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A B S T R A C T

Diffusion-weighted steady-state free precession (DW-SSFP) is an SNR-efficient diffusion imaging method. The
improved SNR and resolution available at ultra-high field has motivated its use at 7T. However, these data tend to
have severe B1 inhomogeneity, leading not only to spatially varying SNR, but also to spatially varying diffusivity
estimates, confounding comparisons both between and within datasets. This study proposes the acquisition of
DW-SSFP data at two-flip angles in combination with explicit modelling of non-Gaussian diffusion to address B1

inhomogeneity at 7T. Data were acquired from five fixed whole human post-mortem brains with a pair of flip
angles that jointly optimize the diffusion contrast-to-noise (CNR) across the brain. We compared one- and two-flip
angle DW-SSFP data using a tensor model that incorporates the full DW-SSFP Buxton signal, in addition to
tractography performed over the cingulum bundle and pre-frontal cortex using a ball & sticks model. The two-flip
angle DW-SSFP data produced angular uncertainty and tractography estimates close to the CNR optimal regions in
the single-flip angle datasets. The two-flip angle tensor estimates were subsequently fitted using a modified DW-
SSFP signal model that incorporates a gamma distribution of diffusivities. This allowed us to generate tensor maps
at a single effective b-value yielding more consistent SNR across tissue, in addition to eliminating the B1

dependence on diffusion coefficients and orientation maps. Our proposed approach will allow the use of DW-SSFP
at 7T to derive diffusivity estimates that have greater interpretability, both within a single dataset and between
experiments.
1. Introduction

Diffusion imaging of post-mortem human brains has important ap-
plications for both validating diffusion contrast mechanisms through
comparison with microscopy and achieving very high-resolution data
with long scan times. However, post-mortem diffusion imaging presents
significant challenges due to changes in tissue properties related to death
and fixation. Unfavorable reductions in T1, T2 and diffusion coefficient
have been observed in fixed tissue using a variety of fixation methods
(Blamire et al., 1999; D’Arceuil and de Crespigny, 2007; Dawe et al.,
2009; Shepherd et al., 2009; Yong-Hing et al., 2005).

One method to overcome these changes is to utilize an imaging
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strategy that allows for fast acquisition of the MR signal to overcome the
losses associated with the shortened T2 values. We have previously
proposed the use of diffusion-weighted steady-state free precession (DW-
SSFP) for post-mortem imaging due to its ability to achieve robust signal
and strong diffusion contrast in short-T2 species (McNab et al., 2009).
The high signal-to-noise (SNR) efficiency of DW-SSFP compared to
diffusion-weighted spin echo (DW-SE) acquisitions enables improve-
ments in the quality of both diffusion tractography and estimates of
multiple fiber populations at 3T (Miller et al., 2012), motivating its use in
post-mortem samples (Berns et al., 2015; Cardenas et al., 2017; Palle-
bage-Gamarallage et al., 2018; Vasung et al., 2019; Wilkinson et al.,
2016).
ohn Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

June 2020

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:benjamin.tendler@ndcn.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117113&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117113
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117113


B.C. Tendler et al. NeuroImage 220 (2020) 117113
Ultra-high field scanners have potential to enable further gains in
spatial resolution, with DW-SSFP providing a valuable tool for
addressing the even shorter T2 values at 7T and above (Foxley et al.,
2014a). However, DW-SSFP data acquired at 7T are compromised by
B1 inhomogeneity. This presents us with a challenge: unlike other
diffusion imaging sequences, both the signal and diffusion attenuation
in DW-SSFP are sensitive to flip angle (Buxton, 1993). The DW-SSFP
signal is sensitive to the effects of restriction (McNab and Miller,
2008), and in systems with non-Gaussian diffusion (due to restrictions
in tissue), this leads to diffusivity estimates that can depend on the
applied flip angle.

Given a B1 field map, we propose an approach to account for these
issues by acquiring a pair of DW-SSFP datasets at two different flip an-
gles. This dual-flip angle approach has two advantages: Firstly, our flip
angles can be chosen such that different regions of tissue have high SNR
in the individual datasets (Foxley et al., 2014b). We can subsequently
combine the datasets in a manner to yield high SNR diffusivity estimates
over the entire brain. Secondly, we can modify the DW-SSFP signal
equation to account for how the measured apparent diffusion coefficient
(ADC) varies with flip angle under a simple model of non-Gaussian
diffusion. From this, we can explicitly model the relationship between
the effective b-value and flip angle using a previously described frame-
work (Tendler et al., 2020). Here we describe a method to subsequently
derive diffusivity estimates over the entire brain sample interpolated to a
single effective b-value, removing the influence of B1.

2. Theory

2.1. Dual-flip angle acquisition to optimize diffusion contrast

At ultra-high field, B1 inhomogeneity (Fig. 1a) leads to a spatially
varying flip angle across the brain, where in DW-SSFP both the measured
signal (Fig. 1b) and diffusion attenuation (Fig. 1c) are sensitive to the
applied flip angle. Through appropriate setting of the RF transmit gain,
one can control where in the brain a desired flip angle is achieved. In
practice, the simplest way to achieve this is to adjust the nominal flip
angle (i.e. the flip angle specified on the scanner console). This effect is
demonstrated in Fig. 1d, which displays a single slice through a DW-SSFP
dataset where the nominal flip angle is changed by 10� increments from
5� to 115�. By changing the nominal flip angle, a bright concentric ring is
seen to move radially from the centre of the brain towards the edge.

An arbitrarily optimized flip angle for the DW-SSFP signal can
therefore be predictably positioned with knowledge of B1. We propose
that the signal dependency on B1 can be mitigated by acquiring data with
an optimized pair of flip angles. Fig. 2 outlines our proposed optimization
procedure, which aims to produce high contrast across the entire brain.
The goal is to identify an optimal pair of nominal flip angles based on the
predicted diffusion contrast (here defined as the difference between the
non-diffusion and diffusion weighted signals). An ideal flip angle pair
would achieve both high and homogeneous contrast over a large range of
B1 (Fig. 2). To achieve this, DW-SSFP contrast curves were generated for
every pair of flip angles (Fig. 2a) and their mean (μ) and standard devi-
ation (σ) over a range of B1 values were determined. To identify a flip
angle pair that represented a balance of high contrast and homogeneity
across a range of B1, we calculated the variance-normalized mean (μ/σ)
of all flip angle pairs (Fig. 2b), and chose the peak value as our optimal
pair of flip angles (Fig. 2c). We considered a range of 30–100% of the
maximum B1 (Fig. 2a) to ensure that the optimization is not dominated
by a minority of voxels with very low B1.

2.2. A DW-SSFP effective b-value

In systems with non-Gaussian diffusion (due to restrictions in tissue),
the ADC is dependent on the applied flip angle in DW-SSFP (Fig. 3a and
b). The dependence of ADC on the flip-angle is problematic, as variations
in the applied flip angle across a single brain (due to B1 inhomogeneity)
2

amounts to having different b-values in different parts of the image
(Fig. 3c and d). This leads to spatially-dependent ADC estimates within a
single DW-SSFP dataset (Fig. 3 and (Tendler et al., 2020)), analogous to
acquiring a dataset with different b-values across the brain with a stan-
dard DW-SE experiment.

