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Abstract: The in-situ studies of the corrosion product film on nickel-aluminum bronze are significant
for explaining the mechanism of its corrosion resistance. In this paper, the corrosion behavior
of nickel-aluminum bronze and the formation process of the protective film in 3.5 wt % NaCl
solution are systematically investigated. The results of scanning electron microscope analysis and
electrochemical tests indicate that the corrosion resistance of nickel-aluminum bronze is improved
due to the formation of the corrosion product film. The change of local electrochemical property on
the corrosion product film during the immersion time is evaluated via in-situ scanning vibrating
electrode technique, and it reveals the evolution rules of ionic flux in real time. The formation process
of the protective film on different phases in nickel-aluminum bronze is observed directly by in-situ
atomic force microscopy as height change measurements. The α phases at different locations present
different corrosion behaviors, and the lamellar α phase within the α + κIII eutectoid structure gets
more serious corrosion attack. The κ phases establish a stable and dense protective film in short time,
preventing the corrosion attack effectively. The β′ phase, however, suffers the most serious corrosion
damage until a protective film is formed after 150 min of immersion.

Keywords: nickel-aluminum bronze; corrosion product film; in-situ SVET; in-situ AFM

1. Introduction

Nickel-aluminum bronze (NAB) alloy represents a branch of Cu–Al-based alloy containing about
4–5 wt % Ni, 8.5–9.5 wt % Al, 3.5–4.5 wt % Fe, and 0.8–1.5 wt % Mn. As a multicomponent alloy, NAB alloy
consists of copper-rich coarseα phase, retained martensiticβ phase (β′), and four kinds of aluminum-rich
κ phases which are distinguished by their morphology, composition, and distribution [1–4]. Both κI and
κII are Fe3Al-based intermetallic precipitates with globular or rosette shape. Moreover, κI precipitates
are larger in size and rarely formed in NAB alloys when Fe content is less than 5 wt % [3]; κII phases
are unevenly distributed at the boundaries of α and β′ phases and are about 1–5 µm in diameter [5].
NiAl-based κIII phases are lamellar or rod-like (degenerate lamellar) structure eutectoid product with
α phases near the α/β′ boundaries. Iron-rich κIV phases are fine particle precipitates distributed
throughout α grains and leave a precipitate-free zone at the edge of α grains [6,7].

NAB alloy has been widely used for marine engineering equipment, by virtue of its good
combination of mechanical properties and corrosion resistance [8–10]. Considerable research has
been devoted to studying the corrosion behavior of NAB alloy to try and reveal the mechanism of
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corrosion attack. Song et al. [11] tested the corrosion properties of as-casted and friction-stir processed
(FSPed) NAB. They reported that the corrosion behavior was sensitive to the microstructures and
phases in NAB alloy, and the selective phase corrosion was a common phenomenon in immersion.
It was found that the lamellar α + κIII eutectoid structures and β′ phases were readily corroded in
neutral sodium chloride solution. Additionally, it is well accepted that the corrosion resistance of NAB
alloy was from a sustainable and strongly adherent corrosion product film on fresh alloy, which could
prevent the alloy from being corroded further [12–15]. Therefore, the study of corrosion product film
on NAB alloy has also attracted the attention of many researchers. Schüssler et al. [14] investigated the
structure and the passivation of the protective film on as-casted NAB by Auger electron spectroscopy
(AES) and polarization curves. The results showed that the protective film mainly consisted of cuprous
oxide in the outer layer and aluminum-oxide in the inner layer. Moreover, they declared that the
outer cuprous oxide layer was responsible for reducing the charge transfer rate of the cathodic oxygen
reduction, and the inner aluminum oxide layer hampered the ionic transport across the corrosion
product by the anodic passivation. Using a crevice corrosion test on NAB alloy, Wharton et al. [16]
found that the value of pH affected the formation of oxide protective film. The aluminum oxide film
on κ phases is dissolved in acid solution, resulting in the fact that the κ phases act anodic to α phase
matrix, and show a sharp corrosion attack. Qin et al. [17] reported a novel nickel ion implantation
technology, which effectively improved the corrosion resistance of NAB alloy by forming the more
compact protective film. The typical selective phase corrosion in NAB alloy gave way to turn into the
uniform corrosion by nickel ion implantation technology.

