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Abstract

Purpose

Perfusion analysis from first-pass contrast enhancement kinetics requires modeling tissue
contrast exchange. This study presents a new approach for numerical implementation of
the tissue homogeneity model, incorporating flexible distance steps along the capillary
(NTHy).

Methods

The proposed NTH; model considers contrast exchange in fluid packets flowing along the
capillary, incorporating flexible distance steps, thus allowing more efficient and stable calcu-
lations of the transit of tracer through the tissue. We prospectively studied 8 patients (62 +
13 years old) with suspected CAD, who underwent first-pass perfusion CMR imaging at rest
and stress prior to angiography. Myocardial blood flow (MBF) and myocardial perfusion
reserve index (MPRI) were estimated using both the NTH;and the conventional adiabatic
approximation of the TH models. Coronary artery lesions detected at angiography were clin-
ically assigned to one of three categories of stenosis severity (‘insignificant’, ‘mild to moder-
ate’ and ‘severe’) and related to corresponding myocardial territories.

Results

The mean MBF (ml/g/min) at rest/stress and MPRI were 0.80 + 0.33/1.25+ 0.45 and 1.68 +
0.54 in the insignificant regions, 0.74 £ 0.21/1.09 + 0.28 and 1.54 £ 0.46 in the mild to mod-
erate regions, and 0.79 + 0.28/0.63 + 0.34 and 0.85 * 0.48 in the severe regions, respec-
tively. The correlation coefficients of MBFs at rest/stress and MPRI between the NTH;and
AATH models were r=0.97/0.93 and r = 0.91, respectively.
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Conclusions

The proposed NTH; model allows efficient quantitative analysis of the transit of tracer
through tissue, particularly at higher flow. Results of initial application to MRI of myocardial
perfusion in CAD are encouraging.

Background

Given the high morbidity and mortality of coronary artery disease (CAD), which is largely
related to associated disorders of the blood flow to the heart, it is very important to be able to
assess the perfusion of the myocardium for the diagnosis and risk stratification of patients with
suspected CAD. Cardiovascular magnetic resonance (CMR) has been used to perform myocar-
dial first-pass perfusion imaging over the past decade.[1] The kinetics of the tissue enhance-
ment after the injection of a contrast agent, both at rest and under stress, are key factors for
diagnosis. The observed time course of the contrast enhancement of the heart can be analyzed
using the principles of tracer dynamics, considering the contrast agent as a tracer. The tracer
transit reflects both the plasma transit through the tissue and any exchange of tracer between
the capillaries and the extravascular space [2-5]; this exchange depends on the permeability of
the barrier between the vascular and extravascular spaces and on the sizes of those spaces, as
well as on the flow rate through the vascular space. In general, there is a partial extraction (usu-
ally by passive diffusion) of the tracer from the vascular space into the extravascular space dur-
ing the initial passage of the bolus; this then diffuses back into the vascular space as the
intravascular concentration drops.[6-8] The tissue homogeneity (TH) model has been used to
estimate the perfusion of the myocardium by considering the extravascular space as a single
effective tracer concentration at a given time [9], with which the intravascular spaces can
exchange. Since the conventional TH model has no general analytic solution, an adiabatic
approximation of the TH (AATH) model can be used, considering the concentrations to be
effectively constant over finite time steps.[10, 11] However, when using the conventional
AATH approach, with a fixed discretization of steps in space and time, estimation of parame-
ters such as the capillary mean transit time can be problematic.[12]

In this study, we present a new numerical approach to the use of the TH model, incorporat-
ing flexible distance steps along the capillary (NTHj) and also including the contrast agent
bolus arrival time between the site of observation of the arterial input function (AIF) and the
tissue bed, to achieve more accurate and precise estimation of perfusion-related parameters.
This approach allows for robust and accurate quantification of perfusion, by maintaining the
detailed balance between the advective exchange in the capillary compartments, due to flow
carrying the tracer into and out of each compartment at different concentrations, and the diffu-
sive exchange between the vascular and extravascular compartments. Using a fast saturation-
recovery multi-slice calibrated CMR method [13], AIF was measured precisely within the aor-
tic root at a short delay time (TD) after the saturation pulse, in order to avoid signal clipping
with high contrast agent concentrations in the blood, while myocardial wall images were
acquired at longer TDs, in order to achieve higher SNR and good sensitivity to the wall contrast
enhancement. Myocardial perfusion parameters were calculated with the NTH;model from
rest and stress first-pass contrast-enhanced CMR in patients with suspected CAD; the results
were compared both with the corresponding perfusion parameters calculated with AATH and
also with the clinical results from diagnostic invasive coronary angiography performed on the
same day as the MRI examination.
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Methods

Numerical Approach to the TH model with Flexible Distance Steps Along
the Capillary (NTHy)

Fig 1 presents a schematic diagram of the TH-based exchange model. The abbreviations used
in this section are summarized in Table 1. From the observed blood tracer concentration of an
upstream AIF, C,yx(f), we estimate an arterial plasma input delivered to the tissue, C,(¢),
through a convolution by an arterial transfer function, h,(t,7), to account for delay and pro-
longation of the tracer bolus between the point of observation and the tissue (e.g., characterized
by a bolus arrival time, 7), including correction for the large vessel hematocrit (Hct) for plasma
concentration:

h,(t,7)

1 — Het' (1)

C,(t) = Cye(t) *

Since there is only limited experimental data to draw on, h,(t,7) is estimated by using a model
of lagged normal density curves, resulting from the convolution of a Gaussian with a decaying
exponential, scaled by a delay parameter, 7.[14] Note that we primarily consider plasma trans-
port here, as the tracer is assumed to be dissolved only in the plasma space of the blood.

