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ABSTRACT
 Previous studies from our group and others have shown that current drug 

treatment(s) strategies eliminate bulk of tumor cells (non-CSCs) but it had a minimal 
effect on cancer stem cells (CSCs) leading to resistance and tumor recurrence. We 
studied the effects of CFM-4.16 (CARP-1 functional mimetic) and/or cisplatin on four 
Triple-negative breast cancer (TNBC) MDA-MB-468, MDA-MB-231, CRL-2335 and BR-
1126, two cisplatin resistant CisR/MDA-231 and CisR/MDA-468 and cancer stem 
cells (CSCs) from resistant cell lines. TNBC cells treated with CFM-4.16 plus cisplatin 
inhibited the expression of FZD8, LRP6 and c-Myc and significantly enhanced cell 
death in all the cell lines by ~70%-80% compared with the control(s). When Cisplatin 
resistant CisR/MDA-231 and CisR/MDA-468 were treated with CFM-4.16 plus cisplatin, 
they also showed a reduction in FZD8 and LRP6 and increased apoptosis compared to 
control group. Similarly, CFM-4.16 plus cisplatin treatment reduced mammospheres 
formation abilities of CSCs by 80-90% compared to control group, increased PARP 
cleavage and apoptosis. Data shows CFM-4.16 plus cisplatin treatment significantly 
increased apoptosis/cell death in parental, cisplatin resistant and CSCs. Taken 
together the data suggests that FZD8-mediated Wnt-signaling plays a major role in 
mediating CSCs growth and resistance to chemotherapy and its inhibition enhances 
the chemotherapeutic response in TNBC.

INTRODUCTION

Triple-negative breast cancer (TNBC) continues 
to be a major health problem worldwide despite recent 
advances in its diagnosis and treatment. Chemotherapy is 
currently the only systemic treatment option for TNBC, 
but optimal treatment protocols are yet to be established 
[1, 2]. Taxane and anthracycline-based regimens represent 
the mainstay in TNBC therapy, while platinum-based 
chemotherapy has shown promising results in the 
neoadjuvant and metastatic settings [1]. Despite the 
aggressive nature of TNBC, 20% of patients present a 
pathologic complete response (pCR) after neoadjuvant 
chemotherapy [3]. The differences in clinical outcomes 
following neoadjuvant treatment imply that a subset 

of TNBCs is sensitive to chemotherapy while others 
become resistant during treatment or are intrinsically 
less susceptible. In breast cancer, both in vivo and patient 
data showed a substantial increase in cancer stem cells 
(CSC) in the residual tumors following treatment with 
conventional chemotherapy [4, 5]. Many studies support 
the notion of CSC importance in TNBC, such as the 
positive correlation observed between the expression of 
CSC markers (CD44, ALDH1) and lower survival rates of 
TNBC patients [6, 7]. Accumulating data also suggested 
the chemoresistant CSCs may be a major factor in TNBC 
relapse [8, 9]. We postulate inhibition of factors crucial 
for CSC maintenance such as Wnt-signaling can sensitize 
TNBC cells to chemotherapy.

There is compelling evidence indicating that aberrant 
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activation of Wnt/β-catenin signaling leads to mammary 
carcinogenesis [10-12]. Enhanced nuclear/cytoplasmic 
β-catenin staining was found in ~ 60% of human breast 
cancer tissues [12, 13] suggesting that Wnt-signaling is 
activated in these tumors. Overexpression of Wnts and 
FZDs or constitutively active FZD regulates various 
processes, which play a major role in tumor growth, 
CSCs and metastasis [14-16]. Frizzled-8 receptor (FZD8) 
expression was significantly higher in human breast cancer 
tissues compared with the adjacent normal tissues, and 
higher expression of FZD8 was closely correlated with 
lymph node metastasis [17]. We have previously shown 
that residual tumors that survived chemotherapy show 
increased FZD8 and CSCs in TNBC tumors and cell lines 
compared to control group [5]. Clinically Low-density 
lipoprotein receptor-related protein 6 receptor (LRP6) 
is an essential Wnt co-receptor of the Wnt/β-catenin 
signaling pathway. LRP6 was shown to be significantly 
elevated in ~25% of breast cancers more so in TNBC than 
other types of breast cancer [18]. However, mutations in 
Wnt pathway components such as Adenomatous polyposis 
(APC), ctnnb1(encoding β-catenin), Axin, etc., are rarely 
detected in human breast cancer [10, 13, 19]. LRP6, but 
not LRP5, is frequently up-regulated in human breast 
carcinomas [18]. Together, these data suggested that Wnt/
β-catenin signaling mediated through FZD8 and LRP6 
plays a major role in human breast cancers, drug resistance 
and metastasis [2, 14, 18, 20]. 

