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Prediction paradigm involving time series applied to total blood
issues data from England
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BACKGROUND: Blood products are essential for
modern medicine, but managing their collection and
supply in the face of fluctuating demands represents a
major challenge. As deterministic models based on
predicted changes in population have been problematic,
there remains a need for more precise and reliable
prediction of demands. Here, we propose a paradigm
incorporating four different time-series methods to predict
red blood cell (RBC) issues 4 to 24 weeks ahead.
STUDY DESIGN AND METHODS: We used daily
aggregates of RBC units issued from 2005 to 2011 from
the National Health Service Blood and Transplant. We
generated a new set of nonoverlapping weekly data by
summing the daily data over 7 days and derived the
average blood issues per week over 4-week periods. We
used four methods for linear prediction of blood demand
by computing the coefficients with the minimum mean
squared error and weighted least squares error
algorithms.
RESULTS: We optimized the time-window size, order of
the prediction, and order of the polynomial fit for our data
set. The four time-series methods, essentially using
different weightings to data points, gave very similar
results and predicted mean RBC issues with a standard
deviation of the percentage error of 3.0% for 4 weeks
ahead and 4.0% for 24 weeks ahead.
CONCLUSION: This paradigm allows prediction of
demand for RBCs and could be developed to provide
reliable and precise prediction up to 24 weeks ahead to
improve the efficiency of blood services and sufficiency
of blood supply with reduced costs.

B
lood products are essential for modern medicine.
Red blood cells (RBCs) are used widely in elective
and emergency surgery, major trauma, hemor-
rhage, cancer care, and to support patients with

congenital or acquired anemia.1 The call-up of donors,
scheduling of donor sessions, and manufacturing and sup-
ply of RBCs to hospitals must be coordinated to match
demand. Managing the collection and supply of RBCs in the
face of fluctuating demand on a daily, weekly, seasonal, and
annual basis represents a major challenge for blood ser-
vices. However, few planning tools and prediction models
are available to allow precise and reliable prediction of
demand. Any improvement of prediction tools would allow
greater efficiency in the use of resources as well as a more
resilient and secure blood supply chain.

Weekly demand for RBCs can change by 30% from week
to week in our data set, and annual demand can change by
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3% to 7% from year to year.2,3 Predicting demand for RBCs in
a simple deterministic model with the age structure of the
population, the age-specific incidence of disease, and the
requirement of blood by indication and procedure for each
disease has been attempted.4–7 However, such models have
considerable shortcomings and have proved to be unreliable,
as they have underestimated the changes inmedical and trans-
fusion practice.8–10 Several predictionsmadewith use of projec-
ted population growth and number and type of transfusion
episodes overestimated demands.5 Major errors are introduced
over short periods as the procedures used in each disease
change, such as the introduction of less invasive surgery or the
replacement of surgery by medical treatment for a specific dis-
ease. Furthermore, the indications and hemoglobin thresholds
for transfusion have changed as evidence-led patient blood
management has improved patient care. These measures have
reduced RBC transfusion per admission by improving patients’
preoperative hemoglobin, lowered the hemoglobin threshold
acting as a trigger for transfusion, and to some degree improved
hemostasis and blood salvage. Such a wide variety of changes
in medical and surgical management has perhaps made deter-
ministic modeling highly prone to substantial errors.

An alternative strategy for prediction is to use time-series
methods where sequential elements of the series are hypothe-
sized to be related by linear mathematical relations that can
be estimated by some analysis of previous elements in the
time series. Afterwards, the estimated respective coefficients
can be applied to extend the series into the future. The use of
time-series methods for prediction have a long history.11–15

These methods are widely used in statistics, engineering, and
the physical sciences. A variety of time-series methods can be
used.16 These approaches have proved to be successful in
statistics,17 communications,18 signal processing,19 adaptive
noise cancellation,20 earthquake prediction,21 mathematical
finance,22 brain studies,23,24 speech communication,25

weather forecasting26 and econometrics,27 to name a few
examples. Although such methods can provide predictions
successfully in several areas, they have not been applied sys-
tematically to the prediction of blood demands.

