated by density 

gradient centrifugation and incubated in Dulbecco's 

modified Eagle's medium (DMEM)/F12 (Gibco, Carlsbad, 

CA, USA) supplemented with 10% heat-inactivated fetal 

bovine serum (HI-FBS, HyClone, Logan, Utah, USA) at 

37°C in a humidified atmosphere containing 5% CO2 in a 

culture flask (T-175). Medium was replaced every 7 days 

thereafter. Non-adherent cells were progressively 

discarded by medium replacement. Cells were passaged 

to other culture flask (T-175) by trypsinization when 

MSCs reached 80% confluence. After passage, medium 

was replaced every 3 days. Cell morphology was 

observed using a phase-contrast inverted microscope 

(Olympus, Tokyo, Japan). 

Immunofluorescence analysis of hPMSCs surface 

markers  

hPMSCs (P3) were seeded into wells of a 6-well plate at 

a density of 5.0 × 10
4
 cells/well. On reaching 50-60% 

confluence, expanded hPMSCs were washed three 

times with PBS, fixed with 4% paraformaldehyde (pH 7.4, 

30 minutes) and rinsed with PBS (3 × 5 minutes). Cells 

were incubated for 1 hour with appropriate fluorochrome- 

conjugated antibody, either CD44-FITC or CD34-FITC 

(eBioscience, San Diego, CA, USA), and immediately 

analyzed by immunofluorescence (Olympus). 

MTT detection for hPMSCs viability  

hPMSCs (P4) were digested using 0.25% trypsin and 

seeded into four 96-well plates at a density of 1 000-  

10 000 cells per well. hPMSCs were starved by replacing 

the medium with serum-free DMEM/F12 for 24 hours to 

maintain synchronization at the same cell cycle phase. 

hPMSCs were treated with 0, 0.2, 0.4, 0.8, or 1.2 mM 

uric acid (Sigma). On day 2 of culture, 20 μL MTT (Sigma) 

was added to each well, the plate was placed in a box 

with volume fraction 5%CO2 at 37°C to allow precipitation 

for 4 hours. 150 μL dimethyl sulfoxide (Sigma) was then 

added to each well. A shocking device was used for   

10 minutes to lyse the cells and an enzyme-linked 

immune detector (Thermoelectron Corporation, Helsinki, 

Finland) was used to measure absorbance of each well 

at 485 nm. Absorbance was detected again at 3, 5 and  

7 days to obtain a cell growth curve. 

Grouping and intervention 

hPMSCs (P4) were digested using 0.25% trypsin and 

seeded into three 24-well plates at a density         

5.0 × 10
4
 cells per cm

2
. Experimentation was performed 

across five groups: untreated control, 0.8, 0.4, 0.2 and  

0 mM uric acid groups. 

On reaching 50-60% confluence, hPMSCs were 

pre-induced in serum-free culture medium containing   

1 mM BME (Sigma) and uric acid (0, 0.2, 0.4 and     

0.8 mM)
[14]

 for 24 hours. This was replaced with 10% 

HI-FBS containing culture medium with 5 mM BME and 

identical respective concentrations of uric acid for 6 or  

10 hours. Neuronal-like cells were identified using 

immunochemical and immunofluorescent staining. 

Giemsa staining was performed 24 hours after induction. 

Untreated group hPMSCs were cultured in DMEM/F12 

medium supplemented with 10% HI-FBS in absence of 

BME or uric acid.  

Immunocytochemical staining for NSE expression 

hPMSCs were washed with PBS (3 × 10 minutes) and 

fixed with 4% paraformaldehyde (30 minutes/room 

temperature). After further PBS washes (3 ×          

10 minutess), cells were permeabilized with 0.1%    

Triton X-100 for 10 minutes prior to exposure to 3% 

bovine serum albumin (Sigma) for 15 minutes and 

incubation for 1 hour with primary rabbit anti-human NSE 

monoclonal antibody (1:100 dilution; Saierbio 

Corporation, Tianjin, China). Cells were washed three 

times in PBS and incubated for 30 minutes with 

secondary goat anti-rabbit antibody (1:200 dilution; BIOS 

Corporation, Sapulpa, OK, USA). Cells were then treated 

with avidin-biotin (BIOS Corporation) for 30 minutes, 

washed with PBS (2 × 5 minutes). 3,3’-diaminobenzidine 

tetrahydrochloride dehydrate (BIOS Corporation) 

staining substrate was mixed with the cells and left to 

react for 5 minutes. Addition of PBS for 5 minutes 

stopped the reaction and cells were washed twice with 

PBS. Finally, cells from each group were visualized by 

microscopy (Olympus) and photographed with a Nikon 

camera (magnification, × 200; Tokyo, Japan). 

Immunofluorescence staining for NSE expression 

hPMSCs were washed, fixed and permeabilized using 

the same methods as immunocytochemistry. The cells 

were incubated for 1 hour with the primary rabbit 

anti-human NSE monoclonal antibody (dilution at 1:100). 

After the reaction with the primary antibody, the cells 

were washed three times in PBS and incubated for    

30 minutes with the secondary fluorescein isothiocyanate 

labeled goat anti-rabbit NSE antibody (dilution at 1:200; 

eBioscience). The cells were washed twice for 5 minutes 

with PBS, visualized using immunofluorescence 

microscopy (Olympus) and photographed with a Nikon 

camera (magnification, × 100). 

Giemsa staining for Nissl body formation 

hPMSCs were washed with PBS (3 × 10 minutes) and 

fixed with 4% paraformaldehyde (30 minutes/room 

temperature) prior to subsequent washing with PBS (3 × 

10 minutes) and treatment with 1 mL/well Giemsa stain 

(Sigma). Cells were incubated in a box with 5% CO2 at 

37°C for 30 minutes, washed with PBS and visualized 

using light microscopy (Olympus). Photographs were 
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taken using a Nikon camera (magnification, × 400). 

Statistical analysis 

Data was expressed as a mean. Results were analyzed 

using analysis of variance followed by post hoc 

assessment using SPSS 17.0 software (SPSS, Chicago, 

IL, USA). A value of P < 0.05 was considered statistically 

significant.  
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