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Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and
chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors
conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals,
and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised
3004 unmedicated healthy individuals (12–68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working
group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern
similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of
schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/
ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r= 0.067, pFDR= 0.02). The cortical
thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r= 0.285, pspin= 0.024), but not BD (r=
0.166, pspin= 0.205) or MDD (r=−0.274, pspin= 0.073). The schizotypy-related subcortical volume pattern was negatively
correlated with subcortical abnormalities in SZ (rho=−0.690, pspin= 0.006), BD (rho=−0.672, pspin= 0.009), and MDD (rho=
−0.692, pspin= 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a
significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to
antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new
insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
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INTRODUCTION
Schizophrenia (SZ) and related psychotic disorders are increas-
ingly recognized as clinical manifestations of quantitative
characteristics that are continuously distributed in the general
population. In this regard, schizotypy has been linked to trait-like
vulnerabilities along a continuum from health to (psychotic) illness
[1–3]. Since the early descriptions from Rado and Meehl [4–6],
different continuous models of schizotypy and its relationship to
SZ have been proposed [7]. A fully-dimensional model assumes
that schizotypal traits are not inherently associated with illness but
sit squarely within the realm of health, and that clinical
manifestations (such as SZ and related psychoses) result from

multifactorial breakdown-processes within some (but not all)
highly schizotypal individuals in the general population [7–9].
Schizotypy is multi-faceted in nature [10–12], with clinical

conditions thought to reflect qualitatively different schizotypy
dimensions which interact with general psychopathology [13].
Specifically, schizotypy dimensions closely resemble those of SZ
and reflect distinct patterns of positive, negative, and disorganized
symptoms [12, 14]. Psychometric measures of schizotypy have
been used to assess individuals at clinical-high risk (CHR) for
psychosis, and were predictive of conversion to psychosis in both
CHR samples and in the general population [1, 15]. Moreover,
individuals with high schizotypy exhibit genetic, neurobiological,
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cognitive, and behavioral characteristics similar (albeit attenuated)
to patients with SZ spectrum disorders [16–23]. Thus, in a
neurodevelopmental and multifactorial view of psychosis [24, 25],
high schizotypy represents a liability that in concert with other
environmental and biological risk factors increases the risk for
developing psychosis [9, 26]. Of note, this is not contradictory to a
fully-dimensional model of schizotypy conceptualizing schizotypal
traits as both healthy variations as well as predisposing to
psychosis [16]. From a psychosis continuum perspective, healthy
individuals with high schizotypy could therefore be placed on the
left side, followed by CHR individuals, with SZ spectrum disorders
toward the right-most end of the continuum [1].
Converging evidence from neuroimaging research also sup-

ports a dimensional view of psychosis. Cortical neuroanatomical
abnormalities have been reported in individuals with treatment
resistant SZ [27], chronic SZ [28], first-episode psychosis [29], CHR
[30, 31], schizotypal personality disorders [32], and individuals with
non-clinical psychotic symptoms [33]. Recently, the SZ Working
Group within the ENIGMA (Enhancing Neuro Imaging Genetics
through Meta Analysis) consortium provided meta-analytic
evidence for robust abnormalities in subcortical volumes [34],
cortical thickness (CT), and surface area (SA) in SZ [28], while also
indicating that these abnormalities may be influenced by illness
severity and antipsychotic medication [28, 34].
In this context, the study of schizotypy offers a unique

opportunity to identify neuroanatomical signatures related to
psychosis vulnerability without the common confounds of
antipsychotic treatment or disease chronicity [32]. Over the last
decade, there has been increased focus on the neuroanatomy of
schizotypy [19, 35–43]. The majority of these single studies
examined morphometric brain correlates related to total schizo-
typy scores (including all schizotypy dimensions) [33, 36, 39, 43–
45]. Others applied combined approaches using both total scores
and schizotypy dimensions [35, 46], or multivariate statistics [42],
and reported evidence for shared cross-dimensional neuroanato-
mical abnormalities of total schizotypy as well as patterns related
to distinct dimensions [23, 35, 41, 42]. However, while these studies
consistently reported morphometric abnormalities associated with
high levels of schizotypy, most studies included relatively small
samples and the directionality of the findings was largely
inconclusive (e.g., larger or smaller thickness/volumes). Further-
more, almost all studies focused on CT or cortical gray matter
volume, rendering the schizotypy literature on subcortical volume
and SA relatively scarce.
To address these issues, the Schizotypy Working Group within