Given a position along the capillary (as shown in Fig 1), x = x;, and time, ¢ = t;, we define ]
(xit)) as the passive diffusive flux of tracer between the tissue capillary plasma space and the
extravascular space, i.e., J(x;t;) = PS - (Cy(x,tj) — Ce(t)), where PS is the product of the perme-
ability and the effective surface area of the membrane between the compartments, C,(x;t;) is
the concentration in the tissue capillary plasma space, and C,(#)) is the concentration in the

— artery —— ~tissue microcirculation =

C
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. Schematics of the TH-based exchange model. C,r, blood concentration of AlF; h,, arterial transfer

function; C,, concentration of the arterial plasma input to the tissue; F,, plasma flow per unit tissue volume; C,,
concentration in the tissue capillary plasma space; C,, concentration in the extravascular space; v, plasma volume
in the tissue; ve, extravascular interstitial volume; PS, product of the permeability and the surface area between the
compartments; x;, a position along the capillary.

doi:10.

1371/journal.pone.0162067.9001
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Table 1. Definitions of perfusion parameters.

Perfusion parameter Definition Unit

Fy Plasma flow per unit tissue volume ml/cc/sec
Ve Extracellular extravascular volume fraction of tissue

Vp Plasma volume fraction of tissue

0030 Permeability surface area product ml/g/min
T Bolus arrival time S

MBF Myocardial blood flow per unit mass of tissue ml/g/min

doi:10.1371/journal.pone.0162067.t001

extravascular space. Following the TH model, we assume that C,(t;) does not depend on posi-
tion. A conventional TH model considers the exchange of tracer between the flowing plasma
and the extravascular space from a spatially fixed, “Eulerian” frame of reference, balancing the
tracer fluxes across discrete segments of the capillary from advection along the capillary and
diffusion across the wall of the capillary; this can lead to numerical problems at high flow rates.
Instead, we consider the exchange from a “Lagrangian” frame of reference traveling with the
plasma. That is, we estimate the exchange over a flexible discrete fractional distance traveled
along the capillary by a plasma element and assume: 1) the extravascular concentration is uni-
form and effectively constant during a time step, At, and 2) the capillary plasma concentration
within the plasma element is effectively constant during At at a given location, while the mean
transit time (MTT) (the average time taken by the tracer to travel through the tissue) is esti-
mated iteratively. Then, C,(x;t;) and C,(t)) are calculated numerically from C,(t) and a given
set of values of the model parameters, given the boundary condition C,(0,t) = C,(2):

C, (x,,, th) =C, (x,, -9, tj) - Vl](x,,, tj) 0 At, (2)
P

J(x., t.
Ce(tm) = Ce(tj) + %%@At, (3)
where v, is the fractional plasma volume in the tissue, v, is the fractional extravascular intersti-
tial volume, &, = At/MTT is the fractional distance traveled along the capillary by a plasma ele-
ment during At and MTT = v,,/F), F,, is the plasma flow per unit tissue volume, and N is the
number of discretization intervals of x. We approximate the extravascular concentration as
being effectively constant during At. The net concentration of tracer in the capillary-tissue unit,
C(1), is calculated by summing over the capillary elements, together with the extravascular
space:

C(t) = va +v,C,(¢). (4)
A nonlinear least-squares solver is used to find optimal parameter values (Fps Vps Ve PS and 7)
to minimize the mean squared difference between the predicted C;(f) and the observed tissue
concentrations, given the observed AIF. Maximum number of iterations is set to 400 and the
termination tolerance is set to 107°. In order to convert the plasma concentrations and flow to
equivalent blood concentrations and blood flow, the value of Hct can be measured by sampling
blood from a large vessel. However, the capillary hematocrit (Hct.) would generally be lower
than the large vessel value, due to the fact that red cells transit more rapidly than plasma
through the microcirculation [15]. Unfortunately, Hct, is not readily measured, so we instead
rely on estimates derived from the literature [16] to scale the large vessel hematocrit values to
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estimated equivalent capillary values (Hct, = 0.7 x Hct). Thus, for application of the analysis to
myocardial perfusion calculation, the myocardial blood flow through the tissue per unit mass

of tissue (MBF) (ml/g/min), was calculated by MBF = (1_5%)0 - 60, where p is the assumed tis-
sue density of 1.05 (g/cc) (for F, in units of ml/cc/sec). Myocardial perfusion reserve index
(MPRI) was calculated by dividing results of myocardial perfusion at stress by results at rest,

with an associated independence from many common constant factors.

Study Population

This study was approved by our Institutional Review Board at the NYU School of Medicine,
and all subjects provided written informed consent before the procedure. We prospectively
studied 8 patients (6 male; age, 62 + 13 years old; body mass index, 29.4 + 4.3 kg/m?) with sus-
pected coronary artery disease (CAD), who underwent first-pass perfusion rest and stress
CMR imaging (described below), followed by a clinical diagnostic invasive coronary angiogra-
phy examination on the same day. Exclusion criteria included unstable angina, irregular heart
rate, valvular heart disease, and contraindications for MRI examinations (e.g., pacemakers or
ferromagnetic vascular clips), contrast agent injection (e.g., contrast allergies), or pharmaco-
logic stress agents (e.g., significant asthma when undergoing regadenoson stress).

