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Abstract: The rollout of COVID-19 vaccines brings hope for successful pandemic mitigation and
getting the transmission of SARS-CoV-2 under control. The vaccines authorized in Europe displayed
a good safety profile in the clinical trials. However, during their post-authorization use, unusual
thrombotic events associated with thrombocytopenia have rarely been reported for vector vaccines.
This led to the temporary suspension of the AZD1222 vaccine (Oxford/AstraZeneca) in various Eu-
ropean countries and the Ad26.COV2 vaccine (Janssen/Johnson&Johnson) in the United States, with
regulatory bodies launching investigations into potential causal associations. The thromboembolic
reactions were also rarely reported after mRNA vaccines. The exact cause of these adverse effects
remains to be elucidated. The present paper outlines the hypotheses on the mechanisms behind
the very rare thrombotic thrombocytopenia reported after the COVID-19 vaccination, along with
currently existing evidence and future research prospects. The following are discussed: (i) the role
of antibodies against platelet factor 4 (PF4), (ii) the direct interaction between adenoviral vector
and platelets, (iii) the cross-reactivity of antibodies against SARS-CoV-2 spike protein with PF4,
(iv) cross-reactivity of anti-adenovirus antibodies and PF4, (v) interaction between spike protein and
platelets, (vi) the platelet expression of spike protein and subsequent immune response, and (vii) the
platelet expression of other adenoviral proteins and subsequent reactions. It is also plausible that
thrombotic thrombocytopenia after the COVID-19 vaccine is multifactorial. The elucidation of the
causes of these adverse events is pivotal in taking precautionary measures and managing vaccine
hesitancy. It needs to be stressed, however, that the reported cases are currently sporadic and that the
benefits of COVID-19 vaccines vastly outweigh their potential risks.

Keywords: vector vaccines; mRNA vaccines; thrombosis; thrombocytopenia; adverse effects;
COVID-19

1. Introduction

The rollout of the COVID-19 vaccines brings hope that we can put an end to the
pandemic. At the moment of writing, there are four vaccines authorized in the Euro-
pean Union: two developed using the mRNA platform (BNT162b by BioNTech/Pfizer,
Germany, Mainz/New York, NY, USA and mRNA-1273 by Moderna, Cambridge, MA,
USA) and two vector vaccines based on modified, replication-deficient (E1/E3-deletion)
adenoviruses (AZD1222, ChAdOx1 nCov-19 by Oxford/AstraZeneca, UK/Sweden and
Ad26.COV2.S by Janssen/Johnson&Johnson, Leiden, Netherlands/New Brunswick, NJ,
USA). All of these vaccines were made available at previously unseen speed due to years
of research and technological advances, the use of innovative platforms enabling rapid
development of candidates, running multiple trials in parallel, significant funding, and
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help from regulatory institutions and their experts working at a higher pace [1–3]. The
clinical trials have revealed a good safety profile with the reactogenicity represented mainly
by short-term local (e.g., injection-site pain, redness, or swelling) and systemic (e.g., fatigue,
headache, or fever) responses [4–7]. However, it should be stressed that despite thousands
of participants, these studies, similarly to other clinical trials, were not designed to detect
very rare side effects that may occur following the vaccine administration. Therefore, com-
prehensive safety monitoring and risk management through pharmacovigilance is pivotal
following the vaccines’ authorization and needs to be continuously pursued during their
general use in the population [8]. The cluster of specific side effects not reported during
the clinical trials or their frequency exceeding the background levels requires investigation
to understand whether the association with vaccination time is only of a correlative nature
or whether a causal relationship is present.

The COVID-19 vaccination programs are conducted under extraordinary conditions
and receive high traditional and online social media attention and coverage. Therefore,
reports of severe events after the vaccination may rapidly cause public fear, vaccine hesi-
tancy, political pressures, and inconsistent decisions [9,10]. Altogether, this leads to a need
to elucidate as soon as possible whether a causal link between such events and vaccination
exists, understand the mechanism of action, identify potential risk groups, and provide a
mitigation strategy. In many instances, this may be a time-consuming and challenging task
requiring different types of data derived from epidemiological observations, laboratory
tests, autopsy analyses, and additionally conducted experiments.