the ENIGMA consortium brought together schizotypy researchers
worldwide toward the first large-scale meta-analysis of regional
CT, SA and subcortical volumes in schizotypy. We report the first
comprehensive neuroanatomical mapping of overall schizotypy
using standardized methods in 29 datasets worldwide. To provide
meta-analytical evidence that reflects the large body of single
neuroanatomical studies in schizotypy presented above, we
focused on total schizotypy scores. In line with a dimensional
view of psychosis, our main models capitalized on partial
correlation effect sizes with continuous measures of schizotypy.
Based on recent work in SZ [28, 47, 48], we hypothesized stronger
effect sizes for schizotypy-related CT effects, compared to SA and
subcortical volumes. Our second aim was to examine the shared
morphometric characteristics of schizotypy with previously
reported structural abnormalities in SZ, bipolar disorder (BD) and
major depression. To this end, we correlated subcortical and
cortical effect size maps derived from the present meta-analysis
with recently published effect size maps from the ENIGMA
consortia of these three major psychiatric disorders. We hypothe-
sized that schizotypy-related morphometric patterns would be
most similar to morphometric patterns of SZ, relative to BD and
major depression.

METHODS
Study sample
Cortical thickness and surface area. Twenty-nine cross-sectional study
samples totaling 3004 unmedicated healthy individuals with varying levels
of schizotypy (below) passed Quality Control (QC) and contributed to the
cortical meta-analysis. Sample-size average of mean (range) age across
samples for this meta-analysis was 30.1 (12–68) years and samples were on
average 46.5% male (27–100%) (Table S1 and Fig. S1).

Subcortical volumes. From the same 29 cross-sectional study samples,
data from 2990 healthy, unmedicated individuals passed QC and
contributed to the subcortical meta-analysis. Sample-size average of mean
(range) age across samples was 30.1 (12.1–67.8) years and samples were on
average 46.5% male (26.6–100%) (Table S2 and Fig. S1).
All participants included in this meta-analysis had no current or past

history of any psychiatric or neurological disorder, and had no current or
past history of antipsychotic treatment. Each study sample was collected
with participants’ written informed consent approved by local institutional
review boards.

Assessment of schizotypy
Across all 29 centers, schizotypy was assessed with well-validated
instruments, including the Chapman scales [49–51], the Community
Assessment of Psychotic Experiences (CAPE) [52], the Schizotypal
Personality Questionnaire (SPQ) [53], the Oxford-Liverpool Inventory of
Feelings and Experiences (O-LIFE) [54], and the Rust Inventory of
Schizotypal Cognitions (RISC) [55] (for details of schizotypy measures see
Table S3). Overall, 18 sites used the SPQ or brief version (SPQ-B), six sites
used the CAPE, three sites used the O-LIFE, one site used the Chapman
scale, and one site used the RISC. Because our hypotheses involved the
association between neuroanatomy with overall schizotypal traits, only
total schizotypy scores were included. Associations based on different
schizotypy dimensions are to be reported elsewhere [56].

Image acquisition and processing
Following published ENIGMA pipelines [28, 34], all sites processed T1-
weighted structural scans using FreeSurfer [57, 58] (http://surfer.nmr.mgh.
harvard.edu) and extracted CT and SA for 70 Desikan-Killiany (DK) atlas
regions [59] (34 regions per hemisphere; 1 left and right hemisphere mean
thickness or total SA) (Table S4). Simultaneously, subcortical volumes of 16
brain structures including left and right lateral ventricle, thalamus, caudate,
putamen, pallidum, accumbens, hippocampus and amygdala, and
intracranial volume (ICV) were extracted (Table S5). Number of scanners,
vendor, strength, sequence, acquisition parameters, and FreeSurfer
versions are provided in Table S6. QC followed standard ENIGMA protocols
at each site before analysis. For subcortical data, all regions of interest
(ROIs) with a volume deviating from the mean by more than 1.5 times from
the interquartile range were identified and only included after additional
visual inspection. For cortical data, ENIGMA’s quality assurance protocol
was performed (http://enigma.usc.edu/protocols/imaging-protocols)
including visual inspection of the cortical segmentation and region-by-
region removal of values from incorrect segmentations.

