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Abstract

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scan are the two ubiquitous imaging sources that
physicians use to diagnose patients with Cystic Fibrosis (CF) or any other Chronic Obstructive Pulmonary Disease (COPD).
Unfortunately the cost constraints limit the frequent usage of these medical imaging procedures. In addition, even though
both CT scan and MRI provide mesoscopic details of a lung, in order to obtain microscopic information a very high
resolution is required. Neither MRI nor CT scans provide micro level information about the location of infection in a binary
tree structure the binary tree structure of the human lung. In this paper we present an algorithm that enhances the current
imaging results by providing estimated micro level information concerning the location of the infection. The estimate is
based on a calculation of the distribution of possible mucus blockages consistent with available information using an offline
Metropolis-Hastings algorithm in combination with a real-time interpolation scheme. When supplemented with growth
rates for the pockets of mucus, the algorithm can also be used to estimate how lung functionality as manifested in
spirometric tests will change in patients with CF or COPD.
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Introduction x-ray, computed tomography (C'T') or magnetic resonance imaging
(MRI). Despite the fact that C'T is an optimal morphological
assessment of CF lung changes, the associated exposure to ionizing
radiation is a serious obstacle. Therefore, MRI might be the
appropriate method for imaging CF patient’s lungs [3,4].

MRI was first introduced as an alternative imaging tool for
patients with CF in 1987 [5]. There are numerous methods for the
analysis of chest MRI. Theilmann et al. proposed a new MRI
imaging method that can spatially locate the pockets of infection
and measure the amount of mucus located within each pocket.
This information is obtained with a resolution of approximately

Patients with chronic obstructive pulmonary disease (COPD) or
cystic fibrosis (CF) have chronic lung inflammation which causes
airflow limitation and the scarring of lung tissues. Their airways
are generally inflamed and produce excess amounts of mucus that
impair the flow of air into and out of their lungs.

Our hypothesis is that the scarring, and ultimate remodeling of
a CF lung is mostly due to the contact between the lung lining and
the mucus. Inflammatory cytokines induce scars in lung tissue [1].
This contact between mucous biofilm and lung tissue facilitates
virulent microbes that also play a role in remodeling a CF lung. In
comparison with a normal lung, the airway fluids of CI patients
contain large amounts of neutrophils as a result of the
1nﬂammat9ry response. [2]. Thus. our hypothesis is that mucus airways. Hence the precise location of infection cannot be
accumulation is primarily responsible for damage to the lung and obtained from the MRI data.
therefore tracking its propagation is a crucial task for better
diagnosis and treatment.

Spirometry, the measurement of a patient’s breathing, is the
standard clinical tool for monitoring lung disease. The two most
common spirometric indicators are the forced expiratory volume
in one second, FEV|, and the forced vital capacity, FVC. FEV,
measures the volume of air that can forcibly be blown out in one
second while FVC measures the volume of air that can forcibly be
blown out after a full inspiration maneuver. Although these tests
provide a global measure of airflow obstruction and restriction,
they do not give detailed information about the location of mucus
blockage. Additional information is available from the repeated
imaging of CF patients’ lungs. This is usually in the form of chest

1.0 em? [6]. This resolution is equivalent to the last 10 generations
of airways combined. Despite the accuracy level of MRI images,
they do not contain any micro-level information on smaller