Most existing research mainly focuses on investigating the composition, structure, and
macroscopic corrosion properties of corrosion product film on NAB. However, the details of the
film morphology evolution on various phases and the changes of electrochemical properties during the
formation process are usually neglected. Besides, considering the complex application condition, the
protective film formed on NAB alloy was usually damaged by high velocities, cavitation, or particle
impingement, and so the formation of corrosion product film occurs throughout the whole service life
of NAB alloy [13]. Therefore, to gain comprehensive insight into the formation of corrosion product
film and provide a better strategy for improvement of corrosion resistance, further efforts are required
to reveal the evolution process and anti-corrosion mechanism of corrosion product film on NAB alloy.

Based on these considerations, scanning electron microscope (SEM) and electrochemical
performance measurements are adopted to characterize the macroscopic corrosion behavior during the
film formation process. In-situ scanning vibrating electrode technique (SEVT) and in-situ atomic force
microscope (AFM) analytical techniques are conducted to reveal the changes of local electrochemical
properties and height morphology. These in-situ measurements can present a direct picture of the
practical corrosion and film formation process of NAB alloys in real time.

2. Experimental Procedures

2.1. Materials

According to the chemical composition of C95800 in ASTM B148 standard, the casting materials,
like pure copper, nickel, iron, manganese, and copper–aluminum alloy, were placed in a crucible of
vacuum induction furnace together. After smelting at 1250 ◦C for 40 min in vacuum conditions, the
molten metal was poured into a sand mold, and then a NAB alloy cast ingot with a dimension of
ϕ 150 mm × 200 mm was prepared. All the specimens used in this work were sectioned from the
same position of the cast ingot with a dimension of 10 mm × 10 mm × 5 mm to avoid composition
variations. The chemical composition of NAB was examined by X-ray fluorescence spectrometer
(Shimadzu, Kyoto, Japan) as 9.22 wt % Al, 4.17 wt % Fe, 4.17 wt % Ni, 1.23 wt % Mn, and Cu as balance.
The microstructure of NAB alloy was shown in Figure 1. The α phase (white area) is a type of Cu-rich
solid solution with face-centered cubic structure, and it is the main matrix in NAB alloy. The β′ phase,
located between the α phase grains, is a metastable solid solution with martensitic structure at room
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temperature. The κII is a Fe3Al-based intermetallic precipitate with globular or rosette shape, while
κIV is an iron-rich phase with fine particle shape that occurred within the α grains. The κIII is a kind of
NiAl-based lamellar or rod-like structure eutectoid product with α phases. Table 1 shows the chemical
compositions of each phase in the NAB alloy. The composition of the κIV phase is not included, since
its size is too small to be detected accurately.

Table 1. Chemical compositions of each phase in the nickel-aluminum bronze (NAB) alloy (wt %).

Phase Cu Al Fe Ni Mn

α 85.4 8.2 2.9 2.4 1.1
β′ 84.5 8.6 2.4 3.5 1.0
κII 24.1 18.4 32.8 22.8 1.8
κIII 30.6 17.9 19.2 31.2 1.1

All the NAB specimens for immersion tests and microstructure observations were ground with
SiC paper up to 2000 grit, polished with diamond paste to 0.5 µm, and then degreased in acetone
and blow-dried. The microstructures were observed by an Axiocam MRc5 optical microscope (OM)
(Zeiss, Heidenheim, Germany) after chemical etching by a solution consisting of 5 g FeCl3 + 2 mL HCl
+ 95 mL C2H5OH, for 10 s.
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Figure 1. Optical micrograph of the microstructure of NAB alloy.