Statistical meta-analyses
Cortical measures. Continuous models were fitted to examine the relation-
ship between schizotypy and CT (or SA) in each sample. Partial correlation
analysis (pcor.test, R version 3.6.0, R Foundation for Statistical Computing,
Vienna, Austria) was used to assess the association between the CT (or SA) of
left and right DK atlas regions with total schizotypy scores including age, sex,
and global mean CT (or total SA) as covariates (continuous model 1) and
secondarily excluding global mean CT (or total SA) (continuous model 2,
Tables S7 and S8). For multi-scanner studies (n= 3), binary dummy covariates
(n-1 scanners) were included within each local site model prior to meta-
analysis to account for potential differences that may emerge across different
scanners, consistent with the standard meta-analysis approach by the
ENIGMA project [28, 34, 65–68]. To account for potential confounding effects
of smoking on brain morphometry [60, 61], we were able to use data on
smoking status that was available for a subsample of participants (n= 1303).
Within this subsample, the continuous model 1 including age, sex and global
mean CT was repeated with and without smoking as additional covariate to
assess whether smoking status would affect the relationship between
schizotypy and CT (Tables S9 and S10).
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Subcortical volumes. Similar to the cortical analyses, continuous models
were applied to examine the relationship between schizotypy scores and
subcortical volume for each ROI in each sample. To this end, partial
correlation analysis was used to test correlations between the left and right
subcortical volumes with total schizotypy scores. The main model included
age, sex, and ICV as covariates. For multi-scanner studies (n= 3), binary
dummy covariates were included to account for differences that may
emerge across scanners, as described above. As for the cortical analysis,
partial correlation analysis was repeated in a subsample of n= 1303
participants including smoking status as covariate and are reported in
Tables S11 and S12.

Meta-analyses. For cortical and subcortical measures, Pearson’s r effect
sizes from the partial correlations using schizotypy scores as a continuous
predictor were meta-analyzed in separate random effects models to
account for between study differences (rma function, metafor package for
R 3.6.0) [62]. The false discovery rate (FDR) procedure (pFDR < 0.05) was
used to control for multiple comparisons [63, 64]. Meta-analyses were
adjusted for sample sizes across different sites and results were weighted
for sample sizes. Possible confounding effects of schizotypy questionnaire
type, FreeSurfer version, number of scanners, and scanner field strength
were examined using moderator analyses (Tables S13–S16).

Cortical and subcortical pattern similarity between schizotypy and major
psychiatric disorders. To answer our second question on how overall CT
and subcortical volumes in schizotypy relate to the neuroanatomical
patterns observed in SZ, BD and major depression, we correlated the
schizotypy-related effect size maps of correlation coefficient r for CT and
SA (age, sex corrected), as well as for subcortical volumes (age, sex, ICV
corrected) with the Cohen’s d maps derived from recently published meta-
analyses of case-control studies by the ENIGMA SZ [28, 34], BD [65, 66], and
depression (MDD) working groups [67, 68]. This approach followed
previous studies correlating cortical effects size maps between different
disorders [69, 70] or disorders and regional network features of the brain
[71]. Specifically, we applied a recently developed approach from the
ENIGMA Epilepsy Working Group using Pearson correlation to investigate
spatial pattern similarity of cortical effect size maps [71]. Statistical
significance of all cortical pattern correlations was assessed using spin
permutation tests correcting for spatial autocorrelation [72, 73], following
recent work from the ENIGMA Epilepsy Group [71]. In this framework, null
models are generated by projecting the spatial coordinates of cortical data
onto the surface spheres, applying randomly sampled rotations (10,000
repetitions), and reassigning cortical data (here effect size values) [72]. The
original correlation coefficients are then compared against the empirical
distribution of spatially permuted correlation coefficients. This spatial
autocorrelation approach and the adequate control of false positives has
been comprehensively validated for parcellated ROI data, including
resolutions of 68 parcellations as in our study [73].
Spatial pattern similarity between subcortical maps was examined using

Spearman rank correlations to account for potential outlier effects in small
sample sizes [74]. Statistical significance testing followed a similar
approach as the spin permutation from the cortical analysis with the
exception that subcortical labels were randomly shuffled as opposed to
being projected onto spheres [71]. We hypothesized that the schizotypy-
related cortical or subcortical effect size maps would be positively
correlated with the corresponding SZ effect size maps, suggesting
neuroanatomical continuity of the SZ spectrum. We additionally hypothe-
sized that the strength of cortical and subcortical relationships would
follow a psychosis-to-affective disorder axis (SZ > BD >MDD). To this end,
pairwise comparisons of the correlations between schizotypy-SZ with
schizotypy-BD and schizotypy-MDD were performed using one-tailed
Steiger’s test (cocor package, R 3.6.0) [75].