The reports of thrombotic events occurring after the vaccination with AZD1222 have
raised concerns over a possible causal relationship. At the beginning of April 2021, 169
cases of cerebral venous sinus thrombosis (CVST) and 53 cases of splanchnic vein thrombo-
sis (SVT) were reported to EudraVigilance per 34 million individuals who received this
vaccine in Europe, giving an overall reporting rate of 6.5 events per million [11]. This
may still fall into the expected background rate levels, since the incidence of CVST and
SVT has been reported in international studies at 2–16 per million per year and 1–7 per
million per year, respectively [12–15]. One should, however, bear in mind that reporting
rate cannot be directly compared to the incidence rate, while the reporting itself may vary
across the countries and geographical regions depending on the efficiency of the national
reporting systems. However, the thrombotic events reported after AZD1222 were repre-
sented mainly by CVST and SVT, while their peculiar feature included thrombocytopenia.
This has led to suspending the AZD1222 rollout in several European countries [16]. The
recent population-based cohort study in Denmark and Norway found an excess rate of
venous thromboembolism, including CVST, in the group that received the first dose of
AZD1222. However, as noted, the absolute risk of these events was small [17]. Meanwhile,
six events of thrombotic thrombocytopenia, noted per 6.8 million doses administered, were
also reported in the United States following the immunization with Ad26.COV2.S vaccine,
leading to a temporary suspension of vaccine rollout [18]. Importantly, during the clinical
trial program for Ad26.CoV2.S, there were 11 cases of venous thromboembolic events in
the vaccinated group (compared to 3 cases in the placebo group) and a single case of CVST
with thrombocytopenia in the vaccine recipient [19,20], while in the case of clinical trials of
AZD1222, only four thrombotic events were noted [4]. As reported recently using data from
US electronic health records, the incidence of CVST in 2 weeks following the mRNA vaccine
(BNT162b2 or mRNA-1273) administration was 4.1 per million, which is relatively similar
to a reporting rate of these events following AZD1222 vaccination in Europe. However, the
incidence of portal vein thrombosis was 44.9 per million, 28-fold higher than according to
the data collected on AZD1222 by the European Medicines Agency (EMA) [21,22]. Prior to
this report, twenty cases of apparent secondary immune thrombocytopenia following the
mRNA vaccination were reported and reviewed in the USA. The majority of these cases
had no pre-existing thrombocytopenia. The investigation did not confirm nor exclude the
possibility that these events were triggered by vaccine administration—it was noted that
their incidence appears either less than or roughly comparable to the background level
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in the population [23]. The other study analyzed cases of arterial and venous thrombosis
reported between 13 December 2020 and 16 March 2021 to Vigibase following the adminis-
tration of COVID-19 vaccines [24]. The arterial thrombotic events were decidedly more
common than venous thrombotic events for both mRNA vaccines. In the case of AZD1222,
the proportion of venous and arterial thrombosis was evenly distributed, with five out of
seven CVST cases accompanied by thrombocytopenia [24]. However, one should be aware
of possible bias in reporting thrombosis and thrombocytopenia following the vaccination,
as only clinically evident cases of such events are being submitted to the relevant databases.
To understand the true prevalence, all vaccinated individuals would need to undergo
routine monitoring of platelet counts and their indices (to detect thrombocytopenia) or
imaging studies (to diagnose arterial and venous thrombosis), which is virtually impossi-
ble. Altogether, the rare cases of thrombotic thrombocytopenia associated in time with the
COVID-19 vaccination require further and multidimensional studies.

