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In the past decades, progresses in cancer treatment have
resulted in a doubling of survival, while up to half of cancer
patients are still alive beyond 10 years after diagnosis [1,2]. In view
of this striking increase of survival, paralleled by a wide range of
adverse impact of cancer treatment options with an aging popula-
tion, a steady increase of cancer therapies-related cardiotoxicity
load has been recognized [3]. There is an enhanced appreciation
that adult cancer survivors have a worse cardiovascular outcome
following several years after detection, which again appears to be
stringent on the cancer subtype and treatment plan [4]. In this
respect, there is an evolving close collaboration between cardiolo-
gists and oncologists for individualized patient care striving to
improve cardiovascular and cancer outcome in these patients
[2,5]. Cardiovascular imaging in cancer patients may provide four-
fold information such as (1) pre-therapy risk prediction, (2) diag-
nosis and monitoring of cardiotoxicity manifestation during
cancer treatments, (3) assessment of late adverse cardiovascular
alterations after treatment completion, and (4) identification and
treatment monitoring of cardiac masses and infiltration [1,2,5].
For example, it is widely known that anthracycline-treatment on
breast cancer patients may induce dose related and progressive left
ventricular dysfunction leading to heart failure manifestation [6].
More recently introduced cancer therapies such as trastuzumab
and other HER2 monoclonal antibodies, tyrosine kinase inhibitors,
and immunotherapy have been realized to cause cardiotoxicity
resulting in cardiac dysfunction [2,7,8]. For most cancer-related
treatments, baseline and serial echocardiography examinations
are commonly performed as first line imaging for a timely identifi-
cation of early development of cardiotoxicity. Cardiotoxicity, as
determined with echocardiography, is defined as new onset of left
ventricular systolic dysfunction with a decrease in left ventricular
ejection fraction (LVEF) of �10% to a value <50% [9]. In order to
identify and characterize subclinical cardiotoxicity at its early
stage, speckle-tracking echocardiography with myocardial strain
assessment is concurrently applied. While radial, circumferential,
and longitudinal myocardial strain can be determined with
speckle-tracking echocardiography, global longitudinal strain
(GLS) has been identified as a sensitive and robust marker for the
detection of subclinical and early stages of cancer-treatment
related myocardial injury. A relative reduction in GLS � 15% during
cancer treatment from baseline is suggestive of early functional
alterations before a drop in LVEF may ensue. It is important to keep
in mind that the identification of subclinical and/or clinically-man-
ifest left ventricular dysfunction likely leads to a change in the
selection of a chemotherapeutic agent, the installation of cardio-
protective treatment, and the timing of repeat monitoring imaging
[9,10]. In case of poor echocardiographic image quality, cardiac
magnetic resonance (CMR) is commonly conducted for the assess-
ment of global LVEF and myocardial strain imaging with the use of
tagging, displacement encoding with stimulated echoes (DENSE)
and strain-encoded (SENC) imaging [1,11]. Notably, CMR affords
an accurate and unique characterization of the myocardial tissue
with T2-weighted imaging and/or T1 and T2 parametric mapping
for myocardial edema and inflammation, applying T1 and extracel-
lular volume fraction (ECV) measurement for diffuse fibrosis, and
late gadolinium enhancement (LGE) imaging for focal fibrosis and
scar assessment [11].

In this issue of the IJC Heart & Vasculature, Egashira et al. [12]
expand the cardiovascular imaging portfolio in the detection and
characterization of cancer therapeutics–related cardiac dysfunc-
tion to cardiac contrast CT with assessment of increases of extra-
cellular volume (ECV). In a feasibility in forty-four women with
breast cancer, who underwent anthracycline treatment, contrast
cardiac CT (CCT) identified late anthracycline-induced cardiotoxic-
ity in seven patients. As it was observed, echocardiography-deter-
mined LVEF of the group with anthracycline-induced late
cardiotoxicity was significantly lower than in the control group.
In particular, the global longitudinal strain assessed by echocardio-
graphy and CCT-determined myocardial ECV in individuals with
late anthracycline-induced cardiotoxicity was significantly lower
than that of control group and in those individuals without anthra-
cycline-induced cardiotoxicity. Such intial observations suggest
indeed that anthracycline-induced cardiotoxicity could indeed be
evaluated with CCT. The sensitivity and accuracy of CCT in the
identification of cancer-treatment related early and late onset of
cardiotoxicity as compared to echocardiography and/or CMR
remains uncertain needing further well-designed clinical investi-
gations. Given the radiation exposure of CCT, albeit relatively
low, it appears unlikely that this approach may overcome estab-
lished cardiovascular imaging modalities such as echocardiogra-
phy and/or CMR. In particular, CMR affords an array of
parameters for a comprehensive and accurate identification and
characterization of cardiotoxicity affecting morphology and func-
tion of the myocardial tissue. Furthermore, there are emerging
positron emission tomography (PET) radiotracer probes, such as
18F-mitophos, that can identify cancer-treatment related increases
reactive oxygen species in the myocardial tissue in vivo [13,14].
This approach appears promising for risk stratification of the
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potential manifestation of cancer-related cardiotoxicity warrant-
ing further clinical studies. Another interesting development is
the PET radiotracer 68Ga-galmydar [15], which has capability to
can assess the mitochondrial potential of the myocytes and,
thus, the functional state even at cellular level. Conceptually, both
18F-mitophos and 68Ga-galmydar hold promise for an early identi-
fication and monitoring of cancer-treatment related cardiotoxicity
and interrogating therapeutic efficacy of emerging cardio-protec-
tants [13]. Overall, Egashira et al. [12] add first evidence that CCT
can add to the cardiovascular imaging portfolio in the identifica-
tion of anthracycline-induced cardiotoxicity. The diagnostic niche
of CCT in this emerging field of the assessment of cancer-treatment
related cardiotoxicity remains uncertain but likely may evolve
within a comprehensive assessment of coronary morphology,
myocardial perfusion, and myocardial structure for cardiovascular
risk stratification in these cancer patients.
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