RBC usage or issue is readily available by day of issue.
Usage of cells varies through the week and is less at weekends
when elective surgery and transfusion of chronic anemia is
reduced considerably. It is therefore more appropriate to use
aggregated weekly data as the primary measure of RBCs use.
In practice, the window for useful predictions of future
demand are for 1 to 6 months to allow for matching of donor
appointments and planning of donor sessions to predicted
demand. Predictions at longer intervals, such as a year ahead,
may be useful to match the overall collection capacity to
predicted demand, particularly as demand falls. However, the
accuracy of predictions over 6 months may limit their utility.

Here, we use four different time-series methods to predict
RBC usage 4 weeks to 24 weeks ahead and demonstrate that
themeanRBC issues can be predictedwith a standarddeviation
of the percentage error of 3.0% for 4 weeks ahead and 4.0% for

24 weeks ahead. The proposed paradigm may form the basis
for reliable prediction of not only RBCs but also other compo-
nents and even therapeutic procedures by blood services.

MATERIALS AND METHODS

The focus of this paper lies in predicting the RBC usage from
4 to 24 weeks ahead with a novel paradigm for prediction
incorporating different time-series methods. Time-series
methods are a general set of techniques for predicting future
values of a series of data that have some relationship to each
other, specifically, where we can assume that the data values
in the near future are related to the value of time points in the
recent past. If this supposition did not have some truth, then
variation from data point to data point would be random. If
we have a long time series of data, we can reduce noise by
smoothing the data with monthly demand instead of daily or
weekly demand. This makes sense, as we need to adjust blood
collection month by month as blood collection sessions are
planned several months in advance.

The proposed paradigm is composed of three stages.
The first stage is smoothing the weekly figures for issues.
The second stage is detrending or applying a polynomial
curve to the data. The third stage is time-series modeling.

Smoothing—data preparation

Daily aggregates of RBC units used cover a period of 6.5 years
from February 1, 2005, to July 31, 2011, and were obtained
from the National Health Service Department of Blood and
Transplant. On careful inspection of the real blood demand
data it becomes clear that there are fluctuations both from
day to day and from weekday to weekend. Therefore, in this
stage, instead of daily data, we use aggregated data from
7 consecutive days or integer multiples of 7 consecutive days.
This avoids effects of both daily variability and variability
between weekdays and weekends. A new set of non-
overlapping weekly data was generated by summing the daily
data over 7 days; that is, the first data point corresponds to the
sum of Days 1 to 7, the second corresponds to Days 8 to
14, and so on. This new data set of weekly blood usage con-
tains 338 data points. All the time-series methods used non-
overlapping 4-week data, as shown in Fig. 1. This was
generated by summing the weekly data over 4 weeks and
dividing by four, to give an average blood usage per week over
that 4-week period. In other words, the first data point is a
weekly average blood usage over Weeks 1 to 4, the second is a
weekly average over Weeks 5 to 8, and so on; this non-
overlapping 4-week data set contains 84 data points.

Detrending

Time-series prediction methods are usually applied generi-
cally to a given data set. However, often time-series data
may contain an underlying trend, for example, a linear
increase, in addition to other patterns and fluctuation due
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to noise. Preliminary experiments were performed with
some manufactured data to investigate whether it would
improve the prediction by removing the underlying trend
before applying a time-series prediction technique to the
data. Data were generated according to a linear model, with
unit gradient and vertical intercept of zero, with 10 dB of
Gaussian noise added. Minimum mean squared error
(MMSE) was used as the time-series prediction technique
in this preliminary study. Two predictions were performed,
one in which no modification was made to the data before
performing the prediction, and a second in which a second-
order polynomial was fitted to, and then subtracted from,
the data to remove the trend before applying the prediction
method. The results of both methods are shown in Fig. 2. It
has been shown that removing the trend resulted in a signif-
icant improvement in the accuracy of the prediction.

To apply the time-series methods more effectively, the
trend is first removed and the data adjusted to have a mean
of zero. After the prediction has been performed, it is neces-
sary to add the trend and mean back onto the result to cal-
culate the predicted value. The trend is determined from a
polynomial fit to the most recent w data points, where w is
the time-window size. Figure 3 shows a schematic of the
steps taken to predict future blood usage.

Time-series methods

In this paper, four methods for predicting RBC usage are
explored that focus around MMSE and weighted least
squares error (WLSE), discussed in the following.