2.2. Experimental Methods

Immersion tests were performed in aerated neutral 3.5 wt % NaCl solution at an environmental
temperature of 20 ± 2 ◦C for 48, 120, and 240 h. The morphology of corrosion product film on
specimen surface was observed on an S-4800 field emission gun SEM (FEI, Hillsboro, OR, USA)
equipped with energy dispersive X-ray spectroscopy (EDS) analyzer (Oxford Instruments, Oxford,
UK). The electrochemical corrosion properties of the protective films after various immersion times
were characterized on a CHI 660E electrochemical system using a conventional three-electrode cell
with a saturated calomel reference electrode, a specimen working electrode, and a platinum foil counter
electrode. The specimens, as the working electrode, had an exposed area of 1 cm2 to the electrolyte.
The potentiodynamic polarization (PDP) sweep was conducted at a rate of 0.5 mV/s to obtain the
anodic and cathodic Tafel slopes. The electrochemical impedance spectroscopy (EIS) experiment was
carried out at a steady open circuit potential (Eocp) in the frequency range from 100 kHz to 0.01 Hz,
with an alternating current amplitude of 5 mV. Each electrochemical measurement was repeated at
least three times for reproducibility.

Scanning vibrating electron technique (SVET) measurement was introduced to investigate
the in-situ change of current density distribution during the protective film formation process.
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The observation field was set on the NAB specimen after 240 h immersion in 3.5 wt % NaCl solution,
with a 1.5 mm diameter artificial scratch circular region without corrosion product film, where the
fresh metal substrate was exposed. Current density distribution above the specific specimen surface
was examined in-situ, in 3.5 wt % NaCl solution, on an Applicable Electronics Inc. commercial SVET
system with an ASET control program (Sciencewares, Falmouth, MA, USA) and a Pt–Ir vibrating
electrode probe (MicroProbes Inc., San Jose, CA, USA). The Pt–Ir electrode probe tip was a platinum
black sphere with 20 µm diameter. The distance of electrode probe tip to the specimen surface was
kept at 100 µm, and the vibration frequency in the perpendicular direction to the surface was 88 Hz,
with an amplitude of 30 µm. The time of acquisition for each SVET data point required 0.8 s, including
0.5 s stable testing time and 0.3 s moving time. The current density results of SVET were calibrated by
deducting the background value, which was the average value of current densities obtained before
and after the test in the solution far away from the specimen.

The in-situ AFM with high resolution topography measurement was chosen to display the
nanoscale topography changes of the protective film on the various phases during the formation
process, which is complementary to the SVET measurement. The in-situ AFM measurement was
conducted on a Dimension Icon & FastScan Bio AFM system (Bruker, Billerica, MA, USA) in contact
mode at open circuit potential, with a scan rate of 0.5 Hz. The sharp nitride lever probe was a
BrukerTM SNL-10 D (Bruker, Billerica, MA, USA) with a nominal tip radius of 2 nm, nominal resonance
frequencies of 18 kHz, and nominal spring constant of 0.06 N/m. Before scanning, the specimen was
vibration polished for 2 h, and checked on the OM to determine the observation field. In the scanning
interval, the specimen was immersed in the bottom of a glass petri dish containing 3.5 wt % NaCl
solution, and then it was rinsed with acetone before drying.

