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Abstract: It is not controversial that study design considerations and challenges must be addressed
when investigating the linkage between single omic measurements and human phenotypes. It follows
that such considerations are just as critical, if not more so, in the context of multi-omic studies. In this
review, we discuss (1) epidemiologic principles of study design, including selection of biospecimen
source(s) and the implications of the timing of sample collection, in the context of a multi-omic
investigation, and (2) the strengths and limitations of various techniques of data integration across
multi-omic data types that may arise in population-based studies utilizing metabolomic data.
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1. Introduction

Long considered a ‘link between genotype and phenotype’ [1], the metabolome can offer a unique
view not only into the catalogue of end products of biochemical reactions underlying complex traits,
but also into the potential environmental contributors which may interact, directly or indirectly, with
the small molecules comprising the metabolome [2,3]. In this sense, as both endogenous and exogenous
perturbations can be captured by metabolomic snapshots, the metabolome can serve as a rich resource
for identifying biomarkers for the prediction, prognosis, diagnosis or subtyping of human disease.
If, however, the goal of a study is to identify or estimate biological mechanisms and relationships,
the study of metabolomics alone may produce limited insights.

The number of studies integrating multiple omic data types continues to grow, increasingly
demonstrating that including metabolomic information can contribute important functional insight
into the interactions between the preceding omic levels (Figure 1), in addition to revealing influences
exerted by the environment [2]. How these inter-omic relationships are revealed, however, necessarily
depends on the study design used to recruit subjects, source and collect biosamples, and which
omics are measured [4]. While current integrative studies are frequently limited by convenience
with respect to the availability of multi-omic measurements, the increasing turn towards systems
biology approaches warrants both careful consideration of how complex layers of omics should be
integrated and thoughtful discussion regarding the limits of inference exerted by different study designs.
Previous review articles on multi-omics integration have focused on its advantages over single-omic
investigation in elucidating disease mechanism [5], potential impact on medical actionability [6], and
experimental design, analytical methods, tools, and challenges [7], while discussion of the importance of
epidemiologic study design and its implications in the context of integrative omics has been inadequate.
Therefore, in this review we discuss (1) epidemiologic principles of study design, including selection
of the biospecimen source(s) and the implications of the timing of sample collection, in the context of a
multi-omic investigation, and (2) the strengths and limitations of various multi-omic data integration
techniques that have been used in population-based studies using metabolomics data. The general
outline of the multi-omic investigative framework we propose is illustrated in Figure 2.
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Figure 1. A systems biology view of complex trait etiology. Red arrows reflect all potential causal
mechanistic pathways that may be captured by the metabolome assuming a central dogma framework.
Gray arrows depict biological pathways that do not act through changes to the metabolome. Blue
arrows depict potential sources of reverse causation, or mechanisms that involve time-dependent
feedback between omics and do not strictly adhere to the central dogma; the arrows depicted here are
non-exhaustive of all potential reverse causation/time-dependent paths. The environment is depicted
as a potential force across all of the omic stages; the microbiome is included as a component of the
environment, but does not necessarily exert its effects across all omic stages. Image made with Biorender.
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Figure 2. Framework for multi-omic study design and analysis. Explicitly defined research questions
in a multi-omic investigation should inform three aspects of the study: study design, biospecimen
sampling schema, and selection of additional omic type(s) to be integrated with the metabolome. Given
the target of inference, be it effect estimation / hypothesis testing, prediction / classification, or both, we
may choose appropriate methods for integration and analysis.

2. Study Design and Biosampling Design

2.1. Study Design

The kinds of inferences that can be drawn when integrating multiple omics are critically informed
by study design. In addition to the selection of study participants, study design formally structures
precisely when information about risk factors, intermediate processes, and outcomes is to be collected
throughout the course of a study, thus naturally defining the kinds of inference that are possible.
The target of inference, or the scientific question that is asked, is clearly established in the study
design—for example, a study in which vitamin D levels and plasma metabolomics are collected at
one time point in childhood can only point to statistical associations between the two as vitamin D
levels and plasma metabolomics were measured simultaneously. On the other hand, if the vitamin
D levels are measured prior to collection of the plasma for metabolomic analysis, investigators may
aim to estimate the average causal effect, or lack thereof, of vitamin D on metabolite levels within
the study sample over the specific period of time between the two measurements. The addition of
more omic levels will make the study design and inference more complicated. For the remainder of
this section, we will proceed with integrative examples using two omic data types, one of which is
metabolomics. In the following examples, we will also refer to the omic type analyzed in addition
to metabolomics as “Omic 1”. Although we use omic examples combining only two data types,
these ideas are generalizable to more complex settings such as in studies incorporating three or more
omic types.

2.1.1. Cross-Sectional Study Design

When information about a risk factor or exposure of interest is collected at the same time as an
outcome or phenotype of interest, the study design is a cross-sectional design. Many multi-omic
investigations are cross-sectional in nature with samples collected at a single time point, often largely due
to limited availability of data or post-hoc additions to existing studies. The multi-omic cross-sectional
study will collect clinical data, and biosamples to assess metabolomics and Omic 1 at the same time.
The target of inference may be with respect to the joint associations between (1) the phenotype of
interest and the two omics or (2) the specific associations between the two omics directly. The major
limitation of this study design is that true causal effects between the exposure of interest, Omic 1,
and the metabolome cannot be estimated, but rather associations between the omics and phenotype
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are revealed. One important exception to the above is in the context of genetics; in general, genetic
variation can reasonably be expected to temporally precede a given measurement of the metabolome.

2.1.2. Longitudinal Study Designs

In longitudinal study designs, exposures are collected prior to an outcome or phenotype of
interest. In these designs, the exposure and/or the outcome may be one of the levels of the ‘omics’
themselves. In general, there are three configurations of longitudinal multi-omic metabolomic analyses:
(1) metabolome as the outcome, (2) metabolome as the exposure, and (3) metabolome as the mediator
between a risk factor of interest and an outcome of interest. In the following, we discuss the importance
of the temporal ordering of data collection as an initial framework for answering research questions,
especially those that are causal in nature. However, we emphasize that such temporal ordering
provided in formal study design planning is only the first requirement in the process of inferring
causality. Many more assumptions must hold in formal causal inference analyses, such as no residual
confounding assumptions, which are beyond the scope of this review, but which have been discussed
at great length elsewhere [8,9].