Here, we elaborate on potential hypotheses on the mechanism behind these very rare
cases of thrombotic thrombocytopenia following the COVID-19 vaccination and discuss
the potential research avenues to explore. The following are discussed: (i) the role of
antibodies against platelet factor 4 (PF4), (ii) the direct interaction between adenoviral
vector and platelets, (iii) the cross-reactivity of anti-SARS-CoV-2 spike protein antibodies
with PF4, (iv) the cross-reactivity of anti-adenovirus antibodies with PF4, (v) the interaction
between spike protein and platelets, (vi) the platelet expression of spike protein and
subsequent immune response, and (vii) the platelet expression of other adenoviral proteins
and subsequent reactions. The elucidation of the causes of these adverse events is pivotal to
taking precautionary measures and the managing of vaccine hesitancy related to particular
or even all COVID-19 vaccines. However, it has to be stressed that the reported cases
of thrombotic thrombocytopenia are currently sporadic, significantly less frequent than
in COVID-19 [22], and even if they are resulting from the vaccination, the benefits of
COVID-19 vaccines still vastly outweigh the potential risks.

2. Generation of Antibodies against Platelet Factor 4

Since the reported CVST and SVT events were often accompanied by thrombocy-
topenia, they resemble a clinical image seen during heparin-induced thrombocytopenia
(HIT). The latter is an autoimmune complication following the administration of heparin
that leads to the generation of pathogenic antibodies that bind the complex of heparin
and platelet factor 4 (PF4), a cytokine released from the alpha-granules by the activated
platelets. This complex, in turn, interacts with platelets’ FcγRIIA, subsequently shifting
thrombocytes to a hypercoagulable state, causing the release of additional PF4 and pro-
moting both arterial and venous thrombosis [25]. However, it is recognized that a similar
mechanism can also occur following exposure to compounds other than heparin, such
as polyvinyl phosphonate [26]. There are also reports of patients with a thromboembolic
disorder resembling HIT with no history of heparin use and without identifiable causative
factors [27,28]. The recently published case reports on thrombosis and thrombocytope-
nia were seen 5–24 days following administration of the AZD1222 vaccine, showing that
these events closely resemble HIT. The patients presented with elevated d-dimer levels
and low or normal fibrinogen levels and required hospitalization, while in some subjects
the condition was fatal. As demonstrated, these patients, of whom some had no history
of heparin use, tested positive for antibodies against PF4–heparin complex and on the
platelet-activation assay in the presence of PF4 independent of heparin [29–31]. In one
study, the antibodies were purified and also tested positively on a PF4 dependent platelet
activation assay. Case reports of thrombotic thrombocytopenia 14 days after Ad26.COV2.S
vaccination showed that despite a lack of antibodies against PF4-heparin complex, high
levels of antibodies against PF4-polyanion were detected—one should cautiously note that
the patient received heparin treatment prior to this testing [32]. All in all, the reported
observations indicate that these thromboembolism events closely resemble HIT; therefore,



Vaccines 2021, 9, 559 4 of 12

the term vaccine-induced immune thrombotic thrombocytopenia (VITT) was coined to
refer to them [29].

The reported events show a potential link with AZD1222 vaccination, although the
possible mechanism behind them still requires further elucidation. As yet, it is unknown
exactly what component of the vaccine is involved in the PF4 complex against which the
antibodies are generated.

In HIT, the electrostatic interactions between positively charged PF4 and negatively
charged heparin drive the formation of the PF4-heparin complex [33]. The surface of
adenoviruses is negatively charged [34]; therefore, one could postulate that PF4 released
from platelets can potentially form an immunogenic complex with adenoviral particles,
further bound by IgG antibodies. Such a multimolecular complex could subsequently bind
to platelets through the Fc receptor, activating thrombocytes and causing an additional
release of PF4, leading to VITT.