CMR Imaging

All subjects were instructed to refrain from foods and beverages containing caffeine for 12
hours prior to the procedure. Imaging was performed on a 3T whole-body MR scanner (Tim
Trio; Siemens Medical Solutions, Erlangen, Germany), using a standard phased-array coil that
was applied to the anterior chest of the patient in the supine position. Blood pressure, heart
rate, and electrocardiogram were monitored during the CMR examination. Rapidly repeated
T;-weighted (T;w) CMR images were acquired during a contrast agent bolus passage at four
slice locations in each heart beat: aortic root, for measuring the AIF, and short-axis slices at
three levels of the left ventricle, for measuring the wall response. A first perfusion scan was per-
formed at rest, followed by a second scan, after a delay of 10 minutes to allow for the initial
clearance of the first contrast agent injection, during maximal vasodilatation. Maximal vasodi-
latation was obtained about 90 seconds after infusion of 0.4 mg regadenoson (Lexiscan 0.4 mg
IV bolus, Astellas Pharma, USA) over 10 seconds. Each set of perfusion images was acquired
during breath-holding for 10 heartbeats before a contrast injection, to acquire baseline T1w
images, and for 40 heartbeats during the first-pass transit of a bolus of 0.05 mmol gadolinium-
diethylenetriamine pentaacetic acid (Gd-DTPA)/kg body weight (0.5M Berlex Magnevist,
Schering AG, Germany), injected at an injection rate of 5 mL/s, followed by a 20 mL bolus of
normal saline flush. If breath-holding could not be sustained for the full duration of the data
acquisition, subjects were allowed shallow breathing during the remainder of the imaging
(respiratory motion was manually compensated for during image analysis; see below).

A cardiac-triggered saturation-recovery (SR) ultrafast gradient echo (i.e., TurboFLASH)
pulse sequence was used to sequentially acquire T, w images at multiple slices with sequential
TDs after a single non-selective robust saturation pulse.[13, 17, 18] Imaging parameters
included: FOV = 340-400 mm x 289-340 mm, slice thickness = 8 mm, in-plane resolu-
tion = 1.06-1.25 mm x 1.06-1.25 mm, TE/TR = 1.2/2.4 ms, flip angle = 10°, temporal resolu-
tion = 114-189 ms, generalized autocalibrating partially parallel acquisitions (GRAPPA) [19]
with an effective acceleration factor ~ 1.65, centric k-space trajectory, and receiver band-
width = 1008 Hz/pix. In order to correct for the spatially varying receive coil sensitivities and
the unknown equilibrium magnetization, a proton density-weighted (PDw) image (flip
angle = 5°) was acquired without the saturation pulse in the first heartbeat, which was used to
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normalize the subsequent images.[20] The resulting data were analyzed as previously described
[13] to calculate the corresponding time course of contrast agent concentration in the blood
and the myocardium, assuming rapid relaxation exchange between tissue water and the con-
trast agent and a known relaxivity of the contrast agent.

Data and Statistical Analyses

Data analysis was performed using custom software developed in MATLAB R2015a (The
Mathworks, Inc., Natick, MA) on a 3.47 GHz Intel Core i7 personal computer with 24 Gb of
RAM. As shown in Fig 2, a 16-segment model of the left ventricle (LV) based on the standard
“17-segment” model (without the apical “cap”) was used, dividing the LV into 6 basal, 6 mid,
and 4 apical segments.[21] These segments were also each further divided into epicardial (epi)
and endocardial (endo) regions (total 32 segments). Tracking of the segments to compensate
for respiratory motion was performed manually; the respiratory motion was assumed to be pri-
marily in-plane. Individual myocardial segments were assigned to the territories of the three
major coronary arteries (LAD, left anterior descending; RCA, right coronary artery; LCX, left
circumflex) as per standard recommendations (Fig 2).[21] The severity of coronary artery ste-
nosis was determined from the invasive coronary angiography examination by a cardiologist
after the procedure and was expressed as a percent reduction in vessel diameter. The lesions
were assigned to one of three categories of severity: 1) < 40% narrowing (insignificant), 2) 40%
to 80% (mild to moderate), and 3) > 80% (severe). Data are presented as mean + standard
deviation. Student’s t-test was used to compare the results. P values less than 0.05 were consid-
ered significant.

Coronary Artery Territories

LAD (anterior, anteroseptal)
RCA (inferiorseptal,inferior)
LCX (inferolateral, anterolateral)

Fig 2. Display of the 16 cardiac short-axis segments divided into epicardial and endocardial regions
(total 32 segments). Colors indicate the three coronary artery territories of the left anterior descending
(LAD), right coronary artery (RCA), and the left circumflex coronary artery (LCX).

doi:10.1371/journal.pone.0162067.g002
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Comparison of NTH;and AATH Perfusion Estimates

For comparison, we used a conventional AATH model to estimate the following perfusion
parameters: tissue blood flow, F, transit time through capillary, T, capillary permeability-sur-
face area product, PS, and rate constant for the clearance of the tracer, kgp.[11] C,(#) calculated
from the results of the NTH analysis was used as an input function. The Spearman's correla-
tion coefficient was used to evaluate the correlations between the MBFs found from the NTH,
and AATH models. The residual sum-of-squares (RSS) was calculated for each segment, as a
measure of the goodness-of-fit, by using the following equation: RSS = ¥,;,,,.(observed data —
estimated fit).

Noise Stability Estimation

For noise stability estimation of the NTHy myocardial perfusion signals were simulated with a
low MBF (= 0.8102 ml/g/min) and a high MBF (= 2.2006 ml/g/min). White Gaussian noise
(WGN) sets were generated with a range of the signal-to-noise ratio (SNR) = 1 to 60 (dB) (2 dB
steps), using a function (awgn) in MATLAB R2015a, and were added to the simulated [Gd-
DTPA] signals. The simulated noisy signals were then used to calculate the estimated MBEF.
For each SNR value, a computation was repeated 30 times. Percent error (%) was calculated by
|estimated MBF-trueMBF|/trueMBFx100.