RESULTS
Cortical thickness and schizotypy
Meta-analysis of the continuous relationship between CT and
schizotypy (n= 3004) revealed positive correlations between higher
schizotypy and greater thickness of the medial orbitofrontal cortex/
ventromedial prefrontal cortex (mOFC/vmPFC) (left: r= 0.057, punc
= 0.004, 95% CI [0.02–0.09]; right: r= 0.067, punc < 0.001, 95% CI
[0.03, 0.10]) as well the frontal pole (left: r= 0.046, punc= 0.021, 95%
CI [0.01, 0.08]; right: r= 0.050, punc= 0.007, 95% CI [0.01, 0.09])
(Fig. 1A, Table S17). The positive association between greater right

mOFC/vmPFC thickness and higher schizotypy remained significant
after FDR correction (r= 0.067, pFDR= 0.02) (Fig. 2A/C). Moderator
analyses did not reveal any significant effects of type of schizotypy
questionnaire, FreeSurfer version, number of scanners or scanner
field strength on the associations between CT and schizotypy (all
pFDR > 0.05) (Tables S10–S13).

Surface area and schizotypy
Higher schizotypy was associated with lower SA in the left
parahippocampal gyrus (r=−0.056, punc= 0.006, 95% CI [−0.096,
−0.016]) and left fusiform cortex (r=−0.043, punc= 0.038, 95% CI
[−0.084, −0.002]) (Table S18), but these effects did not survive
correction for multiple comparisons (pFDR < 0.05) (Figs. 1B, 2B).

Subcortical volume and schizotypy
When examining the continuous relationship between subcortical
volumes of 16 brain structures and schizotypy scores (n= 2990),
only non-significant correlations were found, ranging from
negative correlations between higher schizotypy and lower
volume in the right pallidum (r=−0.032, punc= 0.084, 95% CI
[−0.07, 0.004]), to positive correlations between higher schizotypy
and greater volume in the right accumbens (r= 0.020, punc=
0.388, 95% CI [−0.02, 0.06]), right amygdala (r= 0.019, punc=
0.444, 95% CI [−0.03, 0.07]), and right hippocampus (r= 0.022,
punc= 0.229, 95% CI [−0.01, 0.06]) (Fig. 3). All subcortical results
from the continuous analysis are summarized in Table S19.

Cortical and subcortical pattern similarity between schizotypy
and major psychiatric disorders
Correlations of cortical maps revealed significant positive associa-
tions between increasing levels of schizotypy-related morphome-
try (partial correlation r) and Cohen’s d maps from ENIGMA SZ (r=
0.285, pspin= 0.024), but not ENIGMA BD (r= 0.166, pspin= 0.205)
or ENIGMA MDD (r=−0.274, pspin= 0.073) (Fig. 4). Pairwise
comparisons of these correlations revealed that the relationship
between schizotypy and SZ cortical patterns was significantly
stronger than the correlations between schizotypy and MDD (Z=
4.063, p value < 0.0001, 95% CI [0.3–0.8]) and at trend level to the
correlation between schizotypy and BD (Z= 1.462, p= 0.072, 95%
CI [−0.04–0.8]). These findings indicate that the schizotypy-related
CT pattern is more closely related to cortical brain alterations in SZ
compared to BD and MDD.
Repeating the cortical pattern similarity analyses with SA effect

size maps of schizotypy and all three psychiatric disorder maps
revealed that the schizotypy related SA pattern was not correlated
with the SA patterns of either SZ (r=−0.009 pspin= 0.953), BP (r
=−0.221 pspin= 0.139) or MDD (r=−0.05 pspin= 0.720). These
findings suggest that the observed cortical pattern similarity
between schizotypy and SZ is specific for CT rather than SA.
In terms of subcortical volumes, effect sizes for schizotypy-