This effect is illustrated in Fig. 4, which simulates multi-b-value DW-
SE and multi-flip angle DW-SSFP diffusion attenuation for systems
defined by a single diffusion coefficient (Gaussian) vs a gamma distri-
bution of diffusivities (non-Gaussian). The attenuation curve of the
gamma model (orange line) crosses the constant-ADC curves of the
Gaussian model (blue lines) when changing both b-value (in DW-SE) and
flip angle (in DW-SSFP), implying a change in the measured ADC.

However, the ADC is not only a function of flip angle in DW-SSFP, but
is also modulated by relaxation (Fig. 3). One way to view this is to think
of the DW-SSFP signal as a linear mixture of coherence pathways with
different b-values. The relative weights of the pathways are determined
by the flip angle, but also by the relaxation times T1 and T2, leading to a
tissue-dependent effective b-value affecting the ADC estimates. It is
worth emphasising that for non-Gaussian diffusion systems, one cannot
solve this problem by measuring T1 and T2 and incorporating these es-
timates into the DW-SSFP signal (modelling with a single ADC), since the
b-value will still be influenced by relaxation (Fig. 3c).

Recently, we have proposed an approach (detailed in (Tendler et al.,
2020)) that defines ADC estimates from DW-SSFP as a function of an
effective b-value, beff . This definition is able to account for the effects offlip
angle and relaxation on DW-SSFP ADC estimates, in contrast to previous
work (Miller et al., 2012), which defined beff in terms of the DW-SSFP
diffusion attenuation. We achieve this by explicitly incorporating models
of non-Gaussian diffusion into the DW-SSFP signal equations, and making
comparisons with the DW-SE ADC predictions under the same model of
non-Gaussianity. Below we describe how we can use this approach to cor-
rect for the influence of variable effective b-values across tissue (Fig. 3c and
d), to generate ADC estimates at the same effective b-value across the entire
brain from DW-SSFP data acquired at two flip angles.

2.3. Generating DW-SSFP estimates at a single effective b-value across the
entire brain

DW-SSFP data acquired at two flip angles will lead to distinctive
diffusivity estimates at each flip angle when considering a non-Gaussian
system (Fig. 3a and b). To account for this, we can fit an extension to the
DW-SSFP signal model that incorporates non-Gaussianity, to estimate the
non-Gaussian system that is able to explain the variation in diffusivity
with flip angle (Tendler et al., 2020). Here we use a non-Gaussian system
described by a gamma distribution of diffusivities incorporated into the
Buxton signal model of DW-SSFP (Buxton, 1993):

SSSFP;Γðα;T1;T2;TR;q;Dm;DsÞ¼
Z ∞

0
SSSFPðα;T1;T2;TR;q;DÞρðD;Dm;DsÞdD;

[1]

where the SSSFP is the Buxton DW-SSFP signal model (defined in Ap-
pendix Eq. [A1]) and ρðD;Dm;DsÞ is the gamma probability density
function (PDF) with mean and standard deviation Dm and Ds. This inte-
gral can be evaluated numerically.

We can subsequently use the voxelwise estimated gamma parameters
to simulate the DW-SE signal under the same gamma PDF voxelwise
(integral here is analytic) (Jbabdi et al., 2012; Oshio et al., 2014):

SSE;Γðb;Dm;DsÞ ¼ S0

Z∞
0

e�bDρðD;Dm;DsÞ dD

¼ S0

�
Dm

Dm þ bD2
s

� D2m
D2s :

[2]

Given a target b-value (beff ), we can then define the ADC within every



Fig. 1. B1 inhomogeneities at 7T. (a) A single slice of a B1 map estimated using the method described in (Yarnykh, 2007) obtained over a whole post-mortem human
brain sample at 7T. B1 decreases smoothly as we approach the edge of the brain. The signal (b) and diffusion attenuation (c) have a strong flip angle dependence in
DW-SSFP. (d) Example DW-SSFP images acquired with multiple nominal flip-angles at 7T reveal how a change in flip-angle yields changes in signal, with the impact of
the nominal flip angle and B1 clearly visible between and within DW-SSFP datasets, consistent with the signal simulation in (b). As the nominal flip angle increases, a
bright concentric ring in the DW-SSFP data moves radially towards the edge of the brain. (b) and (d) depict the DW-SSFP signal change (CNR).

Fig. 2. Optimization used for the two-
flip angle DW-SSFP acquisition. The
red and blue curves in (a) show the
variation in diffusion contrast (differ-
ence of diffusion weighted and non-
diffusion-weighted signal) across the
brain as a function of B1. We combined
the contrast curves across pairs of flip
angles to maximize the quantity μ=σ (b),
where μ is the mean contrast across the
B1 range and σ is the standard deviation.
This metric aims for maximum contrast
with minimum variation across the
brain (black curve on the left). Here, we
only considered a range of 30%–100%
of maximum B1 for our calculations of μ
and σ which corresponds to ~90% of the
brain, so as not to have the optimization
dominated by a minority of brain voxels
where contrast changes rapidly with flip
angle. Our simulations estimated a CNR-
optimal flip angle pair of 24� and 94�

(c). Simulation parameters were
approximately matched to our protocol
at 7T: T1 ¼ 500 ms, T2 ¼ 30 ms, ADC ¼
1 �10�4 mm2=s, TR ¼ 30 ms, diffusion
gradient amplitude¼ 52 mT=m, diffu-
sion gradient duration¼ 14 ms.
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voxel at the same beff by resolving:

D
�
beff ;Dm;Ds

� ¼ � 1
beff

ln
�
SSE;Γ

�
beff ;Dm;Ds

�
S0

�

¼ � 1
beff

�D
2
m

D2
s

� ln
�

Dm�
Dm þ beffD2

s

��:
[3]

Fig. 5 shows how these simple steps can recover the correct ADCs for
measurements with different diffusivity distributions and relaxation
times, thus removing both the potential tissue-type dependence as well as
3

the flip-angle dependence.
Finally, we note that the choice of a gamma distribution to capture

non-Gaussianity was motivated by its parsimony compared to e.g. a
multi-exponential model, and thus we can fit this model with a minimum
of two flip angles (a viable alternative could be to use kurtosis).

2.4. Extension to a tensor model

In this manuscript, we use a diffusion tensor model to evaluate our
two flip angle approach and define our diffusivity estimates at a single
effective b-value. To extend this approach to the diffusion tensor model



Fig. 3. Flip angle dependency of diffusivity esti-
mates in DW-SSFP. (a) and (b) display estimated
principal eigenvalue (L1) maps from DW-SSFP data
acquired at a low (αlow) and high (αhigh) nominal flip
angle in a whole post-mortem human brain sample.
The diffusion coefficients estimated at αhigh are higher
than those estimated at αlow, highlighting that in DW-
SSFP, changing the flip angle is analogous to acquiring
data at a different effective b-value (beff ). At 7T, B1

inhomogeneity leads to a spatially-varying flip angle
across the brain (Fig. 1a). This further translates into a
spatially varying effective b-value (beff ) across tissue.
The beff maps displayed in (c) and (d) reveal that we
estimate a higher beff at a reduced flip angle, with beff
increasing as we approach the brain boundary (in
regions of low B1). In DW-SSFP, the T1 and T2 of tissue
additionally influence beff , leading to grey/white
matter contrast in the beff maps. L1 maps derived
using a tensor model from ‘Brain 1’ as described in the
Methods section.