Metabolome as the Outcome. In a multi-omic longitudinal study with the metabolome as the outcome,
several hypotheses may be addressed. If Omic 1 was collected and measured prior to the metabolome,
and the interest is in establishing the relational context between them, the effect of variation in Omic
1, as the exposure, on variation in the metabolome, as the outcome, would be the target of inference
(Figure 3a). Alternatively, a clinical risk factor might be the exposure of interest (Figure 3b, exposure
denoted A). In this case, the study of Omic 1 and the metabolome would necessarily depend on when
the collection of the samples that generated each omic data type occurred. If the samples for Omic 1
and metabolomics were collected simultaneously, then the valid research question would be framed
around the effect of exposure A on Omic 1 and the metabolome jointly. When Omic 1 can be reasonably
assumed to be stable over time in this situation, Omic 1 may also be treated as the mediator between A
and metabolome in the analysis stage. More explicitly, if the sample collection for Omic 1 precedes the
sample collection for metabolomics, the study of a potential causal path from the exposure A, to Omic
1 (the mediator), to the outcome, metabolome, would be appropriate (Figure 3c). However, if Omic 1 is
highly variable in nature, its measurement at one single time point between A and the metabolome
may not be adequate to capture the causal effect, or it may lead to substantial uncertainty around
the estimates.

Metabolome as the Exposure. The most abundantly observed use-case of metabolomics is for
the prediction of disease risk. If the assumption that the metabolome is the most proximal omic
to phenotype holds, then the use of the metabolomics to identify biomarkers of disease is a logical
approach. However, if the goal is to identify biological mechanisms or estimate the effect of metabolites
on disease, rather than to classify or predict, an integrative approach that jointly assesses the effect of
Omic 1 and metabolomics may be sensible (Figure 3e). In this design, the joint relationship between an
exposure A and the metabolome on a disease outcome may also be assessed. Of note, case-control
studies with omic data and disease status collected concurrently often assume that the direction of
association/causality is from omics to disease in hypothesis testing, though the presence of reverse
causation may invalidate this assumption. The goal of this type of design is better described as
an assessment of the variation in omic measurements comparing diseased vs non-diseased states.
Subclinical manifestations of certain diseases may also affect both Omic 1 and metabolome even when
they are measured from samples collected prior to disease diagnosis. For studies where subclinical
phenotypes are plausible or likely, the discussion of results should acknowledge that observed variation
in omic measures may be a manifestation of the disease itself.

Metabolome as a Mediator. The metabolome is perhaps best biologically characterized as a mediator,
or a non-mediating marker, of effects from an exposure to a phenotypic outcome of interest (Figure 1).
In the case where the study question hypothesizes a mediating role for the metabolome, the exposure
may be defined as an environmental factor or even an earlier omic state. When it can be clearly
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established that Omic 1 temporally and/or causally precedes the metabolome, and both Omic 1 and the
metabolome precede the outcome, we may attempt to establish flow of causality/associations from
Omic 1 (e.g., genetic variation, or gene expression) to the metabolome, and to a phenotype (Figure 3f).
If Omic 1 and metabolomics are measured from samples collected at the same time point, they could
also jointly mediate the effect of a preceding exposure (A) on the phenotype of interest (Figure 3d).
Furthermore, in the example of Figure 3g, a decomposition of effects is obtainable if A is collected prior
to Omic 1, Omic 1 is collected prior to metabolomics, and metabolomics is collected prior to disease
manifestation. With longitudinal designs collecting Omic 1 and metabolomics at multiple time points
between an exposure of interest (A) and development of disease (Figure 3h), the degree to which Omic
1 and metabolomics jointly mediate the effect of A on the phenotype over time may also be evaluated.
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2.2. Biospecimen Sampling Schema

In addition, to the epidemiologic study designs discussed above, integrating data from multiple
omics also involves different experimental designs pertaining to sampling, potentially at different
time points and/or from different biological sources. In the designing stage of a multi-omic
study, investigators should plan for adequate laboratory expertise in sample collection, handling,
and processing for different omic types in potentially different biospecimens. Here we focus on
considerations in the epidemiological design of sampling. Four common types of sampling schemas,
in multi-omics study were discussed by Cavill et al. (Figure 4) [4].

In the repeated study design (Figure 4a), the original study generates data for one omic type, and
sample collection is repeated on the same subjects at one or more time points distinct from the first.
When integrating other omic data types with metabolomics, in addition to analytic considerations
for within-person correlation and batch effects (i.e., technical variation attributable to non-biological,
sources such as those arising due to changing laboratory conditions or processing samples at different
times [10]), the extent to which the omic data varies over time and cell/tissue types, and how this may
impact data integration should be considered: for example, genetic variation is stable, but many other
omics, such as gene expression and DNA methylation, are not. It follows that whether it is sensible
to integrate these data with metabolomics at selected study time points is thus context dependent.
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For example, metabolomics from two or more different time points can be integrated to examine
how profiles change over the course of a given period (e.g., early life/developmental periods), while
integrating transcriptomic data with metabolomic data collected five years later would make more
sense if there was a reasonable belief that the transcripts or transcriptomic profiles of interest could be
expected to persist, or have effects on metabolites which persist, years after the initial measurement.

The other three study designs all involve sampling at the same time point on a defined set of study
subjects. The replicate-matched study design (Figure 4b) is frequently used in in vitro studies when
the protocols of obtaining two or more types of omic data require different processing techniques. Two
or more replicates of the same samples are collected and prepared at the same time for data generation.
The replicates should be randomized for measurement by different omic technologies to minimize
potential batch effects in sample collection and preparation. In other situations, investigators may wish
to integrate omics data from different parts of the same biological system, for instance plasma and stool
metabolomics, or blood transcriptomics and urinary metabolomics. This approach can be defined as a
source-matched study design (Figure 4c) when the samples are collected at the same time on the same
set of study subjects. In the split-sample study design (Figure 4d), samples obtained during one single
collection (sometimes also mixed, e.g., to achieve homogeneity in urine samples) are split into two
or more sections for different assays to obtain a multitude of omics data, which is more commonly
seen in vivo studies. Aliquots could also be made and stored for validation or for future enhanced
(e.g., single cell) measurements.

The replicate-matched, split sample, and source-matched designs may also be repeated
longitudinally (for an example see Figure 4e), although careful considerations are required in the
statistical analyses of such complex data. A longitudinal design is necessary to capture trends over
time for most types of omic data. For transparency, the temporality among the multi-omic data as well
as other dependent or independent variables involved in the analyses should be clearly stated when
reporting results.

When integrating data from multiple omics, whether they come from the same sample source
influences the inference we will be able to make. In a split-sample design, the data come from the
same tissue and are concurrent, which can enable the exploration of disease mechanisms within
that particular tissue at the specific time point of sample collection. For example, we may seek to
characterize molecular networks in a disease state using omic data obtained from the same tissue, as in
a study of lung function in childhood asthma integrating transcriptomic and metabolomic data from the
same blood samples [11]. The source-matched design illustrates a situation where different omics data
come from different sample sources. We may establish systematic networks across tissue types with
such multi-omic data, which could be advantageous in the study of human health conditions impacting
more than one type of tissue or organs. Furthermore, evaluating different sample sources may also
corroborate and solidify findings. Specifically, if constituents of Omic 1 and metabolites of interest are
measured in different sample sources yet reflect similar biological pathways and mechanisms, then
similarities between individual omics can provide an alternative form of validation, or lend greater
credibility to the findings in a study. One example of this approach is the evaluation of genes in kidney
tissue and metabolites in plasma and urine, uncovering the role of the citric acid cycle in chronic kidney
disease [12].