related patterns (partial correlation r) were significantly negatively
associated with the profile of Cohen’s d values for subcortical
volume abnormalities in ENIGMA SZ (rho=−0.690, pspin= 0.006),
ENIGMA BD (rho=−0.672, pspin= 0.009), and ENIGMA MDD (rho
=−0.692, pspin= 0.004) (Fig. 5). In other words, subcortical
volumes in schizotypy showed an opposite pattern to subcortical
abnormalities in SZ, BD or MDD, with similar magnitudes for all
three correlations. The largest differences in effect sizes between
subcortical profiles of schizotypy and all three psychiatric
disorders were observed in the hippocampus. In particular,
patients with SZ but also BD and MDD showed smaller
hippocampal volume compared to controls, while in healthy
individuals higher schizotypy was (weakly) positively correlated
with greater hippocampus volume (Fig. 5). In addition, for SZ the
opposite effect was observed for pallidum volume, displaying
larger volume in patients compared to controls, and a (weak)
negative correlation between smaller volume and higher schizo-
typy in healthy individuals (Fig. 5).
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DISCUSSION
Leveraging neuroimaging data from 29 international sites, the
present work is the first large-scale meta-analysis of cortical and
subcortical measures in schizotypy, including over 3000 individuals.
Our main finding was that greater CT in the mOFC/vmPFC was
positively associated with higher schizotypy. Subcortical volume and
SA analyses showed only subtle, non-significant correlations with

schizotypy scores. These findings were, due to our healthy sample,
free of potential influences of illness chronicity or antipsychotic
medication on neuroanatomy. Moreover, we found a positive
association between the schizotypy-related CT pattern and the
pattern of CT abnormalities observed in SZ, but not with that of BD
or MDD, supporting the notion of neurobiological continuity across
the extended psychosis phenotype. In contrast, patterns of

Fig. 2 Cortical maps of regional effect sizes for associations with schizotypy. A Cortical thickness, (B) Surface area. C Forest plot of the
significant association between mOFC/vmPFC thickness and schizotypy, after false discovery rate (FDR) correction (pFDR < 0.05).

Fig. 1 Effect sizes of partial correlation (r) between cortical thickness, surface area and schizotypy. A Cortical thickness, (B) Surface area.
Effect sizes for all regions depicted were corrected for age, sex and global cortical thickness or total surface area, respectively. Red rectangle
highlights effects surviving false discovery rate (FDR) correction (pFDR < 0.05).

M. Kirschner et al.

1170

Molecular Psychiatry (2022) 27:1167 – 1176



schizotypy-related subcortical effects showed an unexpected nega-
tive association with patterns of subcortical volume abnormalities
more generally, across the three psychiatric disorders.
The directionality of the observed association for CT, reflecting

thicker mOFC/vmPFC with higher schizotypy, is inverse to findings
of prefrontal cortical thinning commonly observed in medicated
patients with SZ [28, 47] and first-episode psychosis [27, 43].
However, our findings are in line with reports of greater OFC
thickness in drug-naïve first-episode SZ patients [76, 77]. Prior
schizotypy studies reported mixed findings, including greater
prefrontal [38] or spared OFC thickness [36], and lower frontal gray
matter volume [37, 42, 46]. Findings from studies in individuals at
CHR for psychosis have likewise been inconsistent, with evidence
for thicker OFC [78, 79], no differences [80] or thinner cortex [81]
compared to healthy controls. This heterogeneity among these
single studies may be partly explained by the use of different
methods or limited power. On the other hand, there is growing

evidence that variations of prefrontal CT are related to different at-
risk phenotypes and the onset of early and late neurodevelop-
mental disturbances [25, 82]. Different anatomical trajectories
have been reported in schizotypy [35], between different at-risk
states [83] and particularly in CHR individuals who subsequently
develop psychosis [82, 84]. Transition to psychosis has been
associated with a steeper cortical thinning of heteromodal
cortices, including the mOFC/vmPFC, compared to CHR individuals
who do not convert to psychosis and healthy controls [85–88].
Thus, structural characteristics of the mOFC/vmPFC may vary
based on the degree of risk and illness chronicity, from relatively
thicker mOFC/vmPFC in healthy individuals with high schizotypy,
to normal-to-elevated in CHR with lesser transition risk, to thinner
in CHR individuals who convert to psychosis, to further thinning in
chronic SZ.
The observed relationship between high schizotypy and greater