Results
NTH;

The mean MBF of all patient regions at rest supplied by coronary arteries with insignificant ste-
nosis was 0.80 + 0.33 ml/g/min, which increased to 1.25 + 0.45 ml/g/min at vasodilator stress,
resulting in an average myocardial perfusion reserve index (MPRI) of 1.68 + 0.54. In regions
supplied by vessels with mild to moderate stenosis, the mean MBF at rest (0.74 + 0.21 ml/g/
min) was similar to that in the insignificant stenosis regions, but was lower during vasodilator
stress (1.09 + 0.28 ml/g/min; p < 0.05), resulting in a slightly lower average MPRI of
1.54 + 0.46 (p < 0.05). In regions supplied by vessels with severe stenosis, the mean MBF at
rest (0.79 £ 0.28 ml/g/min) was again similar to that of the regions supplied by vessels with
insignificant or the mild to moderate stenosis, but it was even lower during vasodilator stress
(0.63 + 0.34 ml/g/min; p < 0.05). The resulting MPRI (0.85 + 0.48) was significantly lower
than in regions supplied by vessels with mild to moderate stenosis (p < 0.001). The results of
the NTHrand AATH models are summarized in Table 2.

The perfusion results for a representative patient (83-year-old female) with angiographically
normal coronary arteries (Fig 3A) are shown in Fig 3. First-pass CMR perfusion imaging dem-
onstrated a qualitatively uniform delivery of contrast agent to the heart wall (Fig 3B). The

Table 2. NTH;and AATH results: MBF and MPRI corresponding to percent diameter stenosis of coronary lesion.

MBF at rest NTH;
AATH

MBF at stress NTH;
AATH

MPRI NTH;
AATH

doi:10.1371/journal.pone.0162067.1002

Percent Diameter Stenosis of Coronary Lesion

Insignificant (< 40%) Mild to Moderate (40% to 80%) Severe (> 80%)
0.80+0.33 0.74£0.21 0.79+0.28
0.79+0.26 0.75+0.15 0.79+0.20
1.25+0.45 1.09+0.28 0.63+0.34
1.10+£0.30 0.99 +0.20 0.65 +0.31
1.68+0.54 1.54+0.46 0.85+0.48
1.45+0.32 1.36+0.29 0.83+0.36
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Fig 3. (a) Selective coronary angiography in a representative patient (83-year-old female) with angiographically normal
coronary arteries. (b) First-pass perfusion mid-level MR image at stress. Bullseye plots of MBF (ml/g/min) (c) at rest and
(d) at stress, and (e) MPRI calculated from the NTH; method.
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doi:10.1371/journal.pone.0162067.9003

mean MBFs at rest were 0.98 + 0.24 ml/g/min in LAD territory, 1.02 + 0.15 ml/g/min in RCA
territory, and 0.91 + 0.16 ml/g/min in LCX territory (Fig 3C). The mean MBFs at stress were
1.63 + 0.39 ml/g/min in LAD territory, 1.67 + 0.37 ml/g/min in RCA territory, and 1.27 + 0.31
ml/g/min in LCX territory (Fig 3D). The mean MPRIs were 1.69 + 0.26 in LAD territory,

1.64 £ 0.22 in RCA territory, and 1.40 £ 0.26 in LCX territory (Fig 3E). On the other hand, Fig
4 shows the results for a representative patient (66-year-old male) with a history of hyperten-
sion, hyperlipidemia, diabetes mellitus and known coronary artery disease with prior stents, on
maximal medical therapy. Coronary angiography demonstrated severe triple-vessel disease
(Fig 4A). First-pass CMR perfusion imaging demonstrated a qualitatively delayed and
decreased delivery of contrast agent to the inferior segments, consistent with ischemia or scar.
There was also a suggestion of qualitatively milder delayed delivery to the anterior segments at
stress (Fig 4B). The mean MBFs at rest were 0.60 + 0.12 ml/g/min in LAD territory, 0.54 + 0.08
ml/g/min in RCA territory, and 0.60 + 0.07 ml/g/min in LCX territory (Fig 4C). The mean
MBFs at stress were 0.85 + 0.15 ml/g/min in LAD territory, 0.52 + 0.30 ml/g/min in RCA terri-
tory, and 0.81 + 0.18 ml/g/min in LCX territory (Fig 4D). The MPRIs were 1.45 £ 0.35 in LAD
territory, 0.97 + 0.55 in RCA territory, and 1.36 + 0.18 in LCX territory (Fig 4E). Fig 5 shows
another representative patient (65-year-old male) with angiographically severe triple-vessel
disease (Fig 5A). First-pass CMR perfusion imaging showed relatively decreased flow to the
anterior and anteroseptal wall (Fig 5B). The mean MBFs at rest were 1.00 + 0.20 ml/g/min in
LAD territory, 0.91 + 0.11 ml/g/min in RCA territory, and 1.02 + 0.24 ml/g/min in LCX terri-
tory (Fig 5C). The mean MBFs at stress were 0.73 + 0.36 ml/g/min in LAD territory,

0.95 + 0.38 ml/g/min in RCA territory, and 1.25 + 0.29 ml/g/min in LCX territory (Fig 5D).
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Fig 4. (a) Selective coronary angiography in a representative patient (66-year-old male) with severe triple-vessel
disease (arrows). (b) First-pass enhancement mid-level MR image at stress showing a qualitatively delayed and
decreased delivery of contrast agent to the inferior segments and milder delayed delivery to the anterior segments.
Bullseye plots of MBF (ml/g/min) (c) at rest and (d) at stress, and (e) MPRI calculated from the NTH; method.

doi:10.1371/journal.pone.0162067.9g004

The MPRIs were 0.75 + 0.41 in LAD territory, 1.06 + 0.44 in RCA territory, and 1.30 + 0.52 in
LCX territory (Fig 5E).