Fig. 4. Simulating non-Gaussian diffusion effects on ADC. Comparison of the diffusion attenuation of a multi-b-value DW-SE (a) and multi-flip angle DW-SSFP (b)
experiment in a system defined by a single diffusion coefficient (Gaussian diffusion – blue lines) or non-Gaussian diffusion (gamma distribution of diffusivities - orange
line). Here each blue line represents a different diffusion coefficient, ranging from D ¼ 5 � 10�5 (top) to 5 �10�4 mm2/s (bottom). Under Gaussian diffusion (blue lines),
the diffusion attenuation curves do not overlap for different diffusion coefficients. However, for non-Gaussian diffusion (orange lines), the diffusion attenuation curves
cross through the blue lines, indicating a change in the measured ADC.
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Fig. 5. Outline of the processing pipeline to generate ADC estimates at a single beff . Here we consider two simulations of two voxels. In (i), the two voxels have
different gamma PDFs describing non-Gaussianity (a), but identical relaxation properties. In (ii), the two voxels have identical gamma PDFs (a), but different T1
relaxation times. The simulated DW-SSFP signal varies as a function of flip angle (b), which gives rise to flip angle dependent ADCs (c) (if you assume Gaussianity and
calculate a single ADC). From DW-SSFP data acquired at two flip angles (dots), we can estimate the diffusivity distributions (a) that are able to explain this variation
with flip angle (b and c dotted lines) using Eq. [1]. If one is interested in characterising the non-Gaussianity, this step would provide us with the relevant charac-
terization, as described in (Tendler et al., 2020). Here, however, we aim to instead translate the system into the equivalent measurement that would be made with
DW-SE at a single well-defined effective b-value under the same model of non-Gaussian diffusion. Using Eq. [3], we can subsequently simulate the ADC as a function of
effective b-value (d). From this, we can estimate the ADCs at a single beff for all voxels (green line - beff ¼ 4000 mm2=s). In (i), the two gamma PDFs lead to distinctive
ADC flip angle curves (c). However in (ii), the different T1 relaxation times additionally leads to distinctive ADC flip angle curves (c), where the parameters chosen
lead to ADC estimates that appear identical at high flip angles, but diverge at lower flip angles, despite these measurements reflecting the same system of diffusivities
(ii - a). Estimating the gamma PDF and plotting in terms of beff leads to distinctive ADC beff curves for (i), but identical curves for (ii).
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(implementation for the Buxton model provided in Appendix Eq. [A2]), a
slightly different procedure was adopted. While one could fit the tensor
model to DW-SSFP data acquired at two flip angles directly (provided T1,
T2, and B1 maps), the presence of non-Gaussianity renders the model
inadequate, as the tensor eigenvalues are dependent on flip-angle and
min
Dmi ;Dsi

���Lisim:αlow
ðDmi ;Dsi Þ � Liexp:αlow

���2
2
þ
���Lisim:αhigh

ðDmi ;Dsi Þ � Liexp:αhigh

���2
2
þλ
���Dmi � Liexp:αhigh

���2
2

[4]
relaxation (leading to different eigenvalues for the DW-SSFP data ac-
quired at each flip angle). The model needs to be augmented. However,
there isn’t a simple but principled method to interpolate between the
tensors fit at two flip angles, as this would have to assume some form of
covariance. The principled approach would be to use a kurtosis tensor
which explicitly fits this covariance (Jensen et al., 2005; Lu et al., 2006),
but this introduces many more free parameters and would require mea-
surements at many flip-angles as well as many directions.

Our approach to this is to estimate non-Gaussianity only along the
tensor eigenvectors (again using the gammamodel, but other models can
be used). However, since the gamma model is only defined along the ei-
genvectors, we first perform a tensor-like fit to the data from the two flip

angles, to estimate a single set of shared eigenvectors (V
!

1;2;3), but distinct
eigenvalues (L1;2;3 – a set estimated at each flip angle). We then estimate
the parameters of the gamma distribution that best account for the change
in the pairs of eigenvalues (i.e. fit a gamma to the two fitted L1 values, a
5

second gamma to the two fitted L2 values, etc). Since this last fitting step
only effectively uses data acquired at twoflip angles (two eigenvalues),we
regularise it by adding a prior on the mean of the gamma distribution as

follows (e.g. assuming fitting along eigenvector V
!

i):
where αlow and αhigh are the voxelwise DW-SSFP flip angles,
Liexp:αlow /Liexp:αhigh are the voxelwise experimental Li estimates at each flip

angle, Lisim:αlow
/Lisim:αhigh

are the simulated Li estimates for a given Dmi and

Dsi at each flip angle (estimated from Eq. [1] and Eq. [A1]) and λ is the
regularization parameter. Finally, we then estimate an equivalent tensor
at a chosen effective b-value as above using the spin-echomodel (Eq. [3]),
given estimated gamma distribution parameters along each eigenvector.
2.5. Extension to a ball & sticks model

To assess the performance of our dual flip acquisition vs a single flip
angle, tractography was performed using a ball & sticks model (imple-
mentation for the Buxton model provided in Appendix Eq. [A3] and Eq.
[A4]). To assess tractography performance, we simply fit two diffusivities
for the data acquired at each flip angle, as we are only interested in the



Table 1
MRI imaging parameters. The imaging parameters of the DW-SSFP dependency
acquisitions (AFI, TIR and TSE) are representative of the parameters used, small
modifications were made to these acquisitions as protocols evolved.

DW-SSFP Turbo inversion-recovery (TIR)

q-value (cm�1) 300 Resolution
(mm3)

0.9⋅0.9⋅0.9

Diffusion Gradient
Duration (ms)

13.56 Number of
inversions

6

Diffusion Gradient
Strength (mTm�1)

52 TE (ms) 14

Flip angles (o) 24 and 94 TR (ms) 1000
No. directions (per flip
angle)

120 TIs (ms) 30, 60, 120, 240,
480 & 935

No. non-DW (per flip
angle)

6 (q ¼ 20
cm�1)

Flip angle (o) 180

Resolution (mm3) 0.85⋅0.85⋅0.85 GRAPPA acc.
factor

3

TE (ms) 21 Bandwidth (Hz
per pixel)

130

TR (ms) 28 Acquisition time
(per TI)

40:49

EPI factor 3 Number of
averages

1

Bandwidth (Hz per
pixel)

393

Acquisition time (per
direction/non-DW)

5:47 Turbo spin-echo (TSE) – T2

Acquisition time (per
flip angle)

12:08:42 Resolution
(mm3)

0.9⋅0.9⋅0.9

No. of averages 1 Number of
echoes

6

TEs (ms) 13, 25, 38, 50, 63
& 76

Actual flip-angle imaging (AFI) – B1 TR (ms) 1000
Resolution (mm3) 3⋅3⋅3 Flip angle (o) 180
TE (ms) 1.5 GRAPPA acc.

factor
2

TR1/TR2 (ms) 4.4/11 Bandwidth (Hz
per pixel)

166

Flip angle (o) 60 Acquisition time
(per TE)

36:01

Bandwidth (Hz per
pixel)

630 Number of
averages

1

Acquisition time 0:41
Number of averages 1

Fig. 6. beff as a function of B1. Over all 5 brains, the effective b-value increases
with decreasing B1. The effective b-values estimated at αlow (blue lines) are
consistently higher than those estimated at αhigh (orange lines), consistent with
an expectation of an increased beff with decreased flip angle (Fig. 5c). beff ¼
4000 s=mm2 corresponds to the approximate beff in areas of low B1 at αhigh
(orange line – left). Here the solid lines display the mean beff across all five
brains, with the error bars displaying the standard deviation across all
five brains.
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orientation of the sticks to perform tractography.