In review, study designs involving different time points and/or different sample sources can be
categorized into three categories: (1) same sample sources collected at multiple time points, (2) different
sample sources collected at the same time point, (3) different sample sources collected at different times.
Of course, while the concepts above may generally hold, exceptions to these frameworks may still
arise: for example, in a birth cohort study where metabolomics data are obtained from pairs of mothers
and offspring, possibly longitudinally at multiple time points, and the associations between maternal
metabolome and the children’s metabolome are of interest.
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2.3. Selection of Additional Omic Type to Integrate with Metabolomics

2.3.1. Genome and Metabolome

Studies integrating metabolomic data with germline genomic information are some of the
most commonly conducted integrative metabolomics studies to date. In these studies, concerns
with respect to temporality are ameliorated—by design the genome must precede the metabolome.
Additionally, although metabolite levels may vary by tissue type; the genome does not, making sample
selection more straightforward. Researchers are increasingly using the metabolome to explore the
downstream functional implications of single nucleotide polymorphisms (SNPs), including in relation
to disease-associated SNPs. However, the biospecimen source in which the metabolomic data are
measured is of crucial importance for biological interpretation. While blood/plasma samples reflect
systemic metabolite levels, integrating metabolomics from all tissue types, e.g., results from studies
measuring metabolites in hair, nails or other tissues, will require interpretations that account for the
specific exposure(s) captured by each sample source. Organ-specific tissue/biofluid samples measure
local levels of metabolites and thus may reveal tissue-specific SNP-metabolite associations, but are
more difficult and sometimes unethical to collect. Finally, although we have already established that
the genome precedes the metabolome, it remains critically important to determine if there is a particular
window of time (i.e., sensitive periods) during which genetic risk factors of interest might exert their
effects on metabolites downstream (for example in the case of developmental diseases of genetic origin
such as phenylketonuria).

Metabolite quantitative trait loci (metaboQTL) can be considered analogous to expression QTL
(eQTL) [13,14]; they are SNPs that are associated with levels of one or more metabolites. As such,
metaboQTLs can help to better understand the biological processes governing biological systems by
identifying the downstream effects of SNPs on the metabolome. A number of metabolomic genome-wide
association studies (mGWAS) have been conducted to date, revealing the complex balance between
genetic and environmental influences that determines metabolite levels. Overall, the variation in blood
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metabolite levels explained by genetic variants has been estimated to range from 2% to 63% [15]. Given
the role of the metabolome as an intermediate between genotype and phenotype, metaboQTLs can
provide insights into the biochemical mechanisms driving gene-disease associations by identifying
the metabolites and metabolic pathways affected by the genetic variants. The number of known
metaboQTLs continues to increase, with efforts to catalogue findings available through resources such as
the ‘Metabolomics GWAS server’ (http://mips.helmholtz-muenchen.de/proj/GWAS/gwas/). A natural
extension of single metaboQTLs is represented by efforts to associate metabolite groups/pathways
with SNPs [16,17] which may increase the statistical power of the analysis by reducing the number of
tested hypotheses.

The concept of metaboQTLs can be extended to the idea of genetically informed metabotypes
(GIMs) which encompass an ensemble of metaboQTLs, that often cluster in high linkage disequilibrium
and associate with the same metabolites or metabolites in the same class, pathway or process, thereby
having a coordinated effect on phenotype [18]. These GIMs tend to have large effect sizes and to
manifest as complex traits [18]. It should be recognized that these findings are-based largely on
data-driven associations, rather than on biological knowledge. Integrative methods incorporating
what is known about the genome and metabolic reactions may lead to greater insight into specific
mechanisms of disease by focusing on particular putative disease pathways, although our knowledge
of such pathways is admittedly far from complete.

There are several other limitations inherent to studies integrating genetic and metabolomics
data. First, biological interpretation of metaboQTLs and GIMs can be challenging. They are most
interpretable when they involve SNPs that influence gene expression in genes encoding enzymes that
catalyze biochemical reactions [18]. Less emphasis has been placed on intronic SNPs, and the concept
of cis- versus trans- metaboQTLs remains to be explored. Investigations in tissues closest to the site of
pathophysiology are often not available. To date, the majority of studies have focused on the blood
or urine metabolomes. MetaboQTLs in other tissues or biofluids are vital to fully comprehend the
genotype-metabolome relationship on a whole system level. Similarly, gender-specific integration may
be necessary, as evidenced by the work in gender-specific whole-body metabolism reconstructions.
Finally, genetic variation explains only some of the variance in metabolite levels and the importance of
the environment cannot be overlooked.

2.3.2. Transcriptome and Metabolome

Integrating gene expression with metabolomics can generate hypotheses on how these metabolic
phenotypes are regulated, which could in turn elucidate targetable functional mechanisms to generate
a desired phenotype. Integration of metabolomic and transcriptomic data can thus increase our
understanding of the factors affecting metabolite levels, regardless of whether or not the metabolite
identity is known. Application of this integrative approach in diseases, including cancer, has highlighted
key disease-related metabolic functions and pathways [11,19–23].

When transcriptomic and metabolomic data are acquired from the same individuals and
sample sources, the interplay between metabolite and gene level can be directly evaluated, yielding
molecular networks that reflect molecular mechanisms. One note of caution is that gene-metabolite
relationships found may not imply causation. The relationship between genes and metabolites is
very complex, involving non-linear reaction kinetics mechanisms, enzyme activity and substrate
affinity, metabolite-metabolite negative or positive feedback loops that regulate metabolite levels, and
post-translational modifications [24,25]. These complex relationships cannot be directly evaluated
with the resolution of the data (e.g., relative measurements of metabolite and gene-expression levels as
opposed to flux analyses) that is typically acquired in larger-scale epidemiologic studies. Nonetheless,
this approach has been successfully applied to asthma [11], cancer [22,26], and preeclampsia [27],
and has yielded important knowledge of molecular mechanisms that drive a given phenotype at a
population level.

http://mips.helmholtz-muenchen.de/proj/GWAS/gwas/
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When data are collected in the same sample source (e.g., blood) at multiple time points (repeated
design in same sample source), it may be possible to evaluate how Omic 1-metabolome relationships and
associated pathways change over time, and whether these changes relate to a phenotype (e.g., disease
progression, onset of infection, etc.). Examples of this design in epidemiological studies are sparse
as it requires both deep (large-scale metabolomic and transcriptomic profiling) and broad (in many
samples at different time points) coverage. Nonetheless, this design has been successfully applied
to uncover metabolic pathways associated with body weight change [28], including lipid and amino
acid metabolism, insulin sensitivity and blood cell development and function. Other applications
include the analysis of temporal patterns of gene-metabolite networks in one individual, the integrative
personal omics profile [29], and in model systems [30]. Notably, this design has great potential for
evaluating human health metrics over time using wearable biosensors [31], and for identifying putative
metabolite biomarkers that reflect disease-specific alterations in other omics.