Comparison of NTH;and AATH Perfusion Estimates

Fig 6 shows representative Gd-DTPA concentration ([Gd-DTPA]) first-pass perfusion time-
curves in representative normal and perfusion-defect segments (Fig 6A) of the patient shown
in Fig 5. The estimated MBFs at rest using the NTHyand AATH models were 0.81 and 0.97 in
the normal segment, and 0.99 and 0.93 in the perfusion-defect segment, respectively (Fig 6B).
The estimated MBFs at stress using the NTHyand AATH were 1.56 and 1.30 in the normal seg-
ment, and 0.49 and 0.57 in the perfusion defect segment, respectively (Fig 6C). Note that the
solid and dashed lines in Fig 6B and 6C indicate the predicted plots from the best-fit NTH,and
AATH models, respectively.

We found strong correlation between the results of the NTH;and AATH models. The corre-
lation coefficients of MBFs calculated with the NTHyand AATH models were r = 0.97 at rest
(Fig 7A), r = 0.93 at stress (Fig 7B), and r = 0.91 (MPRI; Fig 7C). p < 0.001 for all. In particular,
the MBFs estimated from the NTHymodel were higher than those from the AATH model at
the higher flows (e.g., MBF > 1). The results of representative Bland-Altman plots are shown
in Fig 7D-7F. The mean RSS values for 32 myocardial segments were smaller in the NTHy
(0.0068 + 0.008 at rest and 0.0071 + 0.0065 at stress) than the AATH (0.0119 + 0.0136 at rest
and 0.0116 # 0.0079 at stress), showing a high goodness of fit in the NTHy.
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Fig 5. (a) Selective coronary angiography in a representative patient (65-year-old male) with severe triple-vessel
disease (arrows). (b) First-pass perfusion mid-level MR image at stress showing relatively decreased flow to the anterior
and anteroseptal wall. Bullseye plots of MBF (ml/g/min) (c) at rest and (d) at stress, and (e) MPRI calculated from the
NTH;method, showing more extensive perfusion abnormality.

doi:10.1371/journal.pone.0162067.9005

Noise Stability Estimation

Fig 8A shows representative simulated plots at SNR = 10, 20 and 30, and corresponding fitting
plots from the NTHymodel. Over all, the percent errors at MBF = 0.81 and 2.20 are up to
16.6 + 14.5% and 21.5 + 20.3% (mean * 2 SD) for a range of SNR = 0-60, respectively (Fig 8B).

— o5 Rest A defect | 05! Stress , o A defect |

normal = o normal | 5 =0 o normal

perfusion & ¢4} . = NTH | € 4,4 NTH
= . -~ AATH | =
[y = o
(@] Q o2 3
© o A
9] O, o1

rf i L L L . (Y Y Y YEw L L L L
pz eLf]eS ;m 0 10 20 30 40 0 5 10 15 20 25 30
Time [s] Time [s]

(@) (b) (c)

Fig 6. (a) Bullseye plot indicating representative segments of normal perfusion (blue) and perfusion defect (gray) in the patient with severe triple-vessel
disease in Fig 5. Gd-DTPA concentration ((Gd-DTPA]) first-pass perfusion time-curves at (b) rest and (c) stress in the normal (blue circle) and defect (gray
triangle) myocardium segments shown in (a) with best fit estimated plots from the NTH; (solid line) and AATH (dashed line) models. Estimated MBFs (ml/g/
min) using the NTH; model at rest (stress) were 0.81 (1.56) in a normal segment and 0.99 (0.49) in a perfusion defect segment, and estimated MBFs using
the AATH model at rest (stress) were 0.97 (1.30) in a normal segment and 0.93 (0.57) in a perfusion defect segment.

doi:10.1371/journal.pone.0162067.9g006
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Fig 7. The correlation plots of MBFs from the NTH;and AATH at (a) rest and (b) stress. (c) The correlation plot of MPRIs from the NTH;and AATH.
p <0.001 for all. Bland-Altman plots of MBFs from the NTH;and AATH at (a) rest and (b) stress. (c) Bland-Altman plot of MPRIs from the NTH;and
AATH.

doi:10.1371/journal.pone.0162067.9g007

Discussion

This study has presented a new approach for numerical implementation of the TH model for
analysis of first-pass tracer passage dynamics from MRI studies. While the AATH model con-
siders the tracer exchange along the capillaries as a separate unit, with a fixed discretization of
both the space and time dimensions, we have considered the exchange from the frame of refer-
ence of blood flowing as flexible packets moving along the capillaries. We evaluated this model
on a small set of patients with suspected CAD and found statistically significant differences of
MPRI between the myocardial segments supplied by coronary arteries with different severities
of stenosis, as assessed with coronary angiography (Table 2). We found strong correlations
(r > 0.9) of the perfusion results from these two models. However, we also found that the
MBFs estimated from the NTHymodel were higher than those from the AATH model at the
higher flows (MBF > 1), as clearly seen in Fig 7A-7C. We believe that this difference in com-
puted perfusion between the two methods at higher flows is because the NTHymodel approach
allows more stable calculations of the transit of tracer through myocardial tissue, particularly at
higher curvature regions such as the beginning of the ascending part and the peak of the con-
centration-time curves which play important roles in the estimation of myocardial perfusion.
The results of the RSS confirmed a higher goodness of fit of the NTHymodel compared to the
AATH model through all time points.