There have been research studies on mesoscopic modeling of
Ciystic Fibrosis [7]. Such studies however did not address the micro
level information about mucus propagation through the airways.
The goal of this research is to provide the clinician with an
algorithm that can track the location and propagation of mucus in
a CF patient’s lungs. Tracking the growth, or shrinkage of these
pockets can be correlated to the efficacy of different treatment
regimens on each pocket. Assuming further progress in metage-
nomic and transcriptomic analyses of sputum samples, tracking
may allow also correlating the growth or shrinkage of these pockets
and the composition of the local microbial community structure
within the pocket.
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The central tool introduced in the present article for tracking
pockets of inflammation is based on using our airflow model [8] in
reverse, le., as the main ingredient in an inverse problem. Our
airflow model can calculate the flow and the total resistance
corresponding to a given distribution of mucus obstructions in
respiratory airways. The solution of the inverse problem is
achieved by randomly sampling the many possible mucus
configurations consistent with the current information regarding
a patient. Many micro-scale distributions match any observed
MRI and spirometric data. The fortuitous finding in the
calculations described below is that a large majority of the possible
distributions fall within narrow ranges of certain parameters such
as which generations of airways contain how much mucus. Can we
be certain of these most likely locations being the actual mucus
distribution? The fact that most of the distributions consistent with
the spirometric and MRI data have these features makes them a
good bet while not giving us certainty that any one configuration is
of this form. In fact, however, repeated MRI measurements
separated by small challenges such as coughing or even just taking
a few deep breaths reveal that mucus inside the lungs of CF
patients show small but discernible movements in response to such
challenges. Given this dynamic picture, the possibility that all of
the configurations of mucus would avoid the configurations that
can be realized the largest number of ways is extremely unlikely.
We describe below how to construct such distributions that best
represent the state of airways corresponding to the patients lung
functionality test values (FEV] and FVC) and any available MRI
or CT data. We use a maximum entropy approach to construct
such estimates by sampling all consistent distributions and
choosing the one that can be realized the largest number of ways.
We find that the predicted microscopic distribution of mucus is
generally sharply peaked, allowing us to estimate the distribution
of mucus as the one that appears the most frequently in our
simulation. The entire computation process can take a long time
and would require enormous computational space to run the
simulation for the entire 223 airways in a lung. However after
running the simulation once for a patient, we can store most of the
data so the next simulations only take a few minutes to complete.

Given the micro-scale distribution obtained from our inverse
problem, we can use our physiological model [9] to predict the
growth and propagation of this distribution, thereby predicting the
progression of the disease. This second model requires a rate for
the growth of the mucus volume at each location. Currently only
one overall average growth rate is available, a growth rate that was
estimated based on a forty year CF population average [9].
Predictions of this model with the average growth rate can
nonetheless be compared to actual observed disease progression
between exacerbations. For predictions during exacerbations, a
database of treatment and community specific growth rates are
needed and in-principle available from multiple MRI and
metagenomic/transcriptomic analyses. Two such datasets allow
the extraction of pocket specific growth rates and corresponding
linear extrapolation for the mucus volume in each pocket. This
can at least lengthen the times between imaging sessions.

Methods

Inverse Problem Using Metropolis-Hastings Algorithm
Our algorithm uses CF patients’ spirometry test values of FVC,
FEV; and any available mucus distribution data from CT scans or
MRI as its input. It then identifies the distribution of mucus
obstructed bronchioles throughout different airway generations.
The model assumes the lung airways to be binary branching trees
[10] extending over 23 generations from the bronchus down to the
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alveoli. It further assumes a fractal structure [11-13] for the
parameters of the binary airway tree.

Considering the fact that there are 223 bronchioles in a human
lung, there are astronomically many possible configurations for a
certain amount of mucus distributed in an airway tree, even given
the mucus in each voxel. In fact many of these configurations will
result in the same FEV; and FVC values. Since exhaustive
sampling of these configurations is impossible, we use the
Metropolis-Hastings Markov chain Monte Carlo algorithm to
sample a few hundred million and base our estimates on such a
sample. The goal of this section is to introduce this method.

Our algorithm proceeds from an assumed amount of mucus to
be distributed into the 2?3 airways. It starts from a random
distribution and obtains an unbiased sample of configurations
satistying certain requirements. These requirements are imple-
mented as soft constraints via an energy function

E =(x)(Calculated FEV, — Patient FEV,)* +
(1—o)(Calculated FVC — Patient FVC)?

where () and (1 —a) are weight factors. In our algorithm we set
o=0.5. The energy function is used as a way to force the sampling
to stay near values with low energy, ie. configurations with
approximately correct spirometric readings.