Time-series prediction methods use a set of previous
data points in the time series to predict future values. In

general, it is assumed that the predicted value, x̂ , is some
function of the past m values, as shown by

x̂ n + α j n−1,n−2,…,n−mð Þ = f x n−1ð Þ,x n−2ð Þ,…,x n−mð Þð Þ
ð1Þ

where n is the next time step in the series, α is the number
of time steps ahead being predicted, and x is the data points
in the time series. This defines m as the order of the predic-
tion. In general, the function f is a nonlinear function of the
variables, but in this paper, we restrict the function f to be a
linear function of the variables; this is known as linear pre-
diction, which is illustrated by

x̂ n + αð Þ =
Xm

i = 1

aix n− ið Þ ð2Þ

where ai are a set of coefficients to be estimated. The error
in this linear prediction, e(n + α), is defined to be

e n + αð Þ = x n + αð Þ− x̂ n + αð Þ ð3Þ

The linear time-series prediction problem lies in investi-
gating methods for determining the ai coefficients. There are
several algorithms for linear prediction techniques, that is,
methods for computing the coefficients ai, that are well devel-
oped, for example, MMSE and WLSE.12,16 However, there are
circumstances when nonlinear data analysis methods are
required. Machine learning algorithms can be used to develop
nonlinear models for forecasting time-series data.28–31 Exam-
ples of these algorithms include kernel-based machine learn-
ing, genetic programming, and artificial neural networks.
Nonlinear prediction methods are equally valid for the time-
series data; however, they will not be considered in this paper.

First, MMSE provides an algorithm for determining the
coefficients of the linear prediction based on minimizing
the mean squared error, which is referred to as Method
1 here. Alternative methods based on the observation that
the 4-week data contain some large dips and peaks, aim to
improve the prediction by mitigating the effect of these out-
liers. This can be achieved by creating weightings, wi, that
favor those points closer to the polynomial fit. This way the
large dips and peaks in the data will not have as much influ-
ence over the prediction. A polynomial p(t) is fitted to the
data, x(t), so the chosen weightings will be some function of
the difference between these values, d(t) = x(t) − p(t), where
t represents time. The weightings are then normalized such
that they sum to unity. Equation 4 is then used, after having
found the weightings wi, to predict the next value:

x̂ nð Þ =
Xm

i = 1

wix n− ið Þ, where
Xm

i = 1

wi = 1 ð4Þ

where t = nT, with T being the sampling interval.
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Fig. 1. Average weekly blood usage for each non-overlapping

4-week period from February 2005 to July 2011. This data set

contains 84 data points and is used for all prediction methods.

The time index corresponds to the index of the 4-week period.

[Color figure can be viewed at wileyonlinelibrary.com]
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A control experiment needs to be provided to see if the
chosen weightings improve the prediction. To provide this
comparative measure, the coefficients were initially chosen
to have equal weightings, that is, wi = 1/m, which is referred
to as Method 2. Later the weightings, wi, were chosen to be
inversely proportional to jd(n − i)j, which is referred to as
Method 3. To see if the predictions can be further improved
exaggerating these weightings, they were chosen to be
inversely proportional to |d(n − i)|2, which is referred to as
Method 4.

It is worth noting that time-series modeling is a general
method of predicting future values of a series of data that have
some relationship to each other specifically, where we can
assume that the data values in the near future are related to

the value of time points in the recent past. In the formulations
above, these relationships between future and past data are
linear in all four time-series methods. Thus, these are linear
time-series methods. Another alternative line of investigation
can involve nonlinear time-series methods, which is outside
the scope of this paper.

Figure of merit

Implementing each of the four time-series methods
described above gives a set of predictions, x̂ nð Þ, for each
of their corresponding known true data values, x(n). The
percentage error for each data point was calculated,
100 x nð Þ− x̂ nð Þð Þ=x nð Þ. To assess quantitatively the accuracy
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Fig. 2. Simulated data of a straight line with noise (red) and predictions of the data with use of the MMSE method (blue). Results are

shown with both the prediction method directly applied to the data (top left) and with the underlying trend removed prior to prediction

(top right). Fractional error in the predictions with the prediction method directly applied to the data (bottom left), and the trend

removed before prediction (bottom right) are shown. The time index corresponds to index of the simulated data. [Color figure can be

viewed at wileyonlinelibrary.com]
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of the prediction methods, the mean and the standard devi-
ation of these percentage errors were calculated. Given that
the mean percentage error is sufficiently small, it is more
important that the standard deviation of the percentage
errors is as small as possible; that is, the error in predictions
does not vary by a large amount. Additionally, it is impor-
tant to consider what proportion of the time the prediction
is within a reasonable region around the true value. For the
final results, we also quote the percentage of predictions
that lie within the �5% range of the true value.