Alternatively, data can be collected in different sample sources from the same individuals
at the same time point. Rather than evaluating possible direct relationships between genes and
metabolites, investigators can assess whether one measurement can act as a putative biomarker for
another. For example, strong correlations between gene-expression levels in diseased tissue and
urinary metabolites provides preliminary evidence that these urinary metabolites could act as putative
biomarkers of the underlying disease, and can thus be assessed in a much less invasive manner. It is,
however, necessary to establish the specificity of the urinary markers for the disease in question.

2.3.3. Proteome and Metabolome

The proteome refers to all of the proteins expressed in a given cell, tissue, or organ, but its
complexity increases dramatically due to the formation of protein complexes and interactions as well as
subcellular localization. The proteome is perhaps the omic type most closely linked to the metabolome,
given that many metabolite levels are directly regulated by proteins/enzymes involved in their metabolic
pathways. However, studies integrating metabolomics and MS-based proteomics are not as common
as those integrating metabolomics with transcriptomics or with genetic variation. The paucity in
integration studies is mostly due to technical challenges and cost in conducting large-scale proteomics
and metabolomics relative to the high-throughput technologies available for genetic data. Nonetheless,
new technological developments are rapidly changing this scenario and projects such as the Human
Protein Atlas are dramatically increasing our knowledge by mapping all human proteins in cells, tissues
and organs [32–34]. Advances in top-down proteomics are providing increased detail in the myriad
of different human proteoforms [35,36] (a proteoform includes all possible protein products from a
single gene including genetic variation, alternate splicing, and post-translational modifications [37]
and presents an interesting target for investigating protein-metabolite interactions).

Similar to metabolomics, several different platforms and sample preparation methods can be
employed to derive a broad overall representation of proteins in complex biological fluids and
tissues. Targeted proteomic assays have the needed sensitivity to quantitatively detect up to hundreds
of different proteins. Untargeted shotgun approaches are able to detect thousands of different
proteins/peptides. However, depending on the technique used, they do not present a robust dynamic
range (generally orders of magnitude less than that seen in complex biological fluids), and are
sub-optimal for absolute or relative quantification. Recently, however, aptamer-based targeted
proteomic panels have become available and have allowed for an unprecedented combination of
sensitivity, scalability and wide protein molecules representation [38]. This new technology has
allowed the derivation of large-scale proteomic data from thousands of samples from the same study,
without the need for laborious sample preparation and prolonged processing time. A major driver of
these efforts will be the ability to perform multi-omic analyses from the same sample, which has been
successfully done for metabolomics and proteomics [39,40].

An interesting advance in proteomics has been the advent of the adductomics approach. This
subtype of proteomics is focused on the small molecule chemical adducts of proteins, in particular
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cysteine residues [41]. This method has been proposed for applications in exposomics to measure the
Environment portion shown in Figure 1 [42]. The combination of adductomics with metabolomics can
provide a measure of the interaction between both the external exposome and the systemic alterations
in oxidative stress. Previous work has provided insights into cancer induction following benzene
exposure [43]. It will therefore be of significant interest to integrate adduct-based proteomics data with
metabolomics to achieve greater understanding of the exposome.

Traditional efforts to integrate proteomic and metabolomic data have often focused on combined
pathway mapping. While informative and providing increased molecular resolution, this approach does
not exploit the increased statistical power that can be achieved through more integrative methods [44].
The utility of combing the molecular information to increase our understanding of biochemical
and disease processes is clear. For example, integrated proteomics and metabolomics showed the
importance of circulating lipids and the coagulation cascade in the progression of septic shock [45].
Although combining these data structures is biologically sensible, the multitude of different approaches
so far proposed highlight the complexity of the endeavor. A typical example of the metabolite-proteomic
integration is the use of genome-scale metabolic reconstruction models as the theoretical framework,
and both metabolomics and proteomics data as inputs to flux balance analysis [46]. While the increased
molecular insight due to the acquisition of metabolomics and proteomics data is evident, there is still
a concomitant need in integrative statistical methods that move beyond simple pathway mapping
(e.g., KEGG).

The logical connection between proteins and their metabolic products makes integrated proteomics
and metabolomics an important component of a multi-omic strategy. Given the current limitations
in both proteomics and metabolomics, the development of integration strategies will rely on
both technological developments that will increase sample representation and information content.
In addition, it is important to highlight that not all proteomics or metabolomics datasets are equally
informative for understanding disease processes. For example, in the case of obstructive lung disease,
it is naturally more informative to perform the analyses in biosamples taken from the lung vs circulatory
profiles. This becomes important for the development of integrative models and the resulting molecular
resolution and statistical power. It was previously shown that proteomics and metabolomics from
bronchoalveolar lavage fluid were more informative for discriminating healthy smokers vs smokers
with chronic obstructive pulmonary disease than the corresponding blood profiles [44]. This is of
particular relevance in the multi-omic framework in Figure 2, because this type of sampling may
not be suitable for some study designs (e.g., it is not ethical to perform longitudinal bronchoalveolar
lavages). Accordingly, study design will be an eventual compromise between breadth of molecular
information, temporal interactions between omic profiles and experimental feasibility. The advent of
novel modeling approaches in combination with new analytical developments will enable the field to
leverage these informative large-scale data resources.

2.3.4. Microbiome and Metabolome

Many biological systems, including humans, co-exist with their microbiomes, and the two interact
cooperatively in sustaining functions such as defense, metabolism, and homeostasis [47]. Here we use
the term “microbiome” to refer to both the microbial taxonomic profiles and the collective multi-omics
(e.g., metagenome, metatranscriptome, and metaproteome) of the microorganisms that reside in an
anatomical site. It is increasingly recognized that the human microbiome plays a significant role
in human health conditions and disease progression [48]. In addition to producing metabolites of
its own, the microbiome may also influence gene expression, immune response, and metabolism in
the host [47,48]. Comparing metabolites in the plasma of germ-free and conventional mice, around
10% of all features had significant differences, and hundreds were present only in conventional
animals, hinting at the potential effects of the microbiome have on host metabolism [49]. In humans,
specific microbial species have been identified to drive the association between the biosynthesis of
essential branched-chain amino acids and insulin resistance [50]. Therefore, a natural research question
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is to explore the relationship between the microbiome and metabolome, interactions between the
microbiome and the host, as well as their integrative effects on health outcomes.