Cell cycle and apoptosis regulator 1 (CARP-1/
CCAR1) is a peri-nuclear phospho-protein, that regulates 
cell growth and apoptosis signaling in a variety of cancer 
cells [21, 22]. CARP-1 expression is often elevated in 
cells experiencing stress due to growth factor withdrawal 
or chemotherapy-induced cell cycle arrest and apoptosis 
[21, 22]. Knockdown of CARP-1 resulted in resistance 

to apoptosis by ADR or EGFR tyrosine kinase inhibitors 
demonstrating the requirement of CARP-1 in cell growth 
inhibition and apoptosis signaling by these agents [21-
23]. Breast tumors have been shown to have much lower 
CARP-1 compared to surrounding tissues. A chemical 
biology based high-throughput screening of a chemical 
library resulted in identification of a number of novel, 
small molecular inhibitors of CARP-1 binding with APC/C 
subunit of APC2 [24]. It was previously shown that CFM-
4 is a CARP-1 functional mimetics (CFMs), and blocks 
its interaction with APC2, cause G2M cell cycle arrest, 
and inhibits cell growth by inducing apoptosis in various 
cancers. In contrast, CFM-4 treatment of an immortalized 
non-cancerous cell line MCF10A had a minimal effect 
on growth [24, 25]. Previous studies have also found that 
CFM-4 analog and CFM-4.16 binds with CARP-1, and 
causes elevated levels of CARP-1, stimulates apoptosis 
[24, 26, 27].

RESULTS

CFM-4.16 plus cisplatin enhances cell death in 
TNBC cell lines

We used four cell lines; three TNBC cell lines 
MDA-MB-468, MDA-MB-231, CRL-2335 and one BR-
1126 (PDX derived TNBC cell line) to determine the 
effect of CFM-4.16, cisplatin, or combination on cell 
death. The MTT data indicate that CFM-4.16 or cisplatin 
induced approximately 30%-50% cell death in TNBC cell 
lines. However, combination of CFM-4.16 plus cisplatin 
enhanced cell death to approximately ~80% in TNBC cell 
lines (Figure 1). Our group and others have previously 

Figure 1: CFM-4.16 plus cisplatin treatment resulted in a significantly enhanced cell death in multiple TNBC cell lines: 
MDA-MB-231, MDA-MB-468, CRL2335 and BR-1126 (PDX derived TNBC cell line) were treated with CFM-4.16 (10 
µM), cisplatin (10µg/ml) or CFM-4.16 (10 µM) plus cisplatin (10µg/ml) for 24 hours. Cell viability was then analyzed by 
MTT method. CFM-4.16 plus cisplatin treatment significantly inhibited MDA-MB-231, MDA-MB-468, CRL2335 and BR-1126 compared 
to their control group (*p <  0.05). Each point represents the mean + S.E. of triplicate determination.
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shown that Wnt-signaling plays a major role in tumor 
growth and drug resistance in TNBC [5, 28-31]. Western 
blot analysis showed that cisplatin had varying levels 
of inhibition(s) on FZD8, LRP6 and c-Myc. In contrast, 
CFM-4.16 treatment shows consistent protein reduction 
in FZD8, LRP6 and c-Myc. However, combination of 
CFM-4.16 plus cisplatin treatment resulted in consistent 
reduction in all of the above proteins (Figure 2). Taken 
together, these data suggest that CFM-4.16 plus cisplatin 
treatment had a significant effect in reducing levels of 
major Wnt-signaling proteins and this leads to enhanced 
cell death in all the four TNBC cell lines.