RESULTS

Optimizing the parameters

The prediction paradigm, incorporating four time-series
methods, contains various parameters that can be altered,
which would affect the accuracy of the prediction. These

TABLE 1. (a) Varying time-window size, w, fixing
m = 5 and d = 2

α

Time-window size, w

13 26 39

0 −0.02 0.28 0.03
3.70 2.97 3.21

1 −0.05 0.08 −0.19
4.13 3.00 3.20

2 −0.22 0.07 −0.20
4.98 3.18 3.23

3 −0.19 0.06 −0.38
5.54 3.21 3.13

4 −0.24 0.19 −0.56
7.24 3.62 3.50

5 −0.07 0.19 −0.76
8.99 4.02 3.69

(b) Varying order, m, fixing w = 26 and d = 2

α

Order of the prediction, m

5 7 9

0 0.28 0.24 0.21
2.97 2.85 2.94

1 0.08 0.07 0.11
3.00 3.01 3.06

2 0.07 0.04 0.08
3.18 3.19 3.28

3 0.06 0.08 0.07
3.21 3.24 3.17

4 0.19 0.21 0.19
3.62 3.65 3.43

5 0.20 0.22 0.24
4.02 4.03 3.82

(c) Varying order of polynomial fit, fixing w = 26 and m = 5

α

Order of the polynomial fit, d

1 2 3

0 0.48 0.28 0.28
3.25 2.97 4.04

1 0.24 0.08 0.17
3.13 3.00 4.17

2 0.24 0.07 0.16
3.11 3.18 4.71

3 0.32 0.06 0.12
3.16 3.21 5.12

4 0.36 0.19 0.23
3.43 3.62 6.79

5 0.40 0.19 0.42
3.65 4.02 8.30

Optimization of the prediction parameters: (a) time-window size,
w; (b) order of prediction, m; (c) order of polynomial fit, d. Results
of MMSE prediction applied to blood usage data when predicting
4 weeks ahead (α = 0), 8 weeks ahead (α = 1), 12 weeks ahead
(α = 2), 16 weeks ahead (α = 3), 20 weeks ahead (α = 4), and
24 weeks ahead (α = 5) for a range of parameter values are
shown. In each box, corresponding to each experiment, the first
number is the mean percentage error, and the second number is
the standard deviation of the percentage errors.

Fig. 3. Schematic diagram of the processing steps involved in

predicting future blood usage. Rounded boxes represent data,

while rectangles represent a processing stage.
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parameters include the time-window size (w), the order of
the prediction (m), and the order of the polynomial fit (d).

The time-window size is the number of data points used
to determine the value of the coefficients, ai, of the linear pre-
dictor. It is always themost recentw data points that are used,
as they are going to give the best predictions for the near
future. When deciding parameters such as the time-window
size, it is important to consider the nature of the time-series
data. In this case, the data are 4-week data over 6.5 years, so
we would expect some degree of periodicity over a year. This
suggests that it would be beneficial to have a time-window
size that is a multiple of 13 (corresponds to a year in 4-week
data). To get an idea of the preferred time-window size, the
MMSE prediction was applied to the data using w = 13,
w = 26, andw = 39. The results are shown in Table 1(a).

Table 1(a) shows thatw = 13 provides significantly worse
predictions, so it can be ruled out. However, the difference
betweenw = 26 andw = 39 is much less significant. As it is not
clear that w = 39 provides a better prediction, a time-window
size ofw = 26 was chosen to reduce computation.

The order of the predictor is the number of data points
used in the linear prediction to explicitly calculate the next data
point; that is, it is the number of terms in the sum given by
Equation 2, which is equivalent to the number of coefficients,
ai. To find the most suitable value ofm, experiments were car-
ried out using the different predictionmethods. The prediction
accuracy was investigated form = 5,m = 7, andm = 9, and the
results forMMSE prediction are shown in Table 1(b).