3. Methods

3.1. Sample preparation

Data were acquired in post-mortem human brains (n ¼ 5), comprised
of two control brains and three brains from patients diagnosed with
amyotrophic lateral sclerosis (ALS). Brains were extracted from the skull
within 72 h after death. All brains were fixed for at least 45 days prior to
scanning, with four brains fixed in 10% PBS buffered formalin and one
brain fixed in 10% formalin (Brain 3). Prior to scanning, brains were
removed from formalin and submerged in a perfluorocarbon liquid
(Fluorinert FC-3283, 3M). The study was conducted under the Oxford
Brain Bank’s generic Research Ethics Committee approval (15/SC/
0639).

3.2. MRI data acquisition protocol

Data were obtained over the entire brain of each post-mortem sample
on a human 7T Siemens whole body scanner (32ch-receive/1ch-transmit
head coil). For each brain, DW-SSFP datasets were acquired at two
nominal flip angles (24� and 94�), chosen based on the optimization
described above. At each flip angle, 120 diffusion directions (q ¼ 300
cm�1) and six non-diffusion weighted datasets were acquired (resolution
6

¼ 0.85⋅0.85⋅0.85 mm3), with the same set of directions for both flip
angles. Here we note the distinction between the nominal flip angles (24�

and 94�) and the applied voxelwise flip angles (αlow and αhigh), which
incorporate the effects of B1. These datasets will be subsequently referred
to as αlow and αhigh to highlight the change in flip angle across the brain.

To prevent banding artefacts in the non-diffusion weighted datasets, a
slight diffusion gradient was applied along (x,y,z) ¼ (0.557,0.577,0.577)
to serve as a spoiler (q ¼ 20 cm�1) (Zur et al., 1988). In the case of
non-diffusion weighed data, the Buxton model describes a reverse fast
imaging with steady-state free procession (PSIF) sequence, which ac-
counts for these spoiler gradients. These spoiler gradients lead to a
negligible amount of diffusion weighting and are rarely taken into ac-
count in more conventional diffusion imaging (e.g. DW-SE). Due to this,
these datasets were treated as non-diffusion weighted.

To aid in DW-SSFP quantification, we also acquired: B1 maps with an
actual flip angle (AFI) acquisition (Yarnykh, 2007); T1 maps from a turbo
inversion-recovery (TIR) sequence; and T2 maps from a turbo spin-echo
(TSE) sequence. Full details of the acquisition protocol are provided in
Table 1.

3.3. Data Processing

All coregistration between and within imaging modalities were per-
formed with a 6 degrees-of-freedom (translations and rotations) co-
registration via FLIRT (Jenkinson et al., 2002; Jenkinson and Smith,
2001). A Gibbs ringing correction was performed on the DW-SSFP, TIR
and TSE datasets (Kellner et al., 2016). T1 and T2 maps were generated
from the TIR and TSE data via a voxelwise fit assumingmono-exponential
signal evolution. B1 maps were generated from the AFI datasets via the
processing outlined in the original publication (Yarnykh, 2007) All data
were processed and analyzed using the FMRIB software library (FSL)
(Jenkinson et al., 2012) and Python (Millman and Aivazis, 2011). A
tensor model (details in Appendix Eq. [A2]) that incorporates the full
DW-SSFP Buxton signal model (Buxton, 1993) was fitted to the DW-SSFP



Fig. 7. Visual comparison of the PDD estimates. At αlow, B1 inhomogeneity leads to incoherent PDD estimates near the brain boundary (red box), with coherent
PDD estimates near the centre of the brain (orange box). At αhigh, the converse is true. By fitting with two-flip angles (αlow þ αhigh), we obtain a good compromise
between the low and high flip angle datasets, yielding coherent PDD estimates over the entire brain.
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data using cuDIMOT (Hernandez-Fernandez et al., 2019). When fitting
the tensor, the order of the eigenvalues (L1;2;3) was preserved with the
constraint L1 > L2 > L3 > 0. Voxelwise estimates of T1, T2 and B1 were
incorporated into the model as fixed parameters. To eliminate bias in low
signal regions due to the noise-floor (Jones and Basser, 2004), the mean
DW-SSFP background signal was estimated and incorporated into the
fitting (Gudbjartsson and Patz, 1995) using:

S¼
�
S2SSFP þ S2nf

�0:5
; [5]

where SSSFP is the DW-SSFP Buxton signal model and Snf is the noise-floor
estimate, set as a fixed parameter.

This work incorporates two versions of the diffusion tensor model,
one which fits to DW-SSFP data acquired at one-flip angle and one that
fits to data acquired at two-flip angles simultaneously. For the diffusion
tensor, the latter analysis outputs a unique set of eigenvalues (L1;2;3) for
the DW-SSFP data acquired at each flip angle, but is constrained to a

shared set of eigenvectors (V
!

1;2;3).
All comparative analyses were done solely over white matter, with

white matter masks generated using FAST (Zhang et al., 2001) (masks
displayed in Supplementary Material Fig. S1). When fitting to the
DW-SSFP data acquired at two flip angles, an additional constraint was
7

applied to prevent spurious diffusivity estimates in regions of very low
signal (SupplementaryMaterial: Constraint for the dual-flip approach due to
regions of low signal).

3.4. Comparison of PDD estimates acquired with one- and two-flip angle
acquisitions

To compare the resulting diffusion tensor eigenvectors between the
one- and two-flip angle acquisitions, a time-matched comparison was
performed. A subset of the data (60 directions at each flip angle) were
selected and fitted with the two-flip angle DW-SSFP tensor model
described above. These model fits were compared to the results obtained
from fitting to all 120 directions of DW-SSFP data acquired at one-flip
angle only. The subset of directions was chosen for maximally even
coverage in the angular domain, ensuring a fair comparison of an equal
number of directions and similar angular resolution between the one-
and two-flip angle analyses. The one-vs two-flip angle principal diffusion
direction (PDD) estimates were compared using a measure of angular
uncertainty from the orientations of samples from the posterior distri-
bution (Jbabdi et al., 2012), defined as a scalar between 0 and 1 (where a
larger number corresponds to a higher uncertainty).