Other authors have suggested that free adenoviral DNA in vector vaccines could
trigger the VITT since nucleic acids have been shown in vivo to form complexes with
PF4, which can induce antibodies against the PF4-heparin complex [35]. As yet, it is
unknown whether free DNA is present in AZD1222 or Ad26.COV2.S vaccines. More-
over, such free DNA would be prone to degradation due to serum deoxyribonuclease
(DNAse) activity [36]. However, it could be released from adenoviral particles following
the innate immune system’s response to the viral vector [37,38]. It also requires further
investigation to discover whether these rare cases of thrombotic thrombocytopenia can
result from interactions with other ingredients present in adenoviral vaccines, such as
ethylenediaminetetraacetic acid (EDTA). Although this compound is known to exert an
anticoagulation effect [39], EDTA-dependent pseudothrombocytopenia has also rarely
been reported [40–42]. As demonstrated, this phenomenon results from the generation
of antiplatelet autoantibodies recognizing antigens on the platelet membrane modified
by EDTA, which subsequently leads to platelet clumping [43,44]. However, one should
note that EDTA is not an ingredient of any COVID-19 vaccine developed using the mRNA
platform and is not used in Ad26.COV2.S vaccine. Therefore, its potential involvement in
thrombotic events should only be taken into account in the case of AZD1222 vaccine.

It is unknown whether the investigated patients with VITT had pre-existing low
levels of antibodies against PF4. It is important to note that many subjects who synthesize
high levels of antibodies against the PF4-heparin complex do not develop HIT while
being treated with heparin [45–47]. Therefore, the potential role of genetic factors in
the observed rare cases of thrombotic thrombocytopenia after COVID-19 vaccination
should be considered. It would be of interest to study PF4 polymorphism in patients
with VITT, although it appears to be an unlikely contributor to HIT development [48]. In
turn, genotype 131RR of the FCGR2A gene, encoding FcγRIIA, has been associated with
an increased risk of thrombosis in subjects synthesizing significant levels of antibodies
against the PF4-heparin complex [49,50]. Therefore, it is reasonable to investigate if patients
homozygous for the FcγRIIA 131R allele are more susceptible to VITT. In addition, HIT
risk has also been linked to the polymorphism of interleukin-10 promoter microsatellite as
well as PlA2 polymorphism of platelet glycoprotein IIIa [51,52]. Establishing whether these
factors also play any role in the risk of VITT requires further studies.

3. Direct Interaction between Adenoviral Vector and Platelets

It is established that some adenoviruses can bind to the platelets using the coxsackie
and adenovirus receptor (CAR), which represents an initial step for virus entry into throm-
bocytes [53]. The replication-deficient recombinant chimpanzee ChAdOx1 vector (the main
component of the AZD1222 vaccine) has been shown to utilize CAR [54]. However, it has
been noted that human adenovirus type 26 (the replication-deficient recombinant version
of which is the main component of the Ad26.COV2.S vaccine) does not use CAR as a
primary entry receptor. It has been suggested that CD46 plays such a role [55], although
this has also recently been excluded [56]. Instead, sialic acid has been demonstrated to
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represent a primary cell receptor for human adenovirus type 26 [56]. Human platelets are
known to differ in the content of sialic acid, which has been implicated in their aggregation
and adhesion and may play a role in platelet disorders such as thrombocytopenia [57].
Moreover, the experimental in vitro studies have also shown that, in addition to the CAR
pathway, ChAdOx1 has a fiber-dependent but CAR- and CD46-independent mechanism of
cell attachment [54].

Therefore, the interactions of ChAdOx1 and Ad26.COV2.S vectors with platelets are
plausible, especially since each intramuscularly injected dose of these vaccine contains
5 × 1010 viral particles [4,7]. Furthermore, as demonstrated using human adenovirus type
5 and human adenovirus type 3, the binding of adenoviral particles to circulating platelets
can activate the latter and lead to their aggregation [58,59]. Activated platelets, in turn,
release PF4 from the alpha-granules [60]. Therefore, at this moment, it cannot be ruled
out that administration of an adenoviral vector vaccine can in some instances lead to the
occurrence of adenoviral particles in the blood, binding of platelets, their activation, and
subsequent release of PF4. However, the emergence of antiPF4 antibodies would first
require PF4 to form a complex with the hitherto unknown vaccine component.