Effect of CFM-4.16 plus cisplatin on cisplatin-
resistant TNBC cell lines

Cisplatin is one of the most successful anticancer 
agents used in TNBC and other tumors [32, 33]. 
Overcoming resistance to chemotherapeutic agents would 
represent a major advance in clinical management of 
breast cancer. We tested the efficacy of CFM-4.16 plus 
cisplatin on cisplatin resistant TNBC cells. We developed 
a cisplatin resistance phenotype in MDA-231 and MDA-
468 TNBC cells, and this was achieved through growth 
of the cells over time in the presence of increasing 
concentrations of cisplatin. To determine if CFM-4.16 
plus cisplatin enhances cell death in cisplatin-resistant 
MDA-MB-468 (CisR/MDA-468) and cisplatin-resistant 
MDA-MB-231 (CisR/MDA-231) cells, we treated cells 
with cisplatin, CFM-4.16 or combination for 24-hours. 
The data in Figure 3A and 3C indicates that cisplatin had 
no or minimal effect on FZD8 or LRP6. However, CFM-

4.16 significantly inhibited FZD8 in CisR/MDA-468 
cells but has a moderate effect on CisR/MDA-231 cells. 
However, combination of CFM-4.16 plus cisplatin had a 
significant effect on FZD8 and LRP6 reduction compared 
to control group, and significantly enhanced apoptosis 
(Figure 3B&3D). These results suggest that CFM-4.16 
plus cisplatin treatment overcomes cisplatin resistance in 
TNBC cells.

CFM-4.16 plus cisplatin on CSCs derived from 
cisplatin-resistant TNBC cells

Emerging evidence suggests that CSCs, which have 
tumor-initiating potential and self-renewal capacity, may 
be responsible for poor outcome by promoting therapy 
resistance, recurrence and metastasis [5, 9, 34, 35]. It was 
previously shown that the cell fraction with the CD44+/
CD24-/Lin- phenotype in breast cancer patient tissues 
could recapitulate tumor burden in mice [36]. Later, it 
was also shown that a subpopulation of cells with high 
aldehyde dehydrogenase (ALDH) activity could initiate 
tumors in vivo [37]. Since then, the CD44+/CD24- 
phenotype and high ALDH activity have become the “gold 
standard” signature for breast cancer stem cells. Different 
group, including our group have shown that chemotherapy 
can eliminate the bulk of tumor cells (non-CSCs), but it 
failed to eliminate CSCs, thereby making these cells the 
leading cause of therapy resistance and recurrence [5, 34, 
38, 39]. 

One of the major characteristic features of CSCs 
is their ability to form mammospheres in suspension 
culture [39, 40]. We have previously shown that after two 

Figure 2: Expression of FZD8, LRP6 and c-Myc in MDA-MB-231, MDA-MB-468, CRL2335 and BR-1126 TNBC cells 
treated with CFM-4.16, cisplatin or CFM-4.16 plus cisplatin for 24 hours. Whole-cell extracts were prepared and analyzed for 
FZD8, LRP6 and c-Myc by Western blotting. Equal protein loading was compared with that of GAPDH.
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passages of mammospheres in culture, cells derived from 
mammospheres showed ~90% positivity for ALDH by 
flow cytometer, and these cells have the ability to form 
tumors in mice (data not shown). In this study, we used 
cells derived from mammospheres after two passages as 
CSCs. We investigated the effect of cisplatin, CFM-4.16 
or its combination on mammosphere formation using 
CisR/MDA-231 and CisR/MDA-468 TNBC cell lines. 
The results presented in Figure 4 shows that cisplatin 
treatment reduced mammosphere formation ability of 
CSCs by ~ 30% compared to an untreated control group 
in CisR/MDA-231 cells, CFM-4.16 treatment reduced 
mammosphere formation by ~ 55%, and the combination 
of CFM-4.16 plus cisplatin reduced mammosphere 
formation ability by ~85% compared to control group. 
Similarly, in CisR/MDA-468 derived CSCs, cisplatin 

treatment reduced mammosphere formation ability by 
~36%, CFM-4.16 by ~59% and combination reduced 
mammosphere formation ability by 89% (Figure 4).