Fig. 8. Quantitative comparison of PDD angular uncertainty vs B1. In all 5 brains, it can be seen that PDD angular uncertainty estimates are reduced in areas of
low/high B1 for the αhigh/αlow datasets respectively. After the proposed combination of two-flip angle data (αlow þ αhigh), the PDD uncertainty estimates are close to
those of the single-flip angle within their respective regions of high CNR across the entire range of B1. Between these values (where the blue and orange lines cross),
the dual-flip approach generates PDD estimates with a reduced angular uncertainty. Plots generated in white matter only from the PDD uncertainty and B1 maps for
each of the five datasets. The standard error of PDD dispersion values are plotted for each brain, but due to the large number of points per bin these error bars are not
visible across most of the plot. The B1 histogram (bottom right) reveals that the B1 values sampled within these datasets spans a wide range of B1, with error bars
denoting the standard deviation over the five datasets.
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Fig. 9. Visual comparison of the differences in PDD angular uncertainty. Positive values (blue) display regions where the two-flip angle approach outperforms
the single-flip angle, whereas negative values (red) display the opposite. Areas of higher/lower uncertainty are in good visual agreement with the coherence of the
PDD estimates in Fig. 7. To aid visualization, the uncertainty differences were smoothed with a Gaussian filter (standard deviation ¼ 1 mm).
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3.5. Comparisons of tractography pathways acquired with one- and two-
flip angle acquisitions

To compare the performance of tractography between the one- and
two-flip angle acquisitions, a time-matched comparison was performed
using the same data subsets as described in the previous section. To
perform tractography, a ball & sticks model (details in Appendix Eq.
[A3] and Eq. [A4]) was fit to the DW-SSFP data using cuDIMOT. The
two-flip angle fitting was similarly constrained for the ball & sticks
model as with the tensor model (described in Data Processing) with a
shared set of stick orientations and unique diffusivity estimates ac-
quired at each flip angle. Probabilistic tractography was performed
using PROBTRACKX2 (Behrens et al., 2007; Hernandez-Fernandez
et al., 2019) (step length ¼ 0.5 mm, no. samples ¼ 5000, curvature
threshold ¼ 0.2) over both the cingulum bundle and the anterior
segment of the corpus callosum associated with fiber projections into
the prefrontal cortex. These two pathways were chosen because they
cover areas of the white matter where either flip angle has lower
contrast to noise.

For the cingulum bundle, tracts were seeded in the dorsal segment of
the cingulum bundle (CBD) in both the left and right hemispheres. Masks
were generated by transforming the pre-defined CBD masks from
XTRACT (De Groot et al., 2013; Warrington et al., 2019) into the space of
the post-mortems brain using ANTS (Avants et al., 2011). The trans-
formed CBD masks were subsequently defined over white matter only by
multiplying by the white matter mask of each brain. To prevent fibers
crossing across the two hemispheres, a sagittal exclusion mask was
defined over the entire midline of each postmortem brain.

For the anterior segment of the corpus callosum, a standard space
mask of the corpus callosum was split into five segments using a previ-
ously proposed segmentation scheme (Hofer and Frahm, 2006). The
anterior mask associated with fiber projections into the prefrontal cortex
(region 1 in (Hofer and Frahm, 2006)) was transformed into the space of
the post-mortem brains using ANTS (Avants et al., 2011). The trans-
formed anterior callosum masks were subsequently defined over white
matter only by multiplying by the white matter mask of each brain. To
ensure that fibers projected into the pre-frontal cortex, an coronal in-
clusion mask was defined anteriorly to the callosal mask.
9

3.6. Combination of eigenvalue estimates at two-flip angles to a single
effective b-value

Eigenvalue estimates at a single effective b-value were estimated
using the full set of 120 DW-SSFP directions obtained at both flip angles.
Fitting a tensor model to the experimental data (as described inMethods –

Data Processing), a shared set of V
!

1;2;3 and unique L1;2;3 were estimated at
each flip angle. Fitting was performed as described in Theory: Extension to
a tensor model in order to determine voxelwise Dm and Ds estimates along

V
!

1;2;3 (Eq. [4]- setting λ ¼ 1). The estimated Dm1;2;3 and Ds1;2;3 maps were
subsequently substituted into Eq. [3] to generate L1;2;3 maps in terms of a
single beff .

Fitting was performed using the eigenvalue estimates (output from
the cuDIMOTmodel) at each flip angle. Voxelwise estimates of T1, T2 and
B1 were incorporated into this fitting process as fixed parameters. Fitting
was performed in Python using SciPy curve_fit, implemented with the
Levenberg-Marquardt algorithm (Levenberg, 1944) and accelerated
using the Numba compiler (Lam et al., 2015). The integral in Eq. [1] was
evaluated using SciPy quad.
3.7. Choice of beff

beff can be chosen to account for the variable SNR of the L1;2;3 esti-
mates over the entire brain to produce SNR-optimal results. One
approach to achieve this is described in the Supplementary Material
(Supplementary Material: Determination of an SNR-optimal beff ). At the
superior and inferior edges of the brain (areas of low B1), this SNR-
optimal b-value would require an interpolation that relies heavily on
the αlow dataset. However, in these regions it was found that the αlow
dataset is extremely noisy (due to the low flip angle - Fig. 1b).

The resulting noise amplification was sufficiently problematic that
the ADCs could not be characterised in these regions of the αlow
datasets, requiring an additional constraint (Supplementary Material
Fig. S2). Due to this, we decided that a more pragmatic approach for
our acquired data was to select the effective b-value that closely cor-
responds to low B1 regions of the αhigh datasets, minimising the
interpolation/extrapolation of eigenvalue estimates from this value



Fig. 10. Quantitative comparison of the
differences in PDD angular uncertainty.
These PDD uncertainty difference histograms
represent the number of voxels where the
one-/two-flip angle PDD estimates out-
performs the other. Here, solid/dashed lines
refer to the difference between the single
(αlow/αhigh) and the dual flip angle approach
(αlow þ αhigh) respectively. Blue lines indicate
the number of voxels where the two-flip
angle approach outperforms the single-flip
angle, whereas the red lines display the
opposite. A log scale is used on both the x-
and y-axes.
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within these regions.
To estimate beff within these regions, voxelwise beff maps were

generated from the Dm1 , Ds1 and L1 maps, by fitting with Eq. [3].
Example beff maps are displayed in Fig. 3c and d. Fig. 6 reveals the
effective b-value estimated as a function of B1 over all five brains.
From examination of Fig. 6, beff ¼ 4000 s=mm2 was determined as the
effective b-value that closely corresponds to regions of low B1 for the
αhigh dataset.
10
4. Results

4.1. Comparison of PDD estimates acquired with one- and two-flip angle
acquisitions

The benefit of the time-matched two-flip angle approach for over-
coming B1 dependent CNR in PDD estimates is illustrated in Fig. 7.
PDD estimates derived from data acquired at αlow (120 directions)
display greater coherence between voxels near the centre of the brain