Taxonomic variation and functional variation of the microbiome across different anatomical sites
of a biological system have profound implications in the interpretation of microbiome and metabolome
relationships, which also depends on the matrix of metabolomic data. Samples may be collected from
a common biological source at the same time (for example within the same study visit), such as the
case of fecal microbiome and metabolome [51,52], or collected from different biological sources, for
example gut microbiome and serum/plasma metabolome [53,54]. Integrating omic data from different
levels of biological regulation may provide important insights into the overall picture and hierarchical
architecture of multi-organ disease pathophysiology [55].

Both the metabolome and microbiome vary in response to factors such as diet, environmental
exposures, developmental stages, aging, and changes in health status [47], which adds to the complexity
of data integration and interpretation of analysis results. A short interval between microbiome and
metabolome measurements can help establish temporality between the two omics, but their associations
may be influenced by time-varying factors that change during the interval. Longitudinal designs with
repeated sample collections where multiple omics data are generated at each time point may be the most
desirable study design to capture long-term relationships and changes. Nevertheless, confounding
(possibly time-varying) should be properly addressed for valid estimation of effects/associations.
Another potential advantage of integrating longitudinally assessed multi-omics lies in the prediction
and classifications of clinical features, including disease subtyping given that appropriate analytical
approaches are applied. In a recent publication using multi-omic data to characterize biological
changes during pregnancy and predict gestational age, blood, vaginal swabs, stool, saliva, and
tooth/gum samples were collected at multiple time points during pregnancy, which were measured for
cytokines, proteome, metabolome, microbiome, and single-cell characterization of the immune system
in predicting gestational age [56].

2.3.5. Metabolome and Metabolome

In addition to integrating metabolomic data with other omic data types, multiple metabolomes
can also be integrated together. While still uncommon, large cohorts are beginning to generate
metabolomic data at multiple time points and/or from multiple sample sources that can be integrated
together [57]. Metabolome-metabolome integration using multiple sample sources (e.g., plasma, urine,
stool, and exhaled breath) is easiest when the data are generated at a single time point in which case,
it is possible to directly assess the relationship between individual metabolites from multiple sample
sources. The optimal study design for multi-source metabolome integration would therefore collect
the different sample types at the same time or as temporally close as possible to accurately evaluate the
interrelationships between these metabolomes. These interrelationships between metabolites from
different sample sources is complex, because physiological regulation may modify a metabolite, such
as by transforming it into a waste product en route to excretion, and also because some types of
metabolites are missing from certain matrices, e.g., many lipid subclasses are not present in urine, even
though they are prevalent in stool and plasma and vice versa. However, in some cases the level of
a metabolite from one biological matrix will directly impact the level of that metabolites in another
biological matrix. For example, high glucose levels in the blood will often result in the presence
of glucose in the urine. Since cohorts often have only one type of biospecimen, it is useful when
metabolites correlate strongly across multiple sample sources, as it allows more flexibility in the sample
types that can be used for epidemiologic investigations.

Collecting at multiple time points from the same sample source can generate longitudinal
metabolomic profiles that enable the identification of time-dependent disease processes. With this
study design, the metabolomic data would ideally be generated within the same laboratory, using the
same protocols, so that inter-laboratory variation does not interfere with the ability to track changes
over time. When metabolomic data are generated at multiple time points, it is imperative to plan
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accordingly and include pooled quality control (QC) samples from all of the included times points as
well as reference standards (e.g., National Institute of Standards and Technology Standard Reference
Materials). Ideally, a subset of samples from the initial time point may also be rerun at the additional
time points.

Combining metabolomic data from multiple cohorts represents another form of integration. Due
to the relative nature of untargeted metabolomics, direct data integration is most often not possible
as the data are often generated using different laboratories, instruments, platforms, libraries, etc.
Therefore, integration across cohorts most often occurs in the form of replication, validation, and/or
meta-analysis of association findings.

Apart from the above-mentioned omic types, other omic data, for example the epigenome,
the miRNAome, or the exposome, may also be integrated with metabolomic data. While the epigenome
and miRNAome generally exert their effects on the genome or the transcriptome, the exposome
may have direct impact on all other omics discussed above. These principles and considerations are
generalizable to any studies integrating additional omic types with the metabolome.

3. Integration Paradigms and Analytic Approaches

Several useful integration paradigms in the analysis of multi-omic data include considerations
of subject level data, analytic procedure, and biological inference. For subject level integration, we
may distinguish between vertical and horizontal integration [58]. In vertically integrated studies,
multiple levels of omic data are gathered on the same subjects. Vertical integration forms the basis
for most of integrative approaches discussed above (e.g., metaboQTLs) [15] and can be applied with
all of the aforementioned study designs (Figure 3). In horizontally integrated studies, the integration
may occur using information derived from biosamples from a different study population(s); direct
integration is not possible, but the findings from the primary omic can be “conceptually integrated”
with complementary information derived from the external omic analysis. For example, known
protein interactions with a given metabolite identified to be disease-associated from a metabolomic
analysis may provide deeper insights into underlying mechanisms, and lend further plausibility to
the finding itself. Horizontal integration may provide corroborating evidence to support the initial
analysis without directly replicating it.

During analysis, the form of integration may be divided into sequential versus joint categories.
Sequential integration occurs when there are multiple sequential steps to integration. Each omic
datatype is analyzed in succession, where the subsequent steps/analyses are dependent on the findings
from the former steps/analyses [59]. When attempting to integrate multi-omics data from the same
samples or subjects it may make sense to adopt a central dogma-based framework to establish
assumptions about directions of temporal effect (e.g., genome/transcriptome/proteome/phenome).
This is in contrast with direct joint integration which occurs when individual level omic data from
multiple source populations are combined into a single matrix (before or after dimension-reduction)
for simultaneous analysis. In this case, great care needs to be taken to address differences in scale and
variance of data from different platforms so that the results are not dominated by one class of omics
data. This is especially salient for metabolomics integration: metabolomics as a field is still developing,
and the number of catalogued, known metabolites is quite low relative to other omics. Furthermore,
the identification of new small molecules and the establishment of high-quality reference standards
remain laborious and time-consuming. Multi-block modeling methods offer one approach to address
concerns of scale in a principled manner.

Finally, the limits of biological inference are best characterized by the distinction between
data-driven vs knowledge-driven integration. Data-driven integration relies on statistical integration
of the molecular data based on metrics such as significant associations, or clustering and co-expression.
Data-driven approaches do not incorporate underlying biological knowledge so most often additional
work is necessary to correctly understand the findings that are observed. In contrast, knowledge-based
integration relies on validated or expected disease, biological, and chemical annotations for known
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analytes (genes, proteins, metabolites, microbes, etc.). However the strength of knowledge-based
integration is also its weakness—this form of integration relies on what is already known, and thus
is particularly useful for identifying potential mechanisms of disease action, but may also penalize
novel multi-omic findings if information on either level of omic data is not annotated in the reference
database used for analysis.