The effect of CFM-4.16, cisplatin or CFM-4.16 plus 
cisplatin treatment was also examined on Wnt-signaling 
proteins and apoptosis in CSCs derived from cisplatin 
resistant TNBC cells. The results in Figure 5 show that 
cisplatin had minimal inhibition on FZD8, LRP6 protein 
levels in CisR/MDA-231 and CisR/MDA-468 derived 
CSCs. CFM-4.16 treatment, on the other hand, causes 
a reduction in FZD-8, LRP6 proteins in both CisR/
MDA-231 and CisR/MDA-468 derived CSCs. However, 
combination of CFM-4.16 plus cisplatin treatment resulted 
in consistent reduction in all the proteins (Figure 5). 
Western blot(s) showed a significant increase in PARP 
cleavage (Figure 6A) and cell death in CSCs (Figure 

Figure 3: Effect of CFM-4.16 plus cisplatin on CisR/MDA-231 and CisR/MDA-468 TNBC cells. CisR/MDA-231 and CisR/
MDA-468 TNBC cells were treated with CFM-4.16 (10 µM), cisplatin (10µg/ml) or CFM-4.16 (10 µM) plus cisplatin (10µg/ml) for 24 
hours. Whole-cell extracts were prepared and analyzed for FZD8 and LRP6 by Western blotting A., C. Equal protein loading was compared 
with that of GAPDH. Under similar conditions, apoptosis was quantified by Cell Death ELISA and normalized to values measured in 
untreated cells. CisR/MDA-231 and CisR/MDA-468 TNBC cells showed a significant increase in apoptosis in the presence of CFM-4.16 
plus cisplatin in comparison to untreated cells B., D. (*p < 0.001). Data are the mean + SE of triplicate determinations.
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6B) derived from cisplatin-resistant TNBC cell lines. 
Taken together, these data suggest that CFM-4.16 plus 
cisplatin treatment can reduce FZD8, and LRP in parental, 
cisplatin resistant and CSCs derived from cis-resistant 
TNBC cells and also increase apoptosis/cell death. These 
findings suggest that CFM-4.16 plus cisplatin therapy has 
the potential to improve therapeutic outcome in TNBC 
patients.

DISCUSSION

Abnormal activation of Wnt-signaling has been 
implicated in the regulation of CSCs including breast 
cancer, lung cancer, colorectal cancer, etc. [11, 12, 
41, 42]. CSCs were shown to be responsible for tumor 
initiation, growth, chemotherapeutic resistance and 
recurrence [9, 34, 43, 44]. The propensity of CSCs to 
resist chemotherapy, thereby maintaining a pool of 
tumorigenic cells from which tumor(s) can reoccur [5, 
45, 46]. We hypothesized that treatment strategies that 
target both CSCs and non-CSC (bulk of the tumor) could 
improve therapeutic outcome. The signaling pathways 
that regulate self-renewal and differentiation of CSCs 
are not well understood. A number of studies support 
functional versatility of Wnt/β-catenin signaling in CSCs 

and non-CSC’s [2, 28, 29, 43]. The results from the 
present investigations clearly show that MDA-MB-231, 
MDA-MB-468, CRL-2335 and BR-1126 TNBC cells 
treated with CFM-4.16 plus cisplatin show significantly 
enhanced cell death (~ 70-80%) as compared to untreated 
cells (Figure 1). The results from this study have also 
shown that treatment with CFM-4.16 alone caused 
significant reduction in FZD8, LRP6 and c-myc (Figure 
2) and induced ~30-40% cell death. Cisplatin alone had 
a marginal effect on FZD8 and LRP6 and induced ~ 40-
50% cell death. However, combination of cisplatin plus 
CFM-4.16 increased the cell death to ~70-80% in all the 
four TNBC cell lines. Taken together, the data suggest 
the possibility that restoration of CARP-1 through 
functional mimetic CFM-4.16 reduces Wnt-signaling 
and significantly increases apoptosis in the presence of 
cisplatin. 

Chemotherapy resistance presents a significant 
hurdle for successful treatment in TNBC. Platinum-based 
chemotherapy has shown promising results in TNBC, they 
frequently develop chemoresistance [2, 9]. To determine if 
CFM-4.16 plus cisplatin enhances cell death in cisplatin-
resistant MDA-MB-468 (CisR/MDA-468) and cisplatin-
resistant MDA-MB-231 (CisR/MDA-231) cells were 
treated with cisplatin, CFM-4.16 or combination. Our 