Fig. 11. Tractography comparison between
the single and dual flip approaches. The
cingulum bundle is associated with regions of
high B1. The pre-frontal cortex is associated with
regions of low B1. The high CNR near the centre
of the brain at αlow (left) leads to clearly defined
tracts over the cingulum bundle (blue), including
posterior projections toward the temporal lobe
and anterior projections toward the basal fore-
brain (Brain 1 - αlow yellow arrows). However,
the low SNR in cortical regions leads to poor
tractography performance for fibers projecting to
the pre-frontal cortex (red). For the αhigh datasets
(middle), the opposite is true, with a reduced
representation of the cingulum bundle but
capturing the pre-frontal callosal projections all
the way into cortex (Brain 1 - αhigh yellow arrow).
The dual flip approach (right) leads tractography
estimates more consistent with the single flip
performance in regions of high CNR. Tractog-
raphy displayed as maximum-intensity pro-
jections (MIP) of the streamline density, with the
cingulum bundle MIP overlaid above the pre-
frontal cortex MIP in all images. A consistent
display range is used for the streamline density
across all images, with the cingulum bundle and
pre-frontal cortex displayed between 5 �103 - 4 �
104 and 2 �104 - 3 �105 streamlines respectively.
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(Fig. 7 orange box – αlow). As the scanner sets the nominal flip angle
(24�) to be matched to this region, we expect the CNR to be maximized
(as predicted in Fig. 1b). Within this region, clear delineation of the
striations within the internal capsule are visible. In this same region,
the PDD estimates at αhigh (120 directions) are less coherent (Fig. 7
orange box – αhigh). At the brain boundary where the actual flip angle
is far below the nominal flip angle, the opposite is true. The PDD es-
timates at αhigh reveal clear depiction of cortical folding patterns
(Fig. 7 red box - αhigh), which are corrupted by noise at αlow (Fig. 7 red
box - αlow). In comparison, PDD estimates of the two-flip angle data
(120 directions, 60 directions at αlow and 60 directions at αhigh) (Fig. 7
- αlow þ αhigh) demonstrate that regionally dependent benefits associ-
ated with each single-flip analysis are captured by the two-flip angle
approach. In this combined scan time-matched dataset, it is possible to
visualize cortical folding, whilst maintaining the striations within the
internal capsule.

Fig. 8 shows how the angular uncertainty varies as a function of B1,
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where low uncertainty indicates high CNR. In all five datasets, the low B1
near the periphery of the brain leads to a higher angular uncertainly in
the αlow datasets when compared to those acquired at αhigh. In areas of
high B1 the opposite is true, in agreement with Fig. 7. The dual-flip
approach (αlow þ αhigh) is able to generate PDD estimates with angular
uncertainty close to the best performance obtained for the one-flip angle
datasets at the extremes of high or low B1, and outperforms either single-
flip dataset between these values (i.e. where the curves cross in Fig. 8). A
histogram (Fig. 8, bottom right) shows the broad range of B1 values
sampled in our post-mortem brains.

Fig. 9 shows a map of the difference in uncertainty between the one-
and two-flip angle results. While there are parts of the brain where
acquisition at a single, optimal flip angle provides slightly lower uncer-
tainty compared to the two-flip angle approach (light red), over the
entire dataset the dual-flip approach provides a net gain (dark blue). By
creating a histogram of the difference in PDD angular uncertainty be-
tween the one- and two-flip angle analyses (Fig. 10), we can see an



Fig. 12. Visual comparison of the L1;2;3 estimates. Differences in the L1;2;3 maps at each flip angle agrees with the expectation that within a non-Gaussian regime, an
increased flip angle in DW-SSFP yields higher diffusivity estimates (Fig. 5c). The L1;2;3 maps at beff ¼ 4000 s=mm2 reveal improved SNR vs αhigh and more homogenous
diffusivity estimates over tissue.
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increased fraction of voxels with the two-flip angle approach that have a
reduction in uncertainty in comparison to the single flip approaches (blue
curves above red). The opposite is true for small differences in angular
uncertainty (red curves above blue) and a few voxels with very high
angular uncertainty. The overall improvements in angular uncertainty
for the two-flip angle approach vs αhigh are reduced in comparison to αlow,
reflecting the large number of voxels at αlow which have high angular
uncertainty (Fig. 8).

4.2. Comparisons of tractography pathways acquired with one- and two-
flip angle acquisitions

Tractography streamline density maps estimated from the one and
two flip angle acquisitions are displayed in Fig. 11. As the cingulum
bundle is close to the centre of the brain, it is associated with areas of
high B1 (high/low CNR in the αlow/αhigh datasets respectively). The
cingulum bundle tract (blue) spans a greater extent of the brain for the
αlow datasets (left) vs αhigh (middle). Reconstruction across the whole
posterior-anterior extent is achieved for 4/5 brains at αlow, and only 1/5
brains at αhigh. These differences are most apparent in Brain 1, where the
data at αhigh is unable to reconstruct the cingulum bundle. For the callosal
projections to the pre-frontal cortex (red), the opposite is true. Over this
pathway, fiber tracts at αlow are visibly shorter than those at αhigh, with
differences most apparent in Brain 2.

The single flip angle acquisitions lead to poor performance in either
the cingulum bundle or callosal projections, as these tracts traverse areas
of high or low B1 respectively. However for the two-flip angle estimates
(right), the combination of datasets with high SNR at low and high B1
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leads to reconstruction of these fiber tracts closer to the best of the two
flip angles. A notable exception is Brain 3, where there is poor recon-
struction of the two pathways in all three datasets. Brain 3 has a higher
angular uncertainty than the other four brains (Fig. 8), associated with an
overall lower data quality.
4.3. Combination of eigenvalue estimates at two-flip angles to a single beff

L1;2;3 estimates calculated from DW-SSFP data at each flip angle
(Fig. 12) display observable differences in the derived diffusivity values,
overall showing an increased diffusivity estimate at αhigh (confirmed in
Fig. 13). Previous work (Tendler et al., 2020) makes clear that effective
b-values are overall higher with lower flip angles, which would be
consistent with these variations in diffusivity being driven by restriction
in tissue. Furthermore, this indicates that we cannot simply average the
eigenvalue estimates acquired at different DW-SSFP flip angles, as it
would combine maps with distinct ADC estimates at each flip angle. L1;2;3
maps at beff ¼ 4000 s=mm2 show reduced inhomogeneity, and
improved SNR compared to αhigh.

As shown in Fig. 13, the reconstructed L1 estimates at beff ¼ 4000 s=
mm2 give good agreement to the αhigh results at low B1, whilst maintaining
a flat distribution across all five brains. The crossing point of the L1 curves
at αhigh and beff ¼ 4000 s=mm2 reveals the approximate flip angle along
L1 where beff ¼ 4000 s=mm2.

Fractional anisotropy (FA) maps over all five brains (Fig. 14) addi-
tionally display differences in the estimated FA at each flip angle
(confirmed in Fig. 15), consistent with restriction along L1;2;3. These FA



Fig. 13. Quantitative comparison of
L1 estimates vs B1. Here we observe an
increased L1 estimate in DW-SSFP data
acquired at αhigh, in agreement with
(Tendler et al., 2020) and Fig. 5c. The L1
estimates at beff ¼ 4000 s=mm2 display
a flatter distribution, consistent with
removal of the influence of B1. Plots
generated in white matter only from the
L1 and B1 maps for each of the five
datasets. The standard error of L1 esti-
mates within each bin are plotted for
each brain, but due to the large number
of points per bin these error bars are not
visible across most of the plot.
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maps have an increased sensitivity to noise in comparison to the L1;2;3
estimates and the FA maps derived from DW-SSFP data at αlow/αhigh have
lower SNR at the edge/centre of the brain respectively, consistent with
the PDD results in Fig. 7. The FA maps generated at beff ¼ 4000 s=
mm2 do not reveal the same spatial variation, yielding high SNR across
the brain. The impact of B1 is displayed in Fig. 15.
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5. Discussion

This work demonstrates how the effects of B1 inhomogeneity in DW-
SSFP can be accounted for by using data acquired at two-flip angles and
an appropriate signal model that captures non-Gaussian diffusion. By
utilizing a pair of prescribed flip angles that optimize CNR across a range
of B1, we provide a means to obtain a homogeneous and interpretable



Fig. 14. Visual comparison of FA. Differences between the FA maps at each flip angle are consistent with differences in non-Gaussianity along the three tensor
eigenvectors, additionally revealing a reduced SNR in the derived FA maps near the boundary/centre at αlow/αhigh respectively (most apparent in Brains 3 and 4). The
FA maps at beff ¼ 4000 s=mm2 yield more consistent SNR across the tissue. Colormap chosen to highlight the variable contrast and noise over the brain.
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characterization of diffusion across the brain. We demonstrate the po-
tential of this approach by quantifying the spatial profile of angular un-
certainty in PDD estimates and diffusivity estimates as a function of B1.