3.1. Data-Driven Methods

3.1.1. Correlation-Based

Information on molecular interactions can be extracted directly from omics data. This allows us to
infer relationships in vivo from the observed system, obtaining computed associations specific for the
considered species, subgroup, tissue and omics. In the following section, we discuss the most popular
methods to estimate pairwise associations in omics data analysis. These can also be conveniently
visualized and analyzed systematically in the form of networks, where nodes represent variables and
the edges between them their associations.

One of the most common approaches to determine whether two variables are related is to
compute their Pearson correlation coefficient, which is a measure of linear association between a
pair of normally-distributed variables [60]. This association measure is widely used in omics data
analysis [61–68]. Non-parametric correlation coefficients can be computed using Spearman’s rank
correlation [69] instead of Pearson. This approach is more robust to outliers and can identify any
monotonic relationship between variable pairs. However, it does not account for the magnitude of the
expression variation, but only for the difference in ranks and is therefore less common in omics data
analysis [70,71]. For non-monotonic, non-linear associations, or associations based network topology,
or non-metric similarities measures like the Mutual Information (MI), Distance Correlation, topological
coefficient or stochastic embedded neighborhood are considered by some authors [72–75].

Notably, Pearson correlation does not account for the presence of confounding effects. This problem
can be overcome by using partial correlation, which accounts for the presence of confounders by
regressing out the effect of such variables from the correlation coefficient [76]. Networks from full-order
partial correlations, i.e., partial correlations corrected for all other variables as confounders, are also
known as Gaussian Graphical Models (GGMs). In the case of fewer samples than variables (n < p),
regularization approaches for the estimation of partial correlation are necessary, for example using
shrinkage methods as implemented in ‘GeneNet’ [77] or L1 regularization as in the Graphical Lasso [78].
GGMs have been shown to be a powerful tool to identify direct biochemical synthesis reactions in
mass-flow systems like metabolomics [79–83] and glycomics data [84]. Other applications of this
approach include the inference of genomics networks [77,85–87], transcriptomics networks [88,89] and
gene-expression networks [90–92], as well as multi-omics networks [28]. This approach also assumes a
multivariate Gaussian distribution and might therefore not be suited for non-normally-distributed data.
Binary and categorical response variables can be included by employing a Mixed Graphical Model
(MGM), which have found applications in genomics [93], gene-expression [94–96] and multi-omics
data analysis [97].

3.1.2. Networks/Topological Structure

The network representation of molecular associations has been proven to be a compelling
visualization to better understand the relationship between the different omics layers. Once an
interaction network has been established, either from the data or from external resources, various
approaches can be applied to systematically extract relevant information at different granularities.
For example, the network topology can be exploited to identify of sets of nodes, or modules, that
are highly connected within themselves but have few connections with the rest of the network.
The underlying idea is that, given their connectivity, molecules within a module are likely to be
functionally related and might therefore represent a more biologically meaningful unit than a single
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metabolite or gene [98–100]. Modules can be defined with a wide variety of approaches: popular
ones include Newman’s community detection [101], and WGCNA [102], but many other network
clustering approaches are available, see Mitra et al. [103] for a review. Modules can also be identified
by maximizing the association to a given phenotype [104–106] and provide an interesting joint readout
of how different omics interact among themselves or in relation to an outcome of interest.

3.1.3. Bayesian Networks

Bayesian Networks (BN) are a machine learning method that organizes variables into a network,
and then uses Bayesian statistics to compute likely values of modeled variables. BNs can be used
to build predictive models of case/control status [107]. For building predictive models, a BN has
several benefits vs other predictive modeling frameworks: (1) the ability to cleanly model nonlinear
interactions between variables; (2) models are easily interpretable due to the network connections
between variables; (3) the parameters of the Bayesian priors can be used to protect against overfitting
and improve the replication of predictive performance; (4) clean integration with other ancillary
machine learning techniques such as cross-validation, bootstrapping, and permutation testing [108].

When performing BN modeling on an integrative dataset, or indeed any dataset, the modeling
occurs in two steps. First, a BN structure must be obtained. This is the network structure which
reflects the statistical dependence among variables present in the dataset. An iterative heuristic search
across the network space is conducted starting with an initial network. Small changes are added to the
network until further changes seem unhelpful. A good network structure is one that represents the
dataset well; more precisely, one that maximizes the posterior likelihood of the dataset, according to
the Bayesian statistics defined by the network. Once a BN structure has been defined, the second part
of a BN analysis is to predict the phenotype using the values of nearby, connected variables to infer the
most likely values for the outcome. The resulting BN can be applied on the same dataset that was
used to discover the BN structure to assess model fit; or it can be applied in a replication cohort to
demonstrate validity and generalizability of the BN.

Historically, BNs deal with only binary variables, or categorical variables. For continuous
data, a Conditional Gaussian Bayesian Network (CGBN) [109] is required. This approach combines
categorical variables with normally-distributed continuous variables within the same Bayesian
statistical framework and network framework. With a CGBN, other omic variables can be easily
handled: metabolite concentrations, mRNA concentrations, etc.; as well as other demographic data.

Obtaining the BN network structure is essentially a variable-selection process, thus concatenation
can be used when integrating multiple omic datatypes for CGBN analysis [110]. BNs are computationally
intensive, and have trouble handling many thousands of variables. Variables can be pre-filtered
by assessing their statistical association with the main outcome of interest, measured by the Bayes
Factor (BF) [111] (threshold is typically BF > 0). Available BN software (CGBayesNets [112]) contains
routines for doing this simply. Bayesian Networks, and CGBNs in particular, are well suited for
building predictive models of clinical outcomes from integrative omic datasets. One of the challenges
in construction of Bayesian networks is that the most probable network is one of many near-equally
likely networks, each potentially with a different topology and directionality. Therefore, the uncertainty
in the final BN should be clearly noted or illustrated in any report. Because BNs are not acyclic in their
directionality, they do not necessarily converge to reveal the true underlying causal mechanism, and
thus should not be interpreted as causal. BNs are suited for building prediction models, but caution is
recommended in any interpretative exercise for the final model.