Figure 4: Effect of CFM-4.16 plus cisplatin treatment on the ability of cancer stem cells to form mammospheres. The in 
vitro mammospheres was quantified by counting the mammospheres after treatment with CFM-4.16, cisplatin or CFM-4.16 plus cisplatin 
compared to controls. CFM-4.16 plus cisplatin treatment had maximum inhibition on cancer stem cell’s ability to form mammospheres 
in CisR/MDA-231 and CisR/MDA-468 derived CSCs compared to their control group (*p < 0.05). Data are mean + SE of triplicate 
determinations.
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data shows a combination of CFM-4.16 plus cisplatin 
significantly reduced Wnt-signaling through inhibition of 
FZD8 and LRP6 and enhanced apoptosis (Figure 3B&3D). 
These results suggest that CFM-4.16 plus cisplatin 
treatment overcomes cisplatin resistance in TNBC cells. 

Successive studies detected a higher percentage of 
CSCs in primary breast tumors following neoadjuvant 
chemotherapy [4, 5, 8]. Different groups, including our 
group showed that CSCs are resistant to chemotherapy, 
leading to enrichement of CSCs in residual tumor both 
in vitro and in vivo [4, 5]. Wnt-signaling was implicated 
in CSC’s self-renewal. Therefore, targeting Wnt-signaling 
in CSCs may be a promising therapeutic approach 
for TNBC. To test this premise we treated the CSCs 
derived from cisplatin-resistant cells with CFM-4.16, 
cisplatin and CFM-4.16 plus cisplatin and determined the 
mammosphere formation. This assay has been used as a 
surrogate reporter of CSCs activity in mammary gland [36, 
40, 47]. The results from this study showed a combination 
of CFM-4.16 plus cisplatin reduced mammosphere 
formation ability by ~85-90% when compared to control 
group (Figure 4). Our data also showed that proteins 
extracted from the treated mammosphere had significant 
reduction in Wnt-signaling proteins FZD8, LRP6, c-Myc 
and increased PARP cleavage leading to apoptosis in 
CSCs compared to control group.

Previous studies from our group and others 
have shown that activation of Wnt-signaling leads to 
increased expression of c-Myc through β-catenin [19–
21]. We investigated the role of c-Myc in regulation 
of Wnt signaling and its effect on CSCs and response 

to chemotherapy. We overexpressed c-Myc in MDA-
MB-468 (Myc/MDA-468) and MDA-MB-231 (Myc/
MDA-231) TNBC cells. Myc overexpression resulted 
in a significant increase in FZD8 compared to vector 
transfected control cells [31]. Based on these observations 
and others, we propose that a positive feedback loop 
exists between Myc, and FZD8 breast cancer cells. Myc 
also controls the expression of numerous genes, which are 
essential to regulate EMT and/or CSCs. Our data showed 
over expression of c-Myc in the Myc/MDA-468 cells 
increased expression of ALDH, a marker for CSCs, while 
it had a minimal effect on EMT regulating proteins such 
as Vimentin and Zeb 1. In contrast, Myc/MDA-231 cells 
showed increased levels of Vimentin, and Zeb 1 a marker 
for EMT changes when compared to vector-expressing 
controls, and ALDH levels were undetectable by Western 
blot analysis [31]. In addition, we have also demonstrated 
that Myc/MDA-468 cells, exhibit higher CSCs levels and 
are resistant to cisplatin plus Iniparib (PARP inhibitor), 
paclitaxel, docetaxel and iniparib alone. However, Myc/
MDA-231 cells that showed increased EMT changes were 
sensitive to combination therapy of cisplatin plus Iniparib. 
Interestingly, Myc/MDA-231 cells were resistant to 
chemotherapeutic agents paclitaxel, docetaxel and iniparib 
that are commonly used for clinical practice to treat breast 
cancer [31]. In contrast, combination of CFM.4.16 and 
cisplatin significantly increased apoptosis in both c-Myc/
MDA-468 and c-Myc/MDA-231 compared to respective 
vector expressing control cells. This data suggests 
CFM-4.16 caused reduction in FZD8, LRP6 and c-Myc 
sensitizes cells to cisplatin.