It is also of interest to understand whether the adenoviral-platelet complex can trig-
ger the autoimmune response by itself, particularly in the presence of the pre-existing
antibodies against PF4. Notably, previous studies in rodents, rabbits, and non-human pri-
mates have shown that intravenous administration of adenoviral vectors can lead to acute
thrombocytopenia and coagulopathy with onset within 24 h [61–63]. As also demonstrated,
these vectors can activate platelets and induce platelet-leukocyte aggregation formation,
with the von Willebrand factor (WF) playing a critical role in the initiation of these pro-
cesses [61]. However, a case of pulmonary embolism and thrombocytopenia following
AZD1222 administration reported no changes to plasma WF [64], while other studies did
not investigate it [29–31].

As already mentioned, adenoviruses can utilize CAR and other receptors to infect
platelets. In vivo studies have shown that the presence of high adenoviral load in the blood
can lead to acute thrombocytopenia [61–63]. Intravenous administration of adenovirus
type 5 in hCD46Ge transgenic mice resulted in platelet activation degranulation, cytokine
release, binding of platelets to endothelial cells, and subsequent activation of the latter,
eventually promoting the microthrombus formation [59]. Moreover, in vitro research
employing E1/E3-deleted, replication-deficient human adenovirus type 5 can activate
human platelets, induce rapid expression of P-selectin, and potentate ADP-induced platelet
aggregation [65]. So far, there are no similar studies on ChAdOx1 adenovirus and human
adenovirus type 26, utilized in AZD1222 and Ad26.COV2.S vaccines, respectively, although
given the circumstances, they are urgently needed. Both of these vaccines are administrated
intramuscularly, and according to the biodistribution study in BALB/c mice, the highest
number of viral copies is noted in skeletal muscle at the site of administration, with low
levels sporadically found in other tissues—heart, liver, lymph node, ovary, and testes (study
0841MV38.001) [66]. Rare translocation of adenoviral vector outside the injection site may
potentially result in its interaction with platelets—a hypothesis worth further exploration.

4. Cross-Reactivity of Anti-SARS-Cov-2 Spike Protein Antibodies with Platelet
Factor 4

Cross-reactivity occurs when an antibody directed against one specific antigen suc-
cessfully recognizes epitopes of other antigens [67]. For example, anti-nucleocapsid an-
tibodies generated after SARS-CoV-1 infection can cross-react with interleukin-11, an
anti-inflammatory cytokine derived from bone marrow stromal cells [68]. Potential cross-
reactivity of anti-SARS-CoV-2 spike antibodies and different tissue proteins has also been
postulated and encompassed: transglutaminase 3, transglutaminase 2, myelin basic protein,
mitochondria, nuclear antigen, α-myosin, thyroid peroxidase, collagen, claudin 5+6, and
S100B [69]. This leads to the question of whether the antibodies against spike protein
could cross-react with PF4. However, such a mechanism is questionable; otherwise, prior
to vaccine rollout, the increase in thrombotic thrombocytopenia should be reported in
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convalescent patients. It is true that thromboembolic events emerging from COVID-19 are
behind the sudden deterioration and death, although it has been proposed that they arise
from the direct platelet stimulation by SARS-CoV-2 and spike protein binding angiotensin-
converting enzyme 2 (ACE2) receptor, as well as endothelial damage due to cytokine
storms [70,71].

The potential cross-reactivity of the anti-SARS-CoV-2 spike protein antibodies with
PF4 has recently been investigated [72]. As shown using the prediction tools and 3D-
modelling, three motifs of the spike protein sequences shared a possible immunogenic
epitope with PF4, although the experiments with purified recombinant spike protein,
purified PF4, and affinity-purified anti-PF4 antibodies collected from serum samples of
individuals vaccinated with AZD1222 who developed thrombotic thrombocytopenia found
no evidence for cross-reactivity [72]. This report is reassuring that SARS-CoV-2 spike
protein remains an optimal immunological target for vaccines.

One should, however, note the distinctive difference in spike protein encoded by both
mRNA vaccines (BNT162b2 and mRNA-1273), Ad26.COV2 vector vaccine, and AZD1222.
While in all cases, the sequence encoding the prefusion conformation of spike protein
is delivered, the former three utilize the stabilized “up” state of the receptor-binding
domain [73–75]. Contrary to this, AZD1222 uses ChAdOx1 adenovirus vector encoding
unstabilized prefusion conformation and, as shown experimentally in U2OS cells, the
majority of spike protein on their surface was presented in a prefusion conformation.
However, low levels of post-fusion spike protein were also shown [76]. Whether this may
play any role in humoral responses and potential cross-reactivity remains to be tested.