Previous work (Foxley et al., 2014a) demonstrated that with a
one-flip angle DW-SSFP acquisition, angular uncertainty in PDD esti-
mates was reduced by increasing field strength from 3T to 7T, providing
motivation to move to higher field when performing tractography. This
reduction in uncertainty would be expected in local regions of tissue due
to the higher SNR associated with an increase in field strength, but would
be mitigated by the B1 effects considered in this work (Fig. 7). Using the
two-flip approach described in this paper, PDD estimates at 7T can be
obtained over whole post-mortem brain samples (Fig. 7), reducing the
number of voxels with high angular uncertainty in tissue regions that
experience a sub-optimal flip angle (Fig. 10).

Given the pattern of B1 and the need for high quality data in central
white matter for tractography, the dual flip approach should provide a
particular benefit for tractography into the grey matter. The dual flip
approach does not restrict tract reconstructions to specific areas of the
brain (Fig. 11) associated with high or low B1. Such data provides a
means to reconstruct fiber projections towards the cortex, in addition to
tracts that span the centre of brain.

For these post-mortem brain samples, SNR-optimal estimates are
predicted to be achieved at a low flip angles. An SNR-optimal beff cor-
responds to an approximate flip angle of 21� - 28� (Supplementary Ma-
terial Fig. S3d), achieved at B1 values of 0.88 - 1.17/0.22 - 0.30 for the
αlow/αhigh datasets. The plots in Fig. 8 show that the two-flip angle
approach achieves an angular uncertainty estimate close to the single flip
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angle approach in these B1 regions and performs better between these B1
values.

An increased estimate of ADC at higher flip-angles (Figs. 12 and 13)
demonstrates deviations of the DW-SSFP signal from the Buxton model,
consistent with a model of restriction and the results in (Tendler et al.,
2020). Our correction reduces the variation of ADC with B1 (Fig. 13), in
addition to modifying the distribution of derived metrics such as FA
(Fig. 15). This allows for more accurate comparisons of diffusivity esti-
mates within different brain regions. Furthermore, as the B1 distribution
is not reliably calibrated at scan time, our approach allows for compar-
ison of diffusivity estimates between different post-mortem brain sam-
ples. The divergence of the αhigh and beff ¼ 4000 s=mm2 plots (Fig. 13),
emphasizes the influence of B1 on measured ADC.

The FA maps in Fig. 14 reveal the trend of reduced SNR at αlow/αhigh
near the centre/edge of the brain, consistent with the PDD (Fig. 7) maps.
However, the very low SNR/CNR in areas of low B1 in the αlow dataset
lead to spurious diffusivity estimates, requiring the incorporation of a
diffusivity constraint (Supplementary Material: Constraint for the dual-flip
approach due to regions of low signal). Due to this, we chose to interpolate
to an effective b-value which corresponded to areas of low B1 in the αhigh
dataset, where diffusivity estimates can be reliably estimated. Our orig-
inal optimization (Fig. 2) did not include regions of very low B1, which is
likely to have contributed to a choice of flip angles that provided very low
SNR/CNR within these regions. As the SNR/CNR drops off very sharply
at low flip angles (as can be inferred from Fig. 1b), a nominal flip angle
for the low flip angle dataset greater than 24� would have reduced the
volume of tissue where diffusivity estimates could not be reliably



Fig. 15. Quantitative comparison of
FA estimates vs B1. Here we observe a
difference in the FA estimates from DW-
SSFP data at each flip angle, consistent
with variations in the non-Gaussian
properties of tissue along the estimated
eigenvalues. Plots generated in white
matter only from the FA and B1 maps for
each of the five datasets. The standard
error of FA estimates within each bin are
plotted for each brain, but due to the
large number of points per bin these
error bars are not visible across most of
the plot.
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estimated.
An alternative approach to correct for the influence of B1 would be to

use a parallel transmit system at acquisition, to improve the homogeneity
of B1 across the brain. This requires the use of specialist equipment and
can be challenging to implement, but is compatible with the DW-SSFP
method. A homogenous B1 field does not mitigate some of the other
challenges associated with DW-SSFP, most notably that the effective b-
value also depends on the T1 and T2 of the imaged tissue (as can be
15
inferred from the beff maps in Fig. 3c and d). Moreover, acquisition of
DW-SSFP data at a single flip angle, even with parallel transmit, would
not provide a means to model the effects of non-Gaussianity within tissue
to generate maps at a single effective b-value. Our approach provides a
means to resolve both of these challenges, and could be further improved
with a parallel transmit system to increase the SNR of the resultant im-
ages. However, our approach does require the acquisition of two DW-
SSFP datasets per direction, necessitating longer scans to obtain a
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given number of directions (or achieving fewer directions in a fixed scan
duration). Since datasets acquired at different flip angles are charac-
terised by different signal amplitudes/diffusion contrast, acquiring two
datasets per direction does not simply translate into a

ffiffiffi
2

p
increase in SNR

(reducing the SNR efficiency), though may provide a means to investi-
gate non-Gaussianity within tissue (Tendler et al., 2020).

Despite the challenges associated with DW-SSFP, our use of the DW-
SSFP sequence is motivated by a very high SNR efficiency. Previous work
has demonstrated the benefits of DW-SSFP vs DW-SE when imaging fixed
post-mortem tissue at 3T (Miller et al., 2012), where the short T2 and low
diffusivity of fixed, post-mortem tissue leads to challenges when imaging
with DW-SE. This is due to the requirement of both fast acquisition (due
to the short T2) and a high b-value (due to the low diffusivity), which
cannot be easily achieved on whole-body MR systems with conventional
gradient sets. The further reduction in T2 at ultra-high field exacerbates
these problems with DW-SE, whereas the DW-SSFP sequence has
demonstrated improved SNR at 7T vs 3T (Foxley et al., 2014a).

DW-STEAM mitigates the effects of T2 relaxation and can achieve
high b-values by increasing the diffusion time during T1 relaxation (Fritz
et al., 2019). In comparison to DW-SSFP, DW-STEAM is characterised by
a simpler diffusion model and additionally does not require the acqui-
sition of dependency datasets (T1, T2 and B1 maps) to accurately estimate
diffusion coefficients. However, the signal forming mechanisms of
DW-STEAM lead to a twofold reduction in the available signal that must
be balanced against these gains. Moreover, increasing b-value via longer
diffusion times in DW-STEAM is less efficient than increasing the b-value
through the diffusion gradient (quadratic increase with gradient time
compared to linear increase with diffusion time). The signal forming
mechanisms of DW-SSFP predict an improved SNR efficiency vs
DW-STEAM. However, the requirement of 2x data acquisition with the
approach outlined in this manuscript will mitigate some of these gains in
SNR-efficiency. The relative pros and cons of these sequence must be
carefully considered and to date a direct comparison in these
post-mortem samples have not been performed.