mOFC/vmPFC thickness shares neuroanatomical similarities to
other neurodevelopmental disorders such as autism spectrum
disorders (ASD) (Cohen’s d= 0.15, pFDR= 0.0001 [89]) and 22q
deletion syndrome (Cohen’s d= 0.61, pFDR < 0.0001 [69]). Such
convergence aligns with observations of increased phenotypic
expression of schizotypy in ASD [90, 91] and 22q deletion
syndrome [92]. Together, these findings support the notion that
high schizotypy may describe a predisposing trait of genetically
and clinically overlapping phenotypes with SZ spectrum disorders
and ASD [16, 93, 94]. Our cross-disorder whole-brain cortical
mapping revealed a strong link between morphometric signatures
of schizotypy with SZ, along a SZ-BD-MDD axis. These findings
partly resemble previous genetic [95] and neuroanatomical
correlations [70, 96] observed between SZ, BD and major
depression [97]. Interestingly, the relationship between the
cortical patterns of schizotypy and SZ revealed regional discordant
and concordant effect sizes. Specifically, in schizotypy, the
associations between higher schizotypy and lower CT were only
observed in those regions showing the strongest negative effect
sizes in SZ (e.g., thinning), such as the left and right fusiform gyrus
or inferiotemporal gyrus. In other words, schizotypy and SZ
showed somewhat concordant effect sizes in these regions. In
contrast, discordant effect sizes of thinner CT in SZ and greater CT
in high schizotypy were observed in other regions such as the
rostral anterior cingulate, frontal pole and mOFC/vmPFC. Here,
higher schizotypy was positively associated with greater CT, while
patients with SZ showed thinner cortex compared to controls
(negative effect size). This neuroanatomical pattern of spatially
distributed thinner and thicker cortex might reflect that in
schizotypy samples, which comprise healthy individuals that will
most likely not develop a full-blown psychotic disorder, effects
may be subtle. Although speculative, the relative greater CT could

a | Schizophrenia b | Bipolar Disorder c | Major Depression

r=.285
pspin =.024 

r=.166
pspin=.205 

r=-.274
pspin=.073 

| Schizotypy

Fig. 4 Pattern similarity between cortical thickness effects in schizotypy and major psychiatric disorders. Abbreviations of the cortical
regions are adopted from the brainGraph package and shown for regions with the most positive and negative effect sizes (r): FUS fusiform
gyrus, ITG inferior temporal gyrus, iCC isthmus cingulate cortex, MOF medial orbitofrontal cortex, paraC paracentral lobule, pOPER pars
opercularis of inferior frontal gyrus, periCAL pericalcarine cortex, rACC rostral anterior cingulate cortex, FP frontal pole, INS insula. L left,
R right.

Fig. 3 Effect sizes of partial correlation (r) between subcortical
volumes and schizotypy. Effect sizes for all subcortical volumes
depicted were corrected for age, sex and intracranial volume (ICV).
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reflect either compensatory mechanisms or a pre-existing condi-
tion before the onset of accelerated thinning in those individuals
that develop psychosis.
Whereas the cortex-wide similarity between schizotypy and SZ

provides support for a specific relationship, schizotypy-related
subcortical volumes showed a negative association with sub-
cortical abnormalities in all three disorders (SZ, BD, MDD).
Combined with the overall subtle links between schizotypy and
subcortical volume, these inverse correlations may suggest that
schizotypal traits are not directly linked to subcortical alterations
of major psychiatric disorders in general, which may be better
explained by other risk/disease factors (e.g., medication, disease
course, common mental distress) [34, 66, 68], or that spared
subcortical volume changes might be a protective factor in those
individuals with high schizotypy and high resilience [16, 98, 99]. In
line with the latter, first-degree relatives of BD patients showed
higher than normal ICV (compared to controls), suggesting
putative survivor effects in unaffected individuals with high
liability for psychiatric disorders [100]. While an inverse subcortical
pattern in schizotypy was not anticipated, further investigation
and replication of these findings will be of interest.
Overall, our meta-analyses suggest that schizotypal traits in the

general population are predominantly embedded in CT effects,
while less associated with variations of subcortical volume or SA.
The nature of preserved or greater cortical morphometry in
schizotypy has been intensively debated, although the underlying
cellular and molecular mechanisms remain unclear. Greater
prefrontal CT might reflect abnormal or delayed cortical develop-
ment [101–103], due to insufficient synaptic pruning [104] or
altered cortical myelination [105, 106]. Greater CT as a result of
microstructural and cellular perturbations may therefore be
associated with higher vulnerability, while SZ may only emerge
in the presence of additional environmental, biological or genetic
factors [25, 82, 107]. In line with this notion, several previous
studies in CHR, genetic and clinical samples have shown that
measures of schizotypy can be predictive for developing psychosis
[1], although the predictive value of schizotypy might be sensitive
to vulnerable periods (e.g., adolescence) and potentially increase
with accumulation and interaction of other psychosis risk factors
[26]. Alternatively, it has been proposed that neuroanatomical
signatures such as preserved/greater prefrontal CT could reflect
protective mechanisms for developing clinical symptoms of
psychosis/SZ in high schizotypy individuals with absence of other
risk factors [16, 99]. This would align with a fully-dimensional
model of schizotypy [7, 8], which predicts inverse associations in
schizotypy samples consisting of healthy participants compared to
samples of patients with SZ, supported by findings that frontal
capacity is positively associated with schizotypy [99]. Large-scale
longitudinal studies from neurodevelopment in childhood to early