5. Cross-Reactivity of Anti-Adenovirus Antibodies with Platelet Factor 4

It is known that pre-existing anti-vector antibodies introduce a significant limitation
to the use of vector vaccines, particularly when utilizing recombinant human viruses. For
example, the percentage of individuals in the African, American and European population
displaying neutralizing antibodies against human adenovirus type 5 amounts to >65%,
>37% and >6%, respectively [77–80]. This can be partially overcome by using less immuno-
genic adenoviral vectors such as human adenovirus type 26 or employing animal-derived
adenoviruses [81]. However, such a strategy does not limit the possibility of the generation
of anti-vector antibodies post-vaccination. As shown for AZD1222, anti-ChAdOx1 antibod-
ies increased over the 28 days following first dose administration, and remained relatively
stable for at least 84 days [82]. Whether these antibodies play a role in the observed VITT
requires detailed studies. This may be achieved experimentally via isolation and purifi-
cation of anti-vector antibodies and their incubation with human platelets and the use of
tools to predict whether PF4 epitopes (or epitopes of other surface platelet factors) can be
recognized and bound by these antibodies.

6. Interaction between Spike Protein and Platelets

Severe COVID-19 is often associated with a hypercoagulable state and thrombosis.
The patients present reduced primary production of platelets, elevated destruction of circu-
lating thrombocytes leading to thrombocytopenia, as well as endotheliopathy activating
the complement system and contributing to the release of pro-inflammatory cytokines. All
this can lead to blood coagulation in various organs such as the lung, liver, heart, brain,
and kidney [83,84]. Notably, it has been evidenced that, similar to many other viruses
(e.g., influenza virus), SARS-CoV-2 can directly activate platelets and subsequently trig-
ger uncontrolled coagulation cascades and tissue injury. This is because they robustly
express ACE2, a host receptor, and transmembrane protease serine 2 (TMPRSS2) that
proteolytically cleaves spike protein at the S2′ site [70,85]. SARS-CoV-2 has been shown to
potentiate platelet aggregation in response to ADP, collagen, and thrombin, and even more
importantly, a similar effect was noted in the presence of purified spike protein. Moreover,
spike protein was found to induce integrin αIIbβ3 activation and P-selectin expression in
the absence of agonists [70]. This clearly shows that interactions between spike protein
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and ACE2 on the platelet surface are sufficient to potentate the prothrombotic function.
Therefore, this finding leads to the question of whether spike protein produced following
vaccination with vector or mRNA vaccines can (and how frequently) be secreted in free
form, occur in the blood, and possibly interact with platelets in a similar manner. Following
the vaccination with vector and mRNA vaccines, and production of spike protein, it is
further degraded to antigenic peptide and presented to cytotoxic T lymphocytes through
the major histocompatibility complex (MHC) I pathway, but they can also be released and
taken by dendritic cells and further presented to helper T cells and B cells through the MHC
II pathway [86]. It cannot, therefore, be ruled out that sporadic escape of spike protein and
its transport can occur. To understand whether this is truly the case, and whether this could
lead to interaction with platelets, investigations determining the spike protein content in
blood samples are required.