3. Results and Discussion

3.1. Morphology Observation

Figure 2 presents the morphology of corrosion product film on NAB alloy after different immersion
times. After 48 h of immersion in NaCl solution, the oxide film on the various phases present a
substantial difference, as shown in Figure 2a,b. The matrix α phases start to be covered by a thin and
homogeneous corrosion product film, separating the internal fresh metal from corrosive medium.
By contrast, the β′ phases, as well as the α + κIII eutectoid structure, are visibly attacked with
no protective film, leaving an obvious selective corrosion area. Moreover, the κII phases located
in β′ phases are reserved completely, which are clearly observed in the magnification imaging.
This phenomenon could be related to the cathodic behavior of κ phases as a very thin corrosion
film formed on them in neutral 3.5 wt % NaCl solution [12]. With the increase of the immersion time
(up to 120 h), the bare surface area of β′ phases and the α + κIII eutectoid structure is reduced because
of the deposition of corrosion product (Figure 2c,d). Clearly, the previous film covering on the α
phases becomes thicker, and most of the phases are covered up. After 240 h of immersion, the entire
surface of the NAB alloy is covered with the thick and homogeneous corrosive product film, as shown
in Figure 2e. Different from the previous ones, the discontinuous flocculent structures are easily
observed on the film in the magnified image of Figure 2f. Meanwhile, κII phases seem to be inlaid on
the corrosive product film surface without attack.

Figure 3 shows the cross-section morphology of the corrosion product film after different
immersion times. It is clear that the film becomes thicker with the increase of immersion time, and
κ phase particles appear in it. The thickness of corrosive product film reaches 4.3 µm after 240 h
immersion while, in first 48 h, it still exists as some bare area which is not covered. The EDS scanning
presents the elemental distribution of the film immersed for 240 h, and it indicates that the film of NAB
alloy has a duplex structure, as shown in Figure 4. The inner layer is rich in Al and the outer layer is
rich in Cu. Some researchers declared that the film is mainly made up of Al2O3 dense inner layer and
Cu2O porous outer layer [18–20]. It is well accepted that the oxide corrosion products on NAB alloy
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in sodium chloride solution are generated by the anodic dissolution of metals and the hydrolysis of
metallic chlorides, respectively [21–25]:

Cu→ Cu+ + e−, (1)

Cu+ + 2Cl− → CuCl2−, (2)

2CuCl2− + H2O→ Cu2O + 4Cl− + 2H+, (3)

Al + 4Cl− → AlCl4− + 3e−, (4)

2AlCl4− + 3H2O→ Al2O3 + 8Cl− + 6H+. (5)

The Al2O3 layer effectively hampers the corrosive medium and ion transport across the covering
film to fresh metal because of the stability and denseness [14,26]. However, the Cu2O layer presents
weak corrosion protection as in the discontinuity and semiconductor performance [17].
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Figure 4. EDS elemental maps of corrosion product film on NAB alloy in cross-section: (a) morphology;
(b) Cu map; (c) Al map; (d) O map; (e) Cl map.

3.2. Electrochemical Measurements

Figure 5 shows the changes of electrochemical properties of NAB alloys with different immersion
times. The EOCP of each specimen reaches a stable value after a certain period of standing, and the
potential shows a positive move with the immersion time increasing (Figure 5a). Figure 5b displays
the potentiodynamic polarization curves of NAB specimens. The corresponding EOCP, corrosion
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potential (Ecorr), and corrosion current density (icorr) are summarized in Table 2. It is obvious that the
value of icorr has the tendency to reduce with the increasing time spent immersed in 3.5 wt % NaCl
solution. The specimen immersed for 240 h shows the highest EOCP and lowest icorr in this system,
suggesting that it has the best electrochemical corrosion properties compared with others, which could
be attributed to the thick and homogeneous corrosive product film. The EIS test is performed by Bode
plots and Nyquist plots (Figure 5c,d) to further investigate the corrosion properties of the film after
different immersion times. The total impedance modular |Z| at low frequencies is correlated with the
barrier layer resistance, which consists of the protective film and the electrical double layer [27]. As the
immersion test goes on, the value of |Z| gradually increases, confirming the growth of protective film
on the specimen surface, as shown in Figure 5c. The phase maximum angle at intermediate frequencies
increases with the immersion time rising (from 57◦ to 73◦), indicating the decrease of corrosion rate
and the higher capacitive behavior, which is corresponding to the decrease of icorr [28,29]. In addition,
the broadening plateau of phase maximum angle implies that the protective film on the NAB alloy
becomes more stable [29,30].