We then examine successive samples by performing a random
walk on the space of mucus configurations. Each move in our
random walk reallocates the location of some of the mucus. The
resulting distribution of mucus configurations turns out to be
sharply peaked in certain natural parameters, a fact exploited by
our algorithm.

The Metropolis algorithm is a widely used procedure for
sampling a sequence from a specified distribution on a large finite
set. It describes equilibrium for systems whose configurations have
probability proportional to the Boltzmann factor (e*E/ 7). This is a
weighting factor which determines the relative probability that the
system will be found in a particular configuration at energy E
when the temperature of the environment is 7 [14]. We used a
constant temperature, 7 =1, making the probability of a
configuration with energy E proportional to exp (— E).

The following steps describe the Metropolis algorithm [15].

* Initiate the sampling from an arbitrary configuration 4, with
known energy E4.

* Define a new neighbor configuration B from configuration A.

* Calculate the new configuration energy, Ep. This trial move is
then ecither accepted or rejected according to the following
simple probabilistic rule.

o If Ep<E,4 we accept the new configuration.

«if Eg>E,, we may accept configuration B with the following
probability.

p:ef(EB*EA)/T 2)

* Repeat until sufficient number of configurations have been
collected.

To apply the Metropolis algorithm to our model, we need to
define neighboring configurations. Our definition moves a certain
amount of mucus between a few chosen bronchioles. This keeps
the energy re-evaluation step computationally cheap and, provid-
ed we allow such rearrangement between all types of airways, we
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avoid the problems created by local minima. This assures that the
system settles into and stays near the lowest energy configurations
as the simulation proceeds [16].

Two-Dimensional Probability Density Function
Estimation (PDFE-2D) of Mucus Obstructions

Imaging provides us with the data that corresponds to the
spatial location of infection pockets and the amount of mucus
within each pocket. Both MRI and CT images can have various
resolutions and our approach is scalable to any resolution. For
concreteness below we work with a resolution of 1 cm® and refer to
this smallest volume as a voxel - a volume element.

Since on average the total lung capacity of an adult human is
about 6 liters [17], an image will have about 6000 voxels. Using
the binary tree structure of the lung airway, we set these voxels at
the end of the 13th generation to approximately match the
number of these elements to the number of subtrees that remain.
Since 2% =8192~ 6000, we can identify the mucus in the voxel
with the mucus in the subtree of 2%~13=210 hronchioles
terminating in the alveoli. Thus each voxel in our lung model
represents a binary tree structure that has a total of 10
bifurcations, from generation 13 to 23, with a known total
amount of mucus obtained from imaging data.

Using a three-dimensional model of the human airway tree that
was developed by [18], we are able to map each MRI or CT scan
voxel into our lung model’s voxels with their corresponding mucus
content. The main task of our algorithm is to locate the infection
in the airway tree structure of a CF lung. To achieve this goal, we
use two summary features for each voxel: (1) the percent of alveoli
that are accessible, i.e., not totally blocked and (2) the total
resistance to flow from the alveoli to the 13th generation brochiole
bronchiole assigned to the voxel. These two microscopic features
correspond loosely to the spirometric indicators FVC and FEVj,
respectively.

In order for us to calculate each voxel’s resistance and the
percent of accessible alveoli (for simplicity, we refer to this as the
AA%), we first have to define how mucus is distributed in a voxel’s
binary tree structure. There is an astronomical number of
configurations for filling a binary tree of 10 generations with a
given amount of mucus. Approximately, it is given by (210)/™
where M is the total mucus volume and m is the volume of the
smallest bronchiole. Thus even at this level, we used Metropolis-
Hastings to sample many mucus configurations, recording the
values of AA% and resistance for each configuration. We set the
amount of mucus within each voxel and calculate the distribution
of AA% and resistance: our PDFE-2D distribution.