In this work, we used a two-step approach to estimate the gamma
distribution parameters (Dm1;2;3 and Ds1;2;3 ) from DW-SSFP data acquired at
two flip angles, first estimating the eigenvalues at each flip angle and
then fitting the gamma parameters to these eigenvalue estimates. An
alternative would be to use a kurtosis model, however this would require
many more free parameters to explicitly model the kurtosis covariance.
Our two-step approach provides a simple method to estimate each
gamma distribution independently, where along the eigenvectors there is
no covariance between the gamma distributions.

In this work, we utilised the Buxton model of DW-SSFP (Buxton,
1993) to investigate the diffusivity properties of tissue. An alternative
DW-SSFP signal model is the Freed model (Freed et al., 2001), which has
been shown to provide more accurate estimates of the DW-SSFP signal
under certain experimental regimes. Recent work (Tendler et al., 2020)
additionally demonstrated that the Freed model provides greater agree-
ment to Monte-Carlo simulations of the DW-SSFP signal compared to the
Buxton model assuming a gamma distribution to model non-Gaussianity.
In the parameter regime and sample properties explored within this
study, the Buxton and Freed models (assuming a gamma distribution of
diffusivities) predict very similar signal contrast and attenuation (Sup-
plementaryMaterial Fig. S4) across a wide range of B1, indicating that we
would expect to estimate similar diffusivity estimates for the two models
investigated and is sufficient for our analysis. However, our approach is
not restricted to the Buxton model and could be readily incorporated into
16
alternative models such as the Freed model.
This study was motivated by the interest in understanding whether

diffusivity could provide biomarkers that are related to neuropathology
in ALS. This necessitates measures of diffusivity in post-mortem tissue
that can be compared to histopathological stains. To be meaningful, these
diffusivity measures need to be driven primarily by the underlying tissue
(as reflected in restrictions that cause non-Gaussian behaviour) rather
than confounds like B1 inhomogeneity. For example, neurodegenerative
diseases such as ALS have been shown to reduce FA in vivo (Agosta et al.,
2010). A more consistent measurement of FA across white matter, ob-
tained from results at a single beff (Fig. 14) would allow for more accurate
measurements in post-mortem data to corroborate in vivo findings. Future
work that directly compares diffusivity to histology will consider
whether there is evidence for a neuropathological signature in diffusion
MRI.

6. Conclusion

DW-SSFP at 7T has the potential to provide high signal and contrast
diffusion weighted imaging in post-mortem tissue. However, B1 in-
homogeneity coupled with the dependence of diffusion contrast on flip
angle means that the resulting signal is not straightforward to interpret.
We proposed to use a multi-flip angle DW-SSFP acquisition alongside a
non-Gaussian signal model to account for B1 inhomogeneity at 7T. With
this method, we can obtain improved estimates of diffusion properties
within tissue, including both quantitative diffusivities and fiber
orientations.

Declaration of competing interest

None.

CRediT authorship contribution statement

Benjamin C. Tendler: Conceptualization, Methodology, Software,
Formal analysis, Writing - original draft, Writing - review& editing. Sean
Foxley: Conceptualization, Methodology, Software, Investigation,
Writing - original draft. Moises Hernandez-Fernandez: Software.
Michiel Cottaar: Methodology. Connor Scott: Resources. Olaf
Ansorge: Resources. Karla L. Miller: Conceptualization, Methodology,
Investigation, Writing - review & editing, Supervision. Saad Jbabdi:
Conceptualization, Methodology, Software, Writing - review & editing,
Supervision.

Acknowledgements

This study was funded by a Wellcome Trust Senior Research
Fellowship 202788/Z/16/Z and Medical Research Council (MRC) grants
MR/K02213X/1 and MR/L009013/1. Brain samples were provided by
the Oxford Brain Bank (BBN004.29852). The Wellcome Centre for Inte-
grative Neuroimaging is supported by core funding from the Wellcome
Trust (203139/Z/16/Z). We acknowledge the Oxford Brain Bank, sup-
ported by the Medical Research Council (MRC), Brains for Dementia
Research (BDR) (Alzheimer Society and Alzheimer Research UK), and the
NIHR Oxford Biomedical Research Centre. The views expressed are those
of the authors and not necessarily those of the NHS, the NIHR or the
Department of Health.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.117113.

https://doi.org/10.1016/j.neuroimage.2020.117113


B.C. Tendler et al. NeuroImage 220 (2020) 117113
Appendix

Buxton model definitions

The Buxton model of DW-SSFP is defined as:

SSSFPðα; T1;T2;TR; q;DÞ¼ � S0ð1� E1ÞE2A
�2
3

2

�
F1 � E2A1A

2
3
2

�
sin α

r � F1s
; [A1]

with:

E1 ¼ e�
TR
T1 ;

E2 ¼ e�
TR
T2 ;

A1 ¼ e�q2 �TR �D;

A2 ¼ e�q2 � τ �D;

q¼ γGτ ;

r¼ 1� E1 cos αþ E2
2A1A

1=3
2 ðcos α�E1Þ;

s¼E2A1A
�4=3
2 ð1�E1 cos αÞ þ E2A

�1
3

2 ðcos α�E1Þ;

F1 ¼K � �K2 � A2
2

�1=2
;

K¼ 1� E1A1 cos α� E2
2A

2
1A

�2=3
2 ðE1A1 � cos αÞ

E2A1A
�4=3
2 ð1þ cos αÞð1� E1A1Þ

:

where:

α - Flip angle,
T1 and T2 - Relaxation times,
TR - Repetition time,
γ - Gyromagnetic ratio,
G - Diffusion gradient amplitude,
τ - Diffusion gradient duration,
S0 - Equilibrium magnetization,
D – Diffusion coefficient,

Buxton model diffusion tensor

A diffusion tensor is incorporated into the DW-SSFP Buxton signal model (Eq. [A1]) by defining:

A1 ¼ e�q2 �TR � g!TVLVT g!;

A2 ¼ e�q2 � τ � g!TVLVT g!; [A2]

where g! is the orientation of the diffusion gradient, V is the eigenvector matrix ½ V1

!

; V2

!

; V3

!� and L is the eigenvalue matrix

2
4 L1 0 0
0 L2 0
0 0 L3

3
5.

Buxton model ball & sticks

A ball & sticks model is incorporated into the DW-SSFP Buxton signal model (Eq. [A1]) by defining:

SSSFPb&s ¼
 
1�

X2
j¼1

fj

!
� SSSFPiso þ

X2
j¼1

Sj;SSFPaniso ; [A3]

where fj defines the signal contribution from stick j, SSSFPiso is equivalent to Eq. [A1] and for Sj;SSFPaniso we define (from Eq. [A1]):
17
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A1 ¼ e�q2 �TR �D � ð g!T μ!jÞ2 ;
A2 ¼ e�q2 � τ �D � ð g!T μ!jÞ2 ; [A4]
where g! is the orientation of the diffusion gradient and μ!jis the j-th stick orientation (Behrens et al., 2007).
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