3.1.4. Regression Approaches

Regression analyses are the most ubiquitous analytic strategy in molecular epidemiology, and
can be employed whether the context is inference and effect estimation, or classification/prediction.
In inference and effect estimation, regression techniques may be used to test hypotheses of association
between a given omic variable (or variable set) with a phenotype of interest, and also to specifically
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estimate the magnitude of association between the two. A familiar use of regression techniques in
multi-omic analyses is that of the SNP-metabolite association study [15,113]. Other useful approaches
that have been applied in other integrative omic studies, but which have not yet seen wide-spread
adoption in the integrative metabolomics literature, include Mendelian randomization (MR) [114,115]
and causal mediation approaches [116–119]. Mendelian randomization techniques facilitate inference
of causal effects using an instrumental variable technique, wherein genetic variants are treated as
instrumental variables (i.e., variables that exert effect on a phenotype of interest only through their
effect on the primary exposure of interest). To illustrate the use of this approach in a metabolomic
context, with genetic variants as instruments, the assumptions necessary to make a valid inference of
causal effect would include: (1) the genetic variants are causally associated with a given metabolite
(i.e., a metaboQTL), (2) the genetic variants are causally associated with the phenotype of interest,
and (3) the genetic variants are independent of unobserved confounders of the metabolite-phenotype
relationship after adjusting for known confounders [114]. This last condition is trivially met if the
assumption that genetic variants are established at birth and therefore not subjects to confounding by
environmental and behavioral factors later in life. In analyses such as these, it should theoretically
not be necessary to understand the complete integrated SNP-metabolite network, so long as we are
confident that MR assumptions are reasonable. In causal mediation analyses with multi-omic data,
the usage is similar to that seen in genome-wide association scans, but the straightforward regression
model is replaced with a two stage mediation analysis framework, in which sites are interrogated
one at a time for evidence of mediation of the association between an exposure and phenotype of
interest by an omic marker. Examples of such omic-wide mediation analysis scans were first seen in
epigenetics literature [120,121], but would be appropriate in the metabolomics context as well.

An example of predictive regression modeling is partial least squares (PLS). PLS is similar to
principal component analysis, although the components in PLS are selected to explain maximum
covariance between predictors and the response (or a linear combination of responses). To reduce the
size of the input data, which can reach many tens of thousands in multi-omics integration, sparse PLS
methods can be applied where sparsity constraints from Lasso penalization are used for simultaneous
feature selection and integration. Another popular extension of PLS used in multi-omics integration is
two-way orthogonal PLS (O2-PLS) [122–124], which models the predictive and systematic variation.
To accomplish this, the variation is decomposed into three parts: (1) the joint variation that represents
the covariance of between the two omic data types; (2) the orthogonal variation that represents the
systematic variation; (3) the variation due to noise. While the O2PLS bi-directional model is limited
to 2 omics datasets, the method has been expanded to incorporate multi-omics in OnPLS [125,126].
This projection method simultaneously models multiple data matrices, reducing feature space without
relying on a priori biological knowledge. Other approaches developed to separate the variation in
multi-omic data sets into joint variation, local variation (systematic variation present in only a subset
of the data sets) and distinct variation (systematic variation only present in a single data set) include
Joint and Individual Variation Explained (JIVE) [127], simultaneous component analysis with rotation
to common and distinctive components (DISCO-SCA) [128], Structural Learning and Integrative
DEcomposition (SLIDE) [129], and penalized exponential family simultaneous component analysis
(P-ESCA) [130]. Because PLS approaches are susceptible to overfitting, which is of particular concern
when the intent is to predict phenotype, it is important to validate models using approaches such as
cross-validation, and preferably also in an independent dataset, and to report final models with all
relevant metrics that provide an assessment of model robustness [131].

It is worth noting that the regression-based methods described so far may be driven by variables
that have the largest variance, and can be insensitive to low-variance variables. This point is of
particular importance in multi-omics integration applications, where the variance of features can
differ greatly both within and between a given omic data type. Therefore, data should be scaled as
appropriate for the research question at hand (e.g., weighting by the inverse variance of each omic
feature might be appropriate if the goal is to keep any given feature from dominating the others).
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Computational frameworks such as Mixomics [132] provide access to a multitude of multivariate
methods but do not include knowledge-based methods and require statistical and computational
knowledge. Other tools perform specific numerical analyses, such as DiffCorr [133] for identifying
global correlations, and IntLIM [134] for identifying phenotype-specific associations leveraging data
from multiple omics.

3.2. Knowledge-Driven Methods

3.2.1. Reference Databases

Molecular interactions and relationships between molecules are typically obtained from publicly
available resources. There are relatively few databases that make it possible to link metabolomics data to
other omics layers, and they usually focus on describing metabolic reaction networks at genome-scale.
The most common and extensive resources for metabolomics research include manually-curated
databases such as KEGG [135], Reactome [136], WikiPathways [137], and Recon [138]. Due to its
extensive manual curation and large community, Recon is the most complete database on human
metabolism to date: it collects detailed information from literature and validation experiments about
biochemical reactions in a variety of metabolic pathways and allows direct linkage of metabolites to,
among others, proteins and genes involved in such reactions and pathways.

3.2.2. Pathway-Based Analysis and Multi-Omic Set Testing

Pathway enrichment approaches can be used to assess whether an overall pathway, rather than
single metabolites or molecules, is differentially regulated in two or more experimental conditions.
Although various tools exist to perform pathway enrichment on metabolomics or single omics
data alone [139–143], new methods that allow the integration of multi-omics datasets are becoming
available [144–146] and exploit the common pathway ontology of multi-omics data provided by
publicly available resources. Once a list of metabolites and other omic targets of interest have been
identified, their biological relevance can be assessed by inputting these lists into software tools such as
MetaboAnalyst [139,147], PaintOmics [148], IMPaLA [144], MetaBox [149], and RaMP [146]. Notably,
while knowledge-based approaches are instrumental in interpreting the molecular data, they fall short
when uncovering new knowledge because many annotations are yet to be discovered, particularly
for metabolites.

Provided that associations between metabolites and other omic features are known, it may be
of interest to test the association or joint effect of an entire pathway, or to conduct agnostic searches
for trait associations across biological sets. In these approaches, mappings between the metabolites
and the molecules or variants with which they interact are critical, and the metabolite-molecule
pairings are tested as a set. Several techniques for biological set testing have been developed for
multi-omic contexts which leverage combining/meta-analytic [144], summary statistic or rank-based
enrichment/over-representation analysis [144,150,151], network-based topology [152], joint effect
hypothesis testing [153], and high-dimensional causal mediation [154,155], While not all of these
approaches were developed for metabolomic data, most are easily extendable to metabolomic contexts
provided that the appropriate mapping is available between the two omic types. All of these set testing
methods depend, however, on mappings between metabolites and their interacting molecules/variants
a priori. For example, the largest metabolite annotation database, the Human Metabolome Database
(HMDB) contains entries for 114,100 metabolites yet only ~22% are mappable to pathways [146,156].
The use of numerical and knowledge-based -omics integration methods that adopt and combine both
approaches would thus allow users to maximize known and novel relationships in their data.
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3.2.3. Constraint-Based Modeling: Flux Balance Analysis

Flux balance analysis (FBA) is a constraint-based modeling approach widely used in genome-scale
metabolic network reconstruction [46]. In FBA, the mathematical representation of metabolic reactions
relies solely on the stoichiometry of chemical reactions, which impose constraints on the flow of
metabolites through the network at steady state (the total amount of output metabolites must be
equal to that of input metabolites). Additional constraints such as lower and upper bound on the
rates/fluxes of individual reactions, or maximum rate of substrate uptake can also be imposed. Within
these constraints, FBA uses linear optimization to solve for fluxes that maximize or minimize a
defined phenotype (objective function) [46]. Detailed manual curation of all known metabolic reactions
and genes encoding enzymes in a biological system is necessary for FBA-based metabolic network
reconstruction, which in itself is an integration of genetic and metabolic information. In humans,
several such efforts have been undertaken, including Recon [138], the Edinburgh Human Metabolic
Network [157], and the Human Metabolic Reaction [158].