Hence if a voxel contains 5% mucus, the first step is randomly
filling up the voxel’s airway tree with the specified mucus amount.
Then using the Metropolis algorithm, at each state we move only a
fraction of the mucus within a bronchiole that is equivalent to the
smallest bronchiole’s volume in a lung airway tree. We refer to this
as the “unit volume”. Once a unit volume is moved to a different
location, the corresponding voxel’s parameters (AA% and
resistance) are recalculated.

In order to expedite the computational process; Dulcinea
computing clusters from the Computational Science Research
Center at San Diego State University were used for collecting
almost 54 million samples. The Dulcinea computing clusters
contains 12 workstations each with Dual-Quad Xeon central
processing unit (CPU) (E5520 2.27GHz) and Dual Tesla graphic
processing unit (GPU) (M1060) which provides the total of 96
CPU cores. The cluster system utilizes 3GB of memory per CPU
core for nodes 1 to 10 and utilizes 6GB of memory per CPU core
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for nodes 11 and 12. After obtaining these samples the probability
distributions for different amount of mucus are calculated.
Figure 1A to Figure 1D illustrate the probability density function
for (5%, 30%, 65%, and 75%) mucus respectively. As shown in
Figure 1A, when there is only 5% mucus in a voxel, the most likely
configuration has 86% of its alveoli accessible and the voxel’s
resistance increases by a factor of almost 1.1. When the mucus
level reaches almost 30% there are only 27% accessible alveoli and
the voxel resistance is almost 2.2 times a healthy voxel with no
mucus. On the other hand in Figure 1G and 1D the number of
accessible alveoli value approaches zero while the resistance value
reaches infinity. This refers to a case that a voxel is almost
completely filled with mucus to an extent that no more air can pass
through and therefore blocks all the corresponding alveoli at the
end of the branching tree.

Figure 2 displays the maximum likelihood combinations of
AA% and resistance ratio for different amount of mucus in a
voxel. As the mucus reaches almost 60% of the available airway
volume in the voxel, there is no remaining access to the alveoli and
as a result there is no gas exchange taking place in that particular
part of the airway tree. After collecting these distributions, the
model can initiate the prediction steps as well as providing the
microlevel information about the location of obstructed bronchi-
oles. We will discuss each outcome in the next two sections. Please
note that all data underlying the findings of this section have been
discussed in the manuscript. Other than the massive computing
power needed to produce the findings in Figure 1 and Figure 2, all
the relevant data have been shared.

Results

Micro-Level Information on Obstructed Bronchioles

In order to spatially locate each bronchiole in a human airway
tree we used Kitaoka et al.’s three-dimensional model [18]. Once
we receive the imaging data for each voxel, we need to map the
values to our model’s voxel using spatial location coordinates. Next
we use the probability density function that we found in the
previous section to determine the corresponding voxel parameters,
AA% and resistance ratio, sampled according to the PDFE-2D
distributions. The model randomly select a combination of percent
accessible alveoli and resistance for each voxel in a way that the
total resistance and number of accessible alveoli from these voxels
provide the same value as the patient’s FEV| and FVC. There is a
complex calculation taking place in parallel to obtain the rate of
flow (FEV{) from the total resistance of all the voxels. To find the
distribution of voxel parameters we use the Metropolis algorithm
to focus the Markov chain to sample many configurations meeting
our constraints. This is achieved by choosing the configuration
energy provided in Eq(1).

At this stage we have mapped the voxels from imaging data into
our model in a way that the total rate of airflow and the accessible
alveoli of the lung model resemble the corresponding patient’s
FEV| and FVC values respectively. Once the current state of a CF
lung is implemented we can obtain clinically useful information,
such as mucus distribution within each voxel or predicted future
states of each voxel and associated FEV; and FVC values as
described in the next section.