The results summarized in Table 2 for the patients with CAD show that the mean MBFs in
segments with insignificant arterial stenosis are 0.80 + 0.33 ml/g/min at rest and 1.25 + 0.45
ml/g/min at stress, respectively, and the corresponding mean MPRI is 1.68 + 0.54. These values
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Fig 8. Plots simulated with (top) MBF = 0.81 and (bottom) MBF = 2.2. (a) Simulated (or original; solid line), White Gaussian noise added (circle), and
estimated from NTH; (dashed line) plots are shown at SNR = 10, 20, 30. (b) Percent errors for a range of SNR = 0-60 showing average and two standard
deviation error bars (each SNR was repeated 30 times).

doi:10.1371/journal.pone.0162067.g008

are lower than other published results [22]; this might be due, in part, to differences in cardiac
workload for the individuals (MBF correlates linearly with the rate-pressure product [23],
ranging from 5160 to 12225 in this study), differences between regadenoson- and exercise-
induced changes in perfusion, or potential bias resulting from residual contrast agent from the
previous (rest) scan, which was separated by 10 minutes. Additional studies with more subjects
will be needed to explore this further. The use of an estimated “small vessel” hematocrit for cal-
culation of the plasma space in the microcirculation will also result in a different calculated
flow than the use of the large vessel hematocrit value; our use of an estimated factor of 0.7 for
the difference of large and small vessel hematocrits would result in a corresponding difference
in the calculated tissue blood flow, as compared with the results of other studies that have not
included this factor.

In this study, we have assumed that the water is moving rapidly enough between compart-
ments to be in the "fast exchange" limit, so that the observed changes in the tissue relaxation
rate can be used to estimate the total concentration of contrast agent in the tissue. The question
of whether or not the water exchange is sufficiently rapid for this assumption to hold is a well-
known (and not yet fully resolved) issue in contrast-enhanced MRI, and it can cause a system-
atic error in the calculation of perfusion or the related parameters if it does not hold. However,
the effects of water exchange on observed relaxation can be modeled and appropriate correc-
tions applied to the estimated concentration values, if we are not in the fast exchange regime
for a given application situation. For a given set of derived concentration-time data, the corre-
sponding perfusion analysis would then proceed as above.

As is commonly done, we have modeled the microcirculation as if it were characterized as
just composed of capillaries, with a single effective length. This approach could be readily gen-
eralized by modifying the model, although at a cost of increased computation time, and with a
potential for increased numerical instability: 1) For an assumed distribution function of values
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of MTT, rather than a single effective "mean" value, we could compute the net tissue concentra-
tion as a weighted average of the tissue concentrations expected for a corresponding set of dif-
ferent values of MTT. While this would be expected to result in a corresponding broadening of
the predicted time course of the tracer concentration-time curves, the overall behavior would
still be similar to that computed for a single MTT at the mean value. Thus, this is not likely to
result in a sufficiently better fit to the data to justify the additional associated parameter fitting.
2) If a portion of the volume of the microcirculation is considered to be allocated to arterioles
and venules, which have some blood volume but do not participate in tracer exchange with the
extravascular space, the effective value of PS will be reduced compared to that for a model of
the microcirculation with just capillaries, with the result that the value for the capillary PS cal-
culated from the model fit will be expected to be greater. However, the overall associated result-
ing improvement in the fit to the data is not likely to be good enough to justify the additional
associated parameter fitting.

The potential clinical utility of this method for determining absolute, rather than qualitative,
perfusion is clearly demonstrated in the setting of multi-vessel disease. In particular, in the
presence of triple-vessel disease, with "balanced lesions", we may tend to underestimate the
extent or severity of perfusion reserve in the affected regions with simple qualitative or semi-
quantitative approaches to perfusion assessment, as was the case in the patients illustrated in
Figs 4 and 5. In particular, the quantitative analysis made possible the demonstration of a
stress-induced decrease in perfusion of the more severely affected regions, likely representing
the presence of a “steal” phenomenon. Having an efficient and robust means for carrying out
the associated calculations should help to make such quantitative CMR perfusion assessments
more clinically practical.

The inclusion in our modeling approach of the effects of the transit of the tracer from the
ATF observation point to the tissue of interest is not an intrinsic part of the TH model per se,
but it allows for a more realistic modeling of the tissue response than simply assuming an effec-
tively instantaneous transit of the tracer from the AIF observation point. Using a coupled esti-
mate of the effects of delayed transit and associated broadening of the tracer bolus allows
incorporation of both effects in the modeling with only one associated parameter value.

In comparison with simpler models, analysis of first-pass enhancement kinetics with the
TH model can be a little more complicated. However, the removal of the need to effectively
assume an instantaneous transit of some tracer through the tissue allows the TH to provide a
more realistic model of the transit than simple compartment models, particularly for higher
temporal resolution observations. The use of an analysis based on underlying physiological var-
iables, rather than phenomenological models, allows for derivation of parameter values that are
more independent of the observation conditions, e.g., the apparent dependence of the “extrac-
tion fraction” of the tracer on the rate of blood flow can be avoided with the corresponding cal-
culation of PS and volume fractions. The use of an iterative fitting of the underlying model
parameters is more robust to noise in the data than the use of more direct deconvolution
approaches to finding an impulse response to an idealized tracer bolus, which tend to be more
vulnerable to noise.

In the application of these first-pass enhancement imaging perfusion methods to the analy-
sis of myocardial perfusion, the effects of any respiratory motion during the bolus transit will
need to be compensated for, either manually or more automatically, as with any such first-pass
perfusion imaging. In fitting the blood flow parameter, it is the earlier data, during the inflow
of blood to the tissue, that is most important; however, the later data points will be more
important for estimating the values of PS and the extravascular space. In particular, it will be
important to avoid any contamination of the subendocardial segments by signal from the
strongly enhancing intracavitary blood pool. It is useful, however, to separately analyze the
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subendocardial and subepicardial portions of each wall segment (resolution permitting), as
there is typically a significant transmural difference in the regional perfusion in ischemia, as
was seen in our limited patient sample.