From Table 1(b) we can see that increasing the value of
m makes very little difference to the quality of the predic-
tion in any of the methods. Not only that, it is not clear from
these results which value of m, if any, provides a better pre-
diction. Therefore, we chose the smaller value of m to
reduce the computational complexity. All the prediction
methods were carried out using m = 5.

Before any of the prediction methods can be applied, the
trend in the data must be removed, as shown above. This was
done by fitting a polynomial and subtracting it from the data
in each window. The aim of this process is to remove the gen-
eral trend and leave the more frequent fluctuations. In one
window there is not a large amount of variation in the gradi-
ent, that is, at most one turning point per window. This sug-
gests that a large value for the order of the polynomial, d,
would not be beneficial for the purpose, as it would start to
attempt to fit the finer fluctuations in the data. To find the
most effective value of d, some experiments were carried out
usingMMSE on 4-week data after a polynomial fit was applied
with values of d = 1, d = 2, and d = 3.

Here, we tried various orders of polynomials and
decided what fits the data best by finding a balance between
the orders of the polynomial and the errors from the fit.
Table 1(c) shows that a polynomial fit of d = 2 provides the
best predictions of the data. For all the prediction methods
that use 4-week data, a polynomial fit of order 2 was used to
remove the trend.

Comparison of the time-series methods

Each box in Table 2 shows themean error, the standard devia-
tion of the errors, as well as the percentage of predictions that
lie within �5% of the true value, for each of the four different

TABLE 2. Results for each of the four prediction
methods applied to blood usage data to predict
4 weeks ahead (α = 0), 8 weeks ahead (α = 1),

12 weeks ahead (α = 2), 16 weeks ahead (α = 3),
20 weeks ahead (α = 4), and 24 weeks ahead (α = 5)

α

Method

1 2 3 4

0 0.28 0.11 −0.16 −0.13
2.97 2.96 2.92 2.90
95 95 93 93

1 0.08 0.12 −0.18 −0.17
3.00 2.99 2.97 2.99
95 91 91 91

2 0.07 0.14 −0.18 −0.17
3.18 3.19 3.11 3.13
89 89 93 91

3 0.06 0.25 −0.10 −0.08
3.21 3.28 3.11 3.11
89 91 93 93

4 0.19 0.24 −0.15 −0.14
3.62 3.79 3.61 3.65
83 83 87 87

5 0.19 0.29 −0.19 −0.17
4.02 4.39 4.12 4.12
85 77 83 83

All these results use w = 26, m = 5, and d = 2. In each box,
corresponding to each experiment, the first number is the mean
percentage error, the second number is the standard deviation of
the percentage errors, and the third number is the percentage of
predictions that lie within �5% of the true value.
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Fig. 4. Results of the predictions using all four methods to

predict the next 4-week period. The data are shown in red. The

time index corresponds to the index of the 4-week period. [Color

figure can be viewed at wileyonlinelibrary.com]
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prediction methods. For all quoted results, parameter values
of w = 26, m = 5, and d = 2 have been used. Predictions are
made from one to six 4-week periods ahead (i.e., 4-week,
8-week, 12-week, 16-week, 20-week, and 24-week). Plots of
the predictions for 4 weeks ahead are shown in Fig. 4. The
total blood usage data has been predicted for the next 4-week
period with a standard deviation in the error of 3.0%, with
95% of the predictions lying within 5%. The predictions for
24 weeks ahead achieve a standard deviation in the error of
about 4.0%, with 85% of the predictions lying within 5% of the
true value. The four different methods do not showmuch var-
iation in performance.

As there are four different time-series methods, for
each data point there exist four different predictions. These
can be combined by calculating the average of different pre-
diction methods; this was found to show no significant
improvement to the results.

DISCUSSION

Here, we have evaluated our proposed prediction paradigm,
incorporating four time-series methods, to past RBC demand
data tomake predictions 4 weeks, 8 weeks, 12 weeks, 16 weeks,
20 weeks, and 24 weeks ahead. Each of the four used methods
gave very similar results. This is the first published report of pre-
dictions of blood demand using time-series data, and applica-
tion of these methods may improve the effective planning of
collection to the benefit of donors and blood services.