Figure 5: Effect of CFM-4.16 plus cisplatin treatment on the expression of FZD8, LRP6 and c-Myc in CisR/MDA-231 
and CisR/MDA-468 derived cancer stem cells. Cell extracts were prepared and analyzed for FZD8, LRP6 and c-Myc by Western 
blotting. Equal protein loading was compared with that of β-actin.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183578#pone.0183578.ref019
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183578#pone.0183578.ref021
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Many studies support the notion of CSCs 
significance in TNBC, such as the positive correlation 
observed between the expression of CSC markers (CD44, 
ALDH1) and lower survival rates of TNBC patients [6, 
8]. Eradication and/or reduction of CSCs may represent 
an effective anticancer therapeutic strategy. Extensive 
literature highlights the key role of deregulated Wnt/β-
catenin signaling in TNBC and it’s more likely to develop 
chemotherapeutic resistance and distant metastases [5, 
48, 49]. Recently numerous Wnt signaling inhibitors, 
including biological and small molecular agents such as 
PRI-724 (Dishevelled inhibitor), Ipafricept (Fc-Frizzled 
8 receptor), Vantictuman (Anti-Frizzled 7 receptor), 
LGK974 (Porcupine inhibitor), CGP049090 (β-catenin-
TCF), etc [44, 50]. However, due to the inherent 
heterogeneity of CSCs the targeting a single molecule 
may not be an effective strategy. Markers expressed 
on CSCs may also be displayed by normal stem cells, 
which limits accuracy of targeted treatment in TNBC. 
Therefore, we targeted Wnt-signaling by combination 
therapy, which was efficient in elimination both CSCs 
and non-CSC’s (bulk of tumor cells). Considering the 
complexity and diversity of TNBC, eradicating all cancer 
cells using one strategy is challenging task. Thus, using 
a combination treatment with CFM-4.16 plus cisplatin 
induce the synergistic effects that induced apoptosis in 
non-CSCs, cisplatin resistant-CSCs and -tumor cells. 
Recent studies suggest that CSCs are enriched after 

chemotherapy because CSCs are resistant to conventional 
chemotherapy leading to recurrence and eventual 
metastasis. In conclusion, our data show CFM-4.16 
plus cisplatin treatment increases apoptosis/cell death 
in parental TNBC, cisplatin resistant and CSCs cells 
derived from cisplatin resistant TNBC cells. Overcoming 
resistance to chemotherapeutic agents would represent a 
major advance in clinical management of breast cancer. 
. Taken together the data suggest that FZD8-mediated 
Wnt-signaling plays a major role in mediating CSCs 
growth and resistance to chemotherapy and inhibition of 
this pathway enhances the chemotherapeutic response in 
TNBC.

MATERIALS AND METHODS

Cell lines and reagents

The human triple-negative breast cell lines 
CRL2335, MDA-MB-231. MDA-MB-468 cells were 
obtained from the American Type Culture Collection 
(ATCC). BR-1126 (PDX derived TNBC cells) obtained 
from Dr. Rishi (VA and Karmanos Cancer Institute, 
Wayne State University). Cells were maintained in 
DMEM culture media. All cells obtained from ATCC 
were immediately expanded and frozen down such that 

Figure 6: CFM-4.16 plus cisplatin increases PARP-cleavage and apoptosis in CisR/MDA-231 and CisR/MDA-468 
derived cancer stem cells. CisR/MDA-231 and CisR/MDA-468 derived cancer stem cells were treated with CFM-4.16, cisplatin or 
CFM-4.16 plus cisplatin for 24 hours. A. Cancer stem cell extracts were prepared and analyzed for PAPR cleavage by Western blotting. 
Equal protein loading was compared with that of β-actin. B. Under similar conditions, apoptosis was quantified by Cell Death ELISA and 
normalized to values measured in untreated cells. Cancer stem cells derived from CisR/MDA-231 and CisR/MDA-468 TNBC cells showed 
a significant increase in apoptosis in the presence of CFM-4.16 plus cisplatin in comparison to untreated cells (*p < 0.001). Data are the 
mean + SE of triplicate determinations.
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all cell lines could be restarted every 3-4 months from a 
frozen vial of the same batch of cells, and authentication 
was done. Cisplatin was purchased from Sigma (St. 
Louis, MO). CFM-4.16 was obtained from Dr. Rishi 
(Karmanos Cancer Institute). Reagents for protein 
analysis and protein gel electrophoresis were obtained 
from Bio-Rad (Hercules, CA). All other chemicals, unless 
otherwise specified, were purchased from Sigma in the 
highest suitable purities.