Table 2. Electrochemical corrosion parameters of specimens after different immersion time in 3.5 wt %
NaCl solution.

Immersion Time EOCP (V) Ecorr (V) icorr (µA/cm2)

Initial −0.264 −0.260 11.35
48 h −0.253 −0.258 5.32

120 h −0.248 −0.255 5.04
240 h −0.237 −0.257 3.78
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From the data of Nyquist plots, an equivalent circuit model is designed on Zview software for
simulating the corrosion process, as shown in Figure 6. In the model, Rs (Ω·cm2) is the solution
resistance, Rct (Ω·cm2) is the charge transfer resistance at the alloy/electrolyte or film/electrolyte
interface, CPEct (µF·cm−2) is the non-ideal capacitance of charge transfer, Rf (Ω·cm2) is the surface film
resistance, CPEf (µF·cm−2) is the non-ideal capacitance of surface film, and W (Ω·s−1/2) is the Warburg
diffusion element. According to the pattern of the curves, the charge transfer resistance from the high
frequency impedance arc region and the surface film resistance from the low frequency impedance arc
region could be represented [17]. The simulated results are presented in Figure 5d using solid lines,
and the degree of fitting is satisfactory as the standard deviations are in the order of 10−4. The related
fitted electrochemical parameters are listed in Table 3. The values of Rf and Rct dramatically increased
over the immersion time, suggesting the improvement of corrosion resistance. This phenomenon is
consistent with the reduction of icorr in Table 2. The parameter nf, the porosity index of film, increased
with immersion time, indicating that the protective film of redeposition was getting thicker and denser,
which could be confirmed by morphology observation in Figures 2 and 3. The increase of W value and
its disappearance at 480 h indicate that the capacity of the film to prevent metals from dissolving to
ions increases as the immersion time goes on.

Table 3. Electrochemical equivalent circuit parameters by fitting analysis of specimens after different
immersion times in 3.5 wt % NaCl solution.

Immersion
Time (h)

Rs
(Ω·cm2)

CPEf
(µF·cm−2) nf

Rf
(Ω·cm2)

CPEct
(µF·cm−2) nct

Rct
(Ω·cm2)

W
(Ω·s−1/2)

0 7.924 163.12 0.6761 1761 121.27 0.8043 317.6 2660
48 9.901 620.98 0.7693 1943 187.72 0.7614 3698 5391

120 8.072 168.15 0.8384 6946 941.58 0.7048 10,362 6242
240 8.640 148.08 0.8712 11,976 1234.8 0.6466 35,939 -
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Obviously, the change of electrochemical properties of the specimens is associated with the
evolution of protective corrosion product film. Once the surface of fresh NAB alloy contacts the
corrosive medium solution, the matrix metals are activated, and the dissolved metal ions diffuse into
the solution [31]. The free ions are redeposited on the metal surface by relevant hydrolysis reactions,
forming the complex corrosion products [11]. Due to the different compositions and morphologies
of various phases, the product films formed on them present different growth rates at early times.
The discontinuity and inhomogeneity of films could not effectively protect the metal due to the
galvanic cells and the ionic concentration. With the increase of immersion time, the product films are
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growing on the bare site and getting thicker and more homogeneous, acting as a compact barrier to
transport ions and corrosive medium. Therefore, the metallic dissolution and the corrosion reactions
are efficiently restrained.

3.3. In-Situ SVET Measurements

The conventional electrochemical measurements provide information on the average
electrochemical response over the entire sample. To investigate the distribution of local anodic
and cathodic activity, and reveal the changes of local electrochemical property, the in-situ SVET
measurements were further conducted on a 1.5 mm diameter artificial scratch of bare fresh metal in
3.5 wt % NaCl solution. The evolution of ionic flux signal around the bare fresh metal region was
recorded in real time until the signal was approximate to the signal of region covered by the protective
film. Figure 7 presents the distribution of current density with in-situ SVET 3D-