There are several limitations of this study. First, we evaluated our CMR perfusion modeling
approach on a sample of only 8 patients with suspected coronary artery disease, of whom only 2
were women, and the results were compared with the corresponding conventional angiographic
severity of coronary artery stenosis in each corresponding coronary artery territory, assigned to
individual segments as conventionally recommended.[21] This was a prospective study, in which
all subjects underwent MR imaging, followed by a clinical diagnostic invasive coronary angiogra-
phy examination on the same day, in order to provide more accurate results of the severity of
underlying coronary artery stenosis from the associated angiography examination. Unfortu-
nately, we had logistical difficulties in coordinating the different studies (due to limited MR imag-
ing/clinical coronary angiography examination schedules and limited patient availability), which
limited recruiting not only of gender-balanced pairs of patients but also the total number of
patient subjects included in the study. Functional assessment of the physiologic significance of
observed stenoses by FFR was only available for a minority of the observed lesions. Although the
number of patients in this study was small, and the results were compared by pooling the results
for the relatively large areas corresponding to the three coronary artery territories (which might
have some variability in the specific coronary artery blood supply to individual myocardial seg-
ments), the encouraging results suggest a clinical potential of this method for identifying physio-
logically significant coronary artery disease. Further larger studies in a larger population are
warranted to validate this approach. Second, the results were also compared with those from the
AATH model. Although we found strong correlations between the results from the NTH;and
AATH models (Fig 7A-7C), the MBFs estimated from the NTH model were overall higher than
those from the AATH model, particularly at higher perfusion, where the AATH model may have
problems. However, there are difficulties in using these results for a quantitative validation, since
an underlying ground truth is not well defined. Third, rest and stress scans were not performed
in random order, which might ideally have been done, in order to minimize any potential bias
resulting from residual contrast agent from the previous scan (which was separated by 10 min-
utes); this was done to avoid potential confounding effects from any residual vasodilating effects
of the regadenoson [24]. This may have led to bias in our estimates. Fourth, the capillary hemato-
crit, Het, is not readily directly measured, while the large vessel hematocrit, Hct, can be measured
by simply sampling blood from a large vessel. Thus, we generally rely on estimates for the relative
difference derived from the literature [16]; here, we assumed that Hct. = 0.7 x Hct, where Hct
was individually measured in this study.

In conclusion, taking a new approach to perfusion analysis that combines aspects of the TH
model and a Lagrangian approach to modeling transcapillary exchange with flexible distance
steps along the capillary allows efficient quantification of the transit of tracer through tissue
while still retaining a relatively simple model of the exchange during the transit. There is a
potential to apply this new approach to the modeling of tracer exchange to identify physiologi-
cally significant coronary artery disease, using calibrated CMR imaging methods to observe the
first-pass enhancement of the myocardium by a bolus of contrast agent, as demonstrated in
this study. Future work would include further validation of these results in a larger patient
population.

Compliance with Ethical Standards

This study was approved by our Institutional Review Board at the NYU School of Medicine,
and all subjects provided written informed consent before the procedure.
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involving human participants were in accordance with the ethical standards of the institutional
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ods. Stenosis [%] indicates the severity of coronary artery stenosis determined from the inva-
sive coronary angiography examination by a cardiologist after the procedure and expressed as
a percent reduction in vessel diameter.

(XLSX)

Author Contributions

Conceived and designed the experiments: SC LA.
Performed the experiments: SC BS PS.

Analyzed the data: SC.

Contributed reagents/materials/analysis tools: SC.
Wrote the paper: SC PS LA.

Selected subjects for this study: BS SI'JS.

References

1. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic reso-
nance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Car-
diol. 1991; 18(4):959-65. Epub 1991/10/01. doi: 0735-1097(91)90754-W [pii]. PMID: 1894870.

2. Axel L. Cerebral blood-flow determination by rapid-sequence computed-tomography. A theoretical
analysis. Radiology. 1980; 137(3):679-86. PMID: ISI:A1980KV17200015.

3. Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution tech-
nique. Investigative Radiology. 1983; 18(1):94-9. PMID: ISI:A1983QA15100015.

4. Jerosch-Herold M, Wilke N, Stillman AE, Wilson RF. Magnetic resonance quantification of the myocar-
dial perfusion reserve with a Fermi function model for constrained deconvolution. Medical Physics.
1998; 25(1):73-84. PMID: ISI:000071661600010.

5. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of
cerebral blood flow using intravascular tracer bolus passages, Part |I: Mathematical approach and sta-
tistical analysis. Magnetic Resonance in Medicine. 1996; 36(5):715-25. PMID: ISI:
A1996VQ36300009.

6. Diesbourg LD, Prato FS, Wisenberg G, Drost DJ, Marshall TP, Carroll SE, et al. Quantification of myo-
cardial blood-flow and extracellular volumes using a bolus injection of Gd-DTPA—kinetic modeling in
canine ischemic disease. Magnetic Resonance in Medicine. 1992; 23(2):239-53. doi: 10.1002/mrm.
1910230205 PMID: ISI:A1992HD21300004.

7. Larsson HBW, FritzHansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion
modeling using MRI. Magnetic Resonance in Medicine. 1996; 35(5):716—26. doi: 10.1002/mrm.
1910350513 PMID: ISI:A1996UJ17500012.

8. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997; 7
(1):91-101. doi: 10.1002/jmri.1880070113 PMID: ISI:A1997WG33100012.

9. Johnson JA, Wilson TA. A model for capillary exchange. American Journal of Physiology. 1966; 210
(6):1299-&. PMID: ISI:A19667988700020.