adulthood could help to further differentiate neuroanatomical
trajectories of high schizotypy and their contribution to either
psychosis in those individuals with concomitant risk factor [26] or
to normative variations in otherwise healthy individuals [16].

Limitations
In interpreting the current findings, it is relevant to note that
rather small effect sizes are typical for these types of large-scale
neuroimaging meta-analysis and comparable effect size magni-
tudes have been reported in other ENIGMA studies of clinical
populations [67, 89] and populations at higher risk for mental
illnesses [100, 108]. Given that schizotypal traits were derived from
healthy individuals in the general population, relationships
between brain morphometry and schizotypy were expected to
be even more subtle compared to clinical populations. The
observed effect sizes can be positioned at the lower end of
cortical effects in psychiatric disorders (< SZ and BD [28, 65]) but
are comparable to those reported for MDD and ASD [67, 89]) as
well as population neuroscience studies of associations between
brain structure and polygenic risk for psychosis or psychotic
symptoms [109, 110]. Furthermore, no moderating effects of the
type of schizotypy questionnaire, FreeSurfer version, number of
scanners, or scanner field strength were found supporting the
strength of the observed findings. This first meta-analysis aimed at
reflecting the large body of research on neuroanatomical patterns
of total schizotypy within the psychosis continuum. However, the
use of total schizotypy scores might have obscured some
neuroanatomical differences related to distinct schizotypy dimen-
sions (e.g., positive, negative and disorganized) [35, 111]. The
ENIGMA Schizotypy Working Group is actively working on pooling
data to map neuroanatomical patterns of separate schizotypy
dimensions, which will be reported elsewhere [56]. In addition,
while family history of psychiatric disorders was an exclusion
criterion in many of the included cohorts [36, 37, 40, 41, 44, 45],
these data were not available for all participants. Future
prospective neuroimaging studies in schizotypy explicitly collect-
ing information on participants’ family history for psychiatric
disorders would enable the investigation of potential moderating
effects of family history on neuroanatomical pattern similarities
between schizotypy and major psychiatric disorders. Finally, while
we observed a specific relationship between the schizotypy-
related CT pattern and the pattern of case-control CT abnormal-
ities previously found in SZ, these findings are derived by
comparing effect size maps from large-scale patient populations
and as such should not be interpreted as an equivalent to
comparing individuals from different disease groups. To advance
our understanding of the neurobiology of psychosis risk beyond
MRI measurements associated with overall schizotypy levels, there
will be continued effort by the ENIGMA Schizotypy Working Group

rho=-.690
pspin =.006 

rho=-.672
pspin=.009 

rho=-.692
pspin=.004

a | Schizophrenia b | Bipolar Disorder c | Major Depression
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Caudate

Thalamus
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Putamen
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Hippocampus
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Fig. 5 Pattern similarity between subcortical volume effects in schizotypy and major psychiatric disorders. Abbreviations of subcortical
regions are adopted from the brainGraph package and are shown for regions with the most positive and negative effect sizes (r): HIPP
hippocampus, PALL pallidum, PUT putamen, LVEN lateral ventricle, l left, r right.
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to (i) include more datasets, (ii) incorporate genetic as well as
multimodal neuroimaging data, and (iii) identify associations
between MRI-derived measures and cell-type specific gene
expression [97].

CONCLUSION
In summary, this is the first meta-analysis of neuroimaging data to
comprehensively map the morphometric signature of schizotypy
in healthy individuals. The results suggest a profile of CT
abnormalities involving thicker prefrontal cortex related to more
severe schizotypy. The CT pattern related to schizotypy was most
closely linked to CT abnormalities in SZ, thus providing
neuroanatomical support for dimensional continuity across the
extended psychosis phenotype.
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