7. Platelet Expression of Spike Protein

In addition, it cannot be excluded at this moment that sporadic infection of platelets
with an adenoviral vector can occur. It is plausible since the platelets express CAR and
salic acid that can be utilized by the adenoviruses for cell entry. As already mentioned, the
translocation of ChAdOx1 adenoviral vector outside the administration site as far as the
heart, liver, lymph node, ovary, and testes has rarely been noted (study 0841MV38.001) [66].
However, platelets infected with adenoviral vector will not express spike protein since
they exist in an anucleate state and are DNA transcription incompetent [87]. Instead, its
expression would be possible in megakaryocytes, platelet precursors located in the bone
marrow, in which transcriptional production of RNA can occur [88]. Such possibility can
be investigated in vitro since the mature megakaryocytes can be isolated, proliferated, and
differentiated from human peripheral blood mononuclear cells [89]. Whether their infection
with adenoviral vector and expression of spike protein can lead to immune reactions and
thrombocytopenia would require further in vivo studies. The mRNA vaccines can also
potentially be transported to platelets via endocytosis. An in vivo biodistribution study of
BNT162b2 has revealed that spike protein can be expressed at low levels and transiently in
the liver (study R-20-0072) [90]. It therefore remains to be studied whether the platelets
(and megakaryocytes) can serve as target cells of COVID-19 vector and/or mRNA vaccines,
leading to spike protein synthesis and its presentation in the context of MHC I [91] and the
triggering of a cytotoxic response by CD8+ cells.

8. Platelet Expression of Adenoviral Proteins

In case of sporadic infection of megakaryocytes with adenoviral vector, it remains
to be elucidated whether, in addition to gene encoding SARS-CoV-2 spike protein, the
expression of genes encoding adenoviral proteins can occur [92]. As already shown using
in vitro experiments, replication-deficient adenoviral vectors lacking E1 and E3 regions,
e.g., ChAdOx1, can still express a wide array of structural and non-structural proteins,
in addition to a heterologous gene product. However, this phenomenon appears to be
restricted only to selected cell types as it was observed at a low level in A549 cells (a human
lung epithelial-like continuous-line derived from carcinomatous tissue) but was nearly
absent in MRC-5 cells (human lung fibroblast-like line) [92]. Neither is it clear whether the
expression of different adenoviral proteins also occurs after vaccine administration nor in
what cell types it can take place. However, it appears reasonable to study such a possibility
in various human cells, e.g., megakaryocytes, and, if confirmed, understand the potential
consequences, especially in the context of thrombotic thrombocytopenia risk.

9. Conclusions

This paper offers selected hypotheses behind the potential mechanism linking rare
blood clotting events observed after administering the vector and mRNA vaccines against
COVID-19. Based on the provided discussion, the evidence is building toward the role
of pathologic antibodies to PF4. However, it remains to elucidate which component can
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form a complex with PF4 (spike protein appears unlikely due to no affinity) and whether
the genetic predispositions (e.g., FcγRIIA polymorphism) may play a role in immune
response leading to thrombotic thrombocytopenia after vaccination. At the same time,
further research should, in particular, test the potential interaction between adenoviral
vector and human platelets, take into account that other components of the vaccine may be
involved, explore the possibility of cross-reactivity between anti-vector antibodies and PF4,
and elucidate whether spike protein interaction with platelets can lead to an antiplatelet
immune reaction. One should bear in mind the possibility that the causative factor may
not be homogeneous in all cases of so-called VITT and that not all of these cases may have
a causal relationship with vaccination. Although elucidating the causative mechanism
after vaccination is challenging and time-consuming, the unprecedented research efforts
in response to the COVID-19 pandemic raise a hope that causes of the observed rare
cases of thrombotic thrombocytopenia after COVID-19 vaccination will eventually be
well understood.

Author Contributions: Conceptualization, P.R.; writing—original draft preparation, P.R.; writing—
review and editing, B.P. and R.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was financially supported by the Medical Research Agency (grant number
2020/ABM/COVID19/) and by the statutory funds of the Department of Environmental Medicine,
Poznan University of Medical Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Burgos, R.M.; Badowski, M.E.; Drwiega, E.; Ghassemi, S.; Griffith, N.; Herald, F.; Johnson, M.; Smith, R.O.; Michienzi, S.M. The

race to a COVID-19 vaccine: Opportunities and challenges in development and distribution. Drugs Context 2021, 10. [CrossRef]
2. Defendi, H.G.T.; da Silva Madeira, L.; Borschiver, S. Analysis of the COVID-19 Vaccine Development Process: An Exploratory

Study of Accelerating Factors and Innovative Environments. J. Pharm. Innov. 2021. [CrossRef] [PubMed]
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