PLOS ONE | DOI:10.1371/journal.pone.0162067 September 1,2016 15/16


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0162067.s001
http://www.ncbi.nlm.nih.gov/pubmed/1894870
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1980KV17200015
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1983QA15100015
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000071661600010
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1996VQ36300009
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1996VQ36300009
http://dx.doi.org/10.1002/mrm.1910230205
http://dx.doi.org/10.1002/mrm.1910230205
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1992HD21300004
http://dx.doi.org/10.1002/mrm.1910350513
http://dx.doi.org/10.1002/mrm.1910350513
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1996UJ17500012
http://dx.doi.org/10.1002/jmri.1880070113
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1997WG33100012
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A19667988700020

@’PLOS ‘ ONE

Quantitative Myocardial First-Pass Perfusion MRI

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water
exchange in the brain: Il. Experimental validation. J Cereb Blood Flow Metab. 1998; 18(12):1378-85.
Epub 1998/12/16. doi: 10.1097/00004647-199812000-00012 PMID: 9850150.

St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water
exchange in the brain: |. Theoretical derivation. Journal of Cerebral Blood Flow and Metabolism. 1998;
18(12):1365-77. PMID: I1SI:000077378700011.

Kershaw LE, Cheng HLM. Temporal resolution and SNR requirements for accurate DCE-MRI data
analysis using the AATH model. Magnetic Resonance in Medicine. 2010; 64(6):1772-80. doi: 10.1002/
Mrm.22573 PMID: IS1:000284659300027.

Breton E, Kim D, Chung S, Axel L. Quantitative contrast-enhanced first-pass cardiac perfusion MRl at 3
tesla with accurate arterial input function and myocardial wall enhancement. J Magn Reson Imaging.
2011; 34(3):676-84. doi: 10.1002/Jmri.22647 PMID: I1S|:000294442900024.

Bassingthwaighte JB, Ackerman FH, Wood EH. Applications of the lagged normal density curve as a
model for arterial dilution curves. Circulation Research. 1966; 18(4):398—-415. Epub 1966/04/01. PMID:
4952948; PubMed Central PMCID: PMC3008657.

Fahraeus R. The suspension stability of the blood. Physiological Reviews. 1929; 9(2):241-74. PMID:
1S1:000202136400001.

Gonzalez F, Bassingthwaighte JB. Heterogeneities in regional volumes of distribution and flows in rab-
bit heart. American Journal of Physiology. 1990; 258(4 Pt 2):H1012-24. Epub 1990/04/01. PMID:
2109937.

Haase A. Snapshot FLASH MRI. Applications to T1, T2, and chemical-shift imaging. Magnetic Reso-
nance in Medicine. 1990; 13(1):77-89. doi: 10.1002/mrm.1910130109 PMID: ISI:A1990CJ68300008.

Nagel E, Klein C, Paetsch |, Hettwer S, Schnackenburg B, Wegscheider K, et al. Magnetic resonance
perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;
108(4):432-7. doi: 10.1161/01.Cir.0000080915.35024.A9 PMID: ISI:000184409300014.

Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang JM, et al. Generalized autocalibrat-
ing partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine. 2002; 47(6):1202—10.
doi: 10.1002/Mrm.10171 PMID: IS1:000175935100019.

Cernicanu A, Axel L. Theory-based signal calibration with single-point T1 measurements for first-pass
quantitative perfusion MRI studies. Academic Radiology. 2006; 13(6):686—93. doi: 10.1016/j.acra.
2006.02.040 PMID: 1SI:000237709000004.

Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocar-
dial segmentation and nomenclature for tomographic imaging of the heart—A statement for healthcare
professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the Ameri-
can Heart Association. Circulation. 2002; 105(4):539-42. doi: 10.1161/hc0402.102975 PMID:
IS1:000173600500036.

Pack NA, DiBella EVR. Comparison of myocardial perfusion estimates from dynamic contrast-
enhanced magnetic resonance imaging with four quantitative analysis methods. Magnetic Resonance
in Medicine. 2010; 64(1):125-37. doi: 10.1002/Mrm.22282 PMID: 1SI:000279301500016.

Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemo-
dynamics on myocardial blood-flow and flow reserve. Circulation. 1993; 88(1):62—-9. PMID: ISI:
A1993LM12700010.

Bhave NM, Freed BH, Yodwut C, Kolanczyk D, Dill K, Lang RM, et al. Considerations when measuring
myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. Journal of
Cardiovascular Magnetic Resonance. 2012; 14. doi: 10.1186/1532-429x-14-89 PMID:
IS1:000315378200002.

PLOS ONE | DOI:10.1371/journal.pone.0162067 September 1,2016 16/16


http://dx.doi.org/10.1097/00004647-199812000-00012
http://www.ncbi.nlm.nih.gov/pubmed/9850150
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000077378700011
http://dx.doi.org/10.1002/Mrm.22573
http://dx.doi.org/10.1002/Mrm.22573
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000284659300027
http://dx.doi.org/10.1002/Jmri.22647
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000294442900024
http://www.ncbi.nlm.nih.gov/pubmed/4952948
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000202136400001
http://www.ncbi.nlm.nih.gov/pubmed/2109937
http://dx.doi.org/10.1002/mrm.1910130109
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1990CJ68300008
http://dx.doi.org/10.1161/01.Cir.0000080915.35024.A9
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000184409300014
http://dx.doi.org/10.1002/Mrm.10171
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000175935100019
http://dx.doi.org/10.1016/j.acra.2006.02.040
http://dx.doi.org/10.1016/j.acra.2006.02.040
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000237709000004
http://dx.doi.org/10.1161/hc0402.102975
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000173600500036
http://dx.doi.org/10.1002/Mrm.22282
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000279301500016
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1993LM12700010
http://www.ncbi.nlm.nih.gov/pubmed/ISI:A1993LM12700010
http://dx.doi.org/10.1186/1532-429x-14-89
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000315378200002