Figure 3 displays the flowchart of this process. As shown in this
flowchart, once we have all the voxels’ parameters, we can select
certain voxels for further analysis. We again apply the Metropolis
algorithm on the selected voxel in order to visualize the
distribution of mucus in its airway tree structure. For the chosen
voxel, we have its mucus volume, its resistance and its AA%. We
randomly fill out the voxels’ airway tree to reach their
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Figure 1. Probability density function for different percent volume of mucus in a small voxel of the lung. (A) 5%, (B) 30%, (C) 65% and
(D) 75% Each voxel represents a subtree from generation 13 to 23 of the binary tree structure of lung. The x-axis is the corresponding airflow

resistance and the y-axis shows the percent accessible alveoli.
doi:10.1371/journal.pone.0111245.g001

corresponding mucus volume. At each iteration the new resistance
and AA% are collected. To move to the neighbor configuration we
move a unit volume of mucus in a bronchiole to keep the total
mucus volume of the voxel fixed. The state energy we use for this
step is as follows:

E = (o) (Resistance of the current state—
Target voxel's resistance)” + (1 — o) (3)

(AAY% of the current state — Target voxel’s AA%)’

where a=0.5. After we obtained enough samples we constructed
the corresponding mucus distribution for the selected voxels.
Figures 4 displays two examples of the mucus distribution for
voxels that contained (5%) and (30%) mucus. As shown in these
figures, as the percent mucus increases, the dominantly filled
generation moves to bigger bronchioles. The y axis repressnts
represents % normalized mucus where:
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Normalized mucus in generation n

Mucus Volume in generation n

Total mucus volume in voxel
Airway volume in generation 7

( ) (4)

Total airway volume in voxel

Predicting future values of FEV; and FVC

In this section we use the mucus distribution and growth model
presented in [9] to make predictions about the lung functionality
of a CF patient. As can be seen in Figure 5 we use the imaging
voxels” data and the constant mucus growth rate from [9], or, if
available, infection and treatment specific growth rates specific to
each voxel to predict the mucus growth in each pocket of infection.
The model again resorts to the Monte Carlo method to randomly
select the AA% and resistance from our model described in the
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Figure 2. Maximum likelihood of percent of accessible alveoli
AA% and airflow resistance for a given mucus volume fraction
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percent of accessible alveoli. The resistance value increases as the
mucus amount rises. Number of accessible alveoli decreases as the
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doi:10.1371/journal.pone.0111245.9g002

PDFE-2D section and calculates the new FEV| and FVC at each
iteration and stores their values. After collecting enough samples
we can predict the FEV and FVC distributions for a patient after
the indicated time period. For example, Figure 6 displays the
probability density function of the predicted FEV| and FVC. As
shown in the figure it is predicted that FEV; and FVC of our CF
patient are approximately 61% and 78% respectively.

This method can even be applied to follow a patient’s progress
with out fewer imaging tests. Since most CF patients take
spirometry test more often than any imaging tests, we can use
our model without recourse to imaging data. This time the model
takes only the FEV| and the FVC values of a patient as input.
After applying the Metropolis algorithm (using additional
rearrangements of mucus between voxels) the model can still
provide an estimate of the distribution of mucus throughout the
airway tree. This can be propagated using the constant any
hypothetical growth rates to predict the next spirometric test. We
have created a Matlab GUI version of the algorithm; its sample
output is shown in Figures 7, 8 and 9.

Since the mean mucus growth rate was estimated based on
years of data from many CF patients, such predictions should work
reasonably well for a patient between exacerbations. Our model
can also be used to predict the progression during exacerbations,
albeit with voxel specific growth rates informed by much more
data than we currently possess. Using one mean mucus growth
rate is a shortcoming not of our algorithm but rather of the paucity
of data to which our predictions have been applied. There is every
indication that soon we will have reasonable metagenomic [19-22]
and metabolomic [23] tools to assess the microbial composition
present in a CF lung and will be able to infer growth rates that are
specific to the community composition as well as the antibiotic
administered. Entering voxel specific growth rates based on more
information than we at present possess and using our program to
test predictions can move our understanding of the patient’s state
to a new and quantitative level.