Method 1 provided predictions of aggregate demand
for 4 weeks ahead with a standard deviation of 3.0%, with

95% of the predictions lying within 5% of the true value,
and for 24 weeks ahead with a standard deviation in of 4.0%
with 85% of the predictions lying within 5% of the true
value. For predicting 4 weeks ahead, of the 5% of predic-
tions that lie outside 5% of the true value, all predictions
overestimate the blood unit demand. The maximum surplus
for any individual prediction was 3331 blood units, while
the maximum deficit was 1736 blood units. For predicting
24 weeks ahead, of the 15% of predictions that lie outside
5% of the true value, 4% overestimate demand (maximum
surplus of 3964 units) and 11% underestimate demand
(maximum deficit of 2809 units).

These margins of error would be operationally accept-
able as the current average weekly issues of RBC units in
England are approximately 27,000 units or 3800 units per
day averaged over 9 months. The current stock levels of
RBCs are currently maintained at between 8 and 10 days’
supply. Therefore, the blood supply chain could tolerate
fluctuation in stock of 4000 units in any 1 week. In practice,
adjustments to the supply could be made to cover such var-
iation by minor changes to the collection schedule to main-
tain stable stock levels.

Previous attempts at predicting medium-term demand
for a group of patients or within a region or country have
replied on simple linear extrapolation of year-on-year
trend.32,33 Generally, these methods have predicted a rising
demand for blood based on demographics where the propor-
tion of people over 75 years is rising, for example, in North
America and Europe. In turn, these models generated con-
cern about potential shortfall in the supply of blood from
younger donors.34,35 However, these attempts at medium-
term forecasting have been inaccurate and were unable to
predict the trends in reduced blood demand due to changes
in medical and surgical practice as well as patient blood man-
agement.9,36 As a result, they have provided little firm evi-
dence for planning, and short-term planning has relied on
time-series methods from proprietary packages.

The improved prediction with reduced errors would
allow greater efficiency in the call-up of donors, scheduling
of donor sessions, and manufacturing and supply of RBCs
to match demand.

The time-series demand forecasts described in this
paper could be improved further. These methods have used
4-week data. The series also have natural annual periodicity
and smoothed-overlapping data over a 52-week period,
shown in Fig. 5, may provide a better prediction by using
the natural periodicity. All the methods in the paper have
used the most recent data points to calculate the prediction.
Another possible method would be to use the most recent
data points considering the natural periodicities of the data.
This way, the annual variations will be used rather than the
local variation. Yet another avenue that could be investi-
gated is nonlinear prediction.

Further improvements could be made if other informa-
tion was available, for example, the changes in surgical
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Fig. 5. Average weekly blood usage for overlapping 52-week

periods, shifting by 1 week each time. This data set contains

237 data points. The time index corresponds to the index of the

overlapping 52-week period. [Color figure can be viewed at

wileyonlinelibrary.com]
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procedure or practices in transfusion medicine and how
they are being implemented in the different regions. There
may indeed be other local or regional trends, although the
usefulness of examining regional or subregional data is off-
set by the inherent increase in random errors as the num-
bers of units of blood decrease. Moreover, these prediction
methods could be applied to each blood group (or category
of blood groups) to provide group-specific prediction of
RBC use for more targeted call-up of donors.

These findings of improved predictions using several
time-series methods that are tailored to the specific data
sets potentially represent a significant advance in the tech-
niques available to predict demand. If application of these
methods and more reliable forecasts allow better matching
of the resources needed to collect blood, there could be sav-
ings in marginal costs. Indeed, the improved predictions
with reduced errors would allow greater efficiency in the
call-up of donors, scheduling of donor sessions, and
manufacturing and supply of RBCs to match demand.

In conclusion, it is important to appreciate that a
straightforward use of time-series methods would not have
produced results as good as those presented in this paper.
The first two stages of smoothing and detrending make
essential contributions to the success of the proposed para-
digm. The proposed prediction paradigm, incorporating
time-series methods, appears to yield significant improve-
ment in the accuracy of the prediction of blood demand
with anticipated commensurate improvement in the effec-
tiveness and efficiency of collection. These methods may be
capable of significant improvements with more granular
local data and by more precise alignment of the methods
with the data.
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