Generation of drug-resistant TNBC cells

Human TNBC MDA-MD-231 and MDA-MB-468 
were cultured in the chronic presence of cisplatin. They 
were initially cultured in the presence of 1 µg/ml cisplatin 
for 2-3 weeks, and the dose was escalated to 4 µg/ml 
over a period of 3-4 weeks for each dose until resistance 
developed, and cells became adapted to routine culture in 
the presence of cisplatin.

Mammosphere culture

Mammosphere culture was performed as described 
by Dontu et al. (19) with minor modification. In brief, cis/
MDA-231 or cis/MDA-468 mammospheres were cultured 
in suspen sion (1,000 cells/ml) in serum-free DMEM 
media, supplemented with B27 (1:100; Invitrogen), 
N2 (1:50; Invitrogen) and 10 ng/ml of EGF. For 
mammosphere formation assay, cultured mammospheres 
were enzymatically dissociated by incubation in a trypsin-
EDTA solution (Invitrogen) at 37˚C. Cells were plated 
at 4000 cells per well of six-well ultra low-attachment 
plate (Corning, MA). Mammospheres were counted after 
5-7 days. Mammosphere counting: Mammospheres were 
centrifuged and transferred to a 96-well flat bottomed 
plate in 100 μl of the media and counted using a 
microscope under low magnification. Experiments were 
done in triplicate.

MTT assay

In brief, 5x104 cells were added in 96-well plate. 
After 24 h, cells were treated with CFM-4.16 (10 
µM) plus cisplatin (10 μg/ml), CFM-4.16 (10 µM) 
plus cisplatin (10 μg/ml) another 24 h. Following 
treatments, 100 μl of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) (1 mg/ml) was added 
into each sample and incubated for 3 h under 5% CO2 and 
37˚C. The cell viability was measured by MTT, which is 
converted by succinate dehydrogenase in mitochondria of 
viable cells to yield a purple formazan dye. The formazan 
dye was dissolved in dimethyl sulfoxide (DMSO) and 
measured by absorption at a wavelength of 550 nm using 
Benchmark® microplate reader from Bio-Rad.

Western blot analysis

TNBC or CSCs derived from TNBC cells were 
treated with CFM-4.16 (10 µM), cisplatin (10 μg/ml), or 
CFM-4.16 plus cisplatin for 24 h. Cells were lysed and 
Western blotting was performed as described previously 
[31] using a standard protocol. In brief, cell extracts 
were obtained by lysing the cells in RIPA buffer (20 mM 
Hepes, 100 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 1% 
deoxycholate, 1 mM Na3VO4, 1 mM EGTA, 50 mM NaF, 
10% glycerol, 1 mM EDTA, 1 mM phenylmethylsulfonyl 
fluoride, and 1x protease inhibitor mixture) (all reagents 
from Sigma). Samples containing 30-50 µg of total protein 
was electrophoresed on 8 % SDS-polyacrylamide gels 
and transferred to PVDF membrane by electroblotting. 
Membranes were probed with specific antibodies against 
FZD8 (Aviva System Biology), LRP6, c-Myc, GAPDH 
(Cell Signaling Technology), β-actin (ThermoFisher) 
followed by HRP-conjugated mouse or rabbit secondary 
antibodies (Amersham) accordingly. The specific bands 
were developed on autoradiography films by treatment 
of the membranes with an enhanced chemiluminescent 
substrate (Pierce). 

Apoptosis assay

Apoptosis was assessed using the Cell Death 
Detection ELISAplus kit (Sigma-aldrich) according to 
the manufacturer’s instructions. In brief, mammospheres 
were dissociated and 2X104 cells were plated in 96 well 
ultra-low attachment plates. Cells were treated with 
CFM-4.16, cisplatin or CFM-4.16 plus cisplatin for 24 
h. Apoptosis was quantified by ELISA and normalized to 
values measured in untreated cells. Data are mean + SE of 
triplicate determination. 

Statistical analysis

All data are expressed as mean ± SEM, and 
statistically analyzed using unpaired Student’s t-test. 
Differences were considered statistically significant when 
P < 0.05.

Abbreviations

ADR: Adnamycin; CARP-1: Cell cycle and 
apoptosis regulator 1; CSCs: Cancer stem cells; CFM-
4.16: CARP-1 functional mimetics; TNBC: Triple-
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