Extending constraint-based modeling methods such as FBA from microorganisms to multi-organ
systems (e.g., human) is complicated by the fact that different tissues have varying and largely
unknown metabolic functions and rates of metabolite uptake and secretion [159]. The integration
of other omic data types into FBA can be informative of the definition of objective functions and
constraints put on the metabolic reactions. Several FBA-based methods for integrating transcriptomic
data with genome-scale metabolic network reconstruction have been reviewed previously [160].
Integration of tissue-specific gene expression and proteomic data into a global human metabolic
network has been used to characterized different metabolic behaviors in ten tissue types [159]. This is
an example of horizontal integration in the sense that data on tissue-specific gene expression and protein
abundance were obtained from publicly available databases, and were used to inform tissue-specific
enzymatic activities.

FBA can also be used in the study of human gut microbiome, which requires extensive curation of
metabolic reactions and enzymes known in human microbiota. AGORA (assembly of gut organisms
through reconstruction and analysis) is one such resource of genome-scale metabolic reconstructions
semi-automatically generated for 773 human gut bacteria [161]. Using publicly available metagenomic
data mapped to AGORA, personalized metabolic models of the microbial community were constructed
accounting for strain-level abundances, and the metabolic potential in individual microbiome can be
assessed [162]. One well-established and commonly-used computational tool for FBA-based analyses
is the Constraint-based reconstruction and analysis (COBRA) Toolbox in MATLAB [163]. Despite
its popularity, FBA-based optimization results require experimental validation, which can be hard
to obtain in human populations, and are only suitable for characterizing fluxes at steady state [46].
Modified forms of FBA have been developed to take into consideration kinetics and regulation on
enzyme activities, and adapt to dynamic network models [164,165].

3.3. Strategies for Type I Error Protection in Multi-Omics Analyses

Because of the wide range of data types, research objectives and analysis options in multi-omics
projects it is virtually impossible to offer a single strategy to protect against false positive/negative
inferences. Nevertheless, whenever considering such high-dimensional problems where many tests
of association are considered or many features are aggregated or ranked it is important to explicitly
address the possibility that some results are due to chance. For analyses that produce a parametric test
statistic and associated p-value, a common approach is perform a permutation procedure to simulate
the null hypothesis thousands of time in order to estimate the likelihood of a false positive result.
Variations on this procedure can be used to determine the “effective number of tests” to be used for
a corrected Bonferroni type of p-value adjustment [166]. The advantage of this approach is that it
explicitly preserves and accounts for correlational structure of the omics data under consideration.
The Benjamini–Hochberg False Discovery Rate (FDR) [167] is another less rigorous but much simpler
strategy to provide an estimate of the likelihood of a false positive result. Another strategy to consider
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is some form of cross-validation of bootstrapping to determine the extent to which observations are
robust to variations in the sample set used for analysis. An attractive feature of this approach is that it
can be applied to other types of analysis results (such as network composition) that are not amenable
to conventional parametric statistics. All of these approaches are some form of internal validation.
However, ultimately the best assurance that any multi-omics analysis result is true is to replicate the
result in an independent experiment or analysis of unrelated samples, specimens, or individuals.

4. Conclusions

Multi-omic integration in epidemiological studies represents a significant opportunity to increase
the understanding of the underpinnings of health and disease in terms of biological mechanism,
therapeutic targets and biomarkers [18]. In order for this potential to be realized, careful design
and analysis considerations are critical. In this review, we provide a framework for thoughtful
multi-omic study design and analysis that is guided by the initial multi-omic question (Figure 2).
The inferences drawn from a multi-omic question rely on both the study design and biosampling
schema. Longitudinal studies facilitate prognostic prediction or estimation of causal effects between
the metabolome, other omes, and a phenotype, while cross-sectional studies are limited to identifying
associations or prevalent disease classification. We review several longitudinal study designs that
consider possible relationships between metabolites, another omic, exposure, and phenotype to answer
different multi-omic research questions. In addition to study design, the role of sampling schemas for
multi-omic data is also discussed for informing inference and analyses. Study designs that involve
repeated sampling at the same time point on a defined set of study subjects to generate multi-omics are
particularly useful for inference.

We review several important omic-specific considerations that may facilitate integration with the
metabolome. For example, the identification of metabQTLs and GIMs relies on the premise that the
genome precedes the metabolome. Other considerations may be more focused in omic data generation
(for example. both proteomic and metabolomic data may be generated in the same laboratory, which
may reduce several sources of variation and facilitate integration).

The multi-omic question is the most important component of the analysis, beginning with whether
the analysis will be focus on effect estimation or prediction/classification. The analytical approaches to
integration are either data-driven or knowledge-driven; however, both have limitations. Data-driven
integration relies on statistical metrics (e.g., significance or distance) and while they are able to identify
novel disease features or associations, they may not incorporate biological knowledge. In contrast,
knowledge-based integration relies on what is already known, and thus is particularly useful for
identifying potential mechanisms of disease action, but may encounter challenges in the identification
or prediction of novel disease risk factors.

The most appropriate analytic strategy will depend on the study design, types of omic data
available, and target of inference of the study, as the assumptions underlying the methods discussed
above vary, and each method accounts for different subsets of statistical concerns. While the analytical
strengths of one approach may address the weaknesses of another, the most comprehensive analysis
may incorporate multiple analytical methods. Although not discussed in detail, we also emphasize
that critical to the success of any of the analytic approaches presented in this review is the quality of
the acquired data. To detect subtle systemic shifts in biological pathways in heterogeneous diseases
across multiple omics data blocks, it is necessary to have omics data with a high level of precision and
robust QC protocols that minimize non-biological technical variation that might obscure true signals.
Further development of integrative methods and thoughtful incorporation of study design principles
is necessary to continue improving the individual and systems-level understanding of risk-conferring
biological processes.
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