We can improve the accuracy level of the model by extending
the resolution of our PDFE-2D distributions. The current PDFEs
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Figure 3. Generating the Micro-level information on obstruct-
ed bronchioles. This flowchart shows how the algorithm produces
the mucus distribution of a selected voxel. Using the lung functionality
test values: FEV1 and FVC and the data obtained from MRI lung imaging
we can obtain the corresponding mucus distributions among the
different generations of lung.

doi:10.1371/journal.pone.0111245.g003

were constructed with 5% bins as described in PDFE-2D model
section.

Discussion

With current research studies about cystic fibrosis, CF treatment
1s poised for great strides. Non-genetic treatments such as Ivacaftor
(trade name Kalydeco, developed as VX-770) only works on
patients with a certain mutation of cystic fibrosis which accounts
for 4-5% of cystic fibrosis cases [24].

While an eventual cure for the disease by replacement of the
defective gene is likely, we expect such treatment not to be
available anytime soon. Rather we anticipate that new observa-
tional tools such as metagenomics, transcriptomics, metabolomics
and MRI imaging coupled with our modeling approach will give
the clinician unprecedented ability to follow and treat the disease.
The models will provide quantitative predictions of responses to
various drug regimens and prescribe adaptively implemented
optimal controls for treatment. Predicting the impact of mucus
growth on lung functionality will correlate the current stage of the
disease with how infection has been propagating throughout
different generations of lung. This will enable the physician with a
tool to track this propagation of infection.

The various sub-models required here will soon be informed by
data characterizing the microbial communities present. Such data
comes from metagenomic and transcriptomics analyses of sputum
samples and metabolomic analyses of exhaled air. In our current
model we predict the dynamic distribution of mucus in a CF lung
in the absence of treatment as a stepping stone for eventually
eventual treatment and microbial community specific modeling of
the treatment response.

According to a research study done by Willner et al. [25]
microbial diversity in a CF lung is much higher than suggested by
culturing alone. They were able to characterize the diversity of
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microbial communities in tissue sections from anatomically distinct
regions of the CF lung. Their result indicated that microbial
communities in the Cystic Fibrosis lung are spatially hetero-
geneous. This Spatial heterogeneity will cause regional differences
in microbial biomass and antibiotic resistance. The next version of
the model, can use their results to adjust the parameters according
to the microbial communities found and the treatment adminis-
tered (e.g., timing of antibiotic administration, types of antibiotics,
steroids, etc). The present model should be taken as a proof-of-
concept step toward that goal. This will provide an opportunity for

the researcher, and eventually the clinician, to access a framework
for accurate quantitative predictions.

Our methods are completely scalable — the 1.0 em® for the size
of one voxel was for illustration. Any resolution scale however
forces estimation of the distribution on spatial scales below this
resolution. Since estimation of the distribution on finer spatial
scales would perforce need the solution of an inverse problem with
many possible solutions and since the movement of mucus hinted
that the “right answer” would in any case not be a unique
distribution, we were led naturally to using Monte Carlo

Mucus Growth rate
(Ve)

MRI
Data

PDFE-2D Data

Voxels with
New Mucus Volume

Monte Carlo Method

"

New Voxels’
Mucus Volume, >
Resistance & t

Predicted
FEV1 & FVC

% Accessible Alveoli

Figure 5. FEV, and FVC values predictions predicted from the lung model. This flowchart illustrates the process of how our lung model
predicts the FVC and FEV, of a CF patient given the previous mucus content of each voxel along with a mucus growth rate.

doi:10.1371/journal.pone.0111245.9g005
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lung that contains all the MRI/CT scan voxels.
doi:10.1371/journal.pone.0111245.g007
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estimation methods for the most likely distribution and the various simplest possible sub-models and assumptions used in our
corresponding spirometric observables. The resulting models and work so far. These models can play a crucial role in future
algorithms form a clinically useful tool with which to reassess the treatments of the disease.
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Figure 9. This window provides the user with a probability density function of the predicted FEV, and FVC. User can enter a specific
mucus growth rate for different voxels and the new FEV, and FVC will be calculated.
doi:10.1371/journal.pone.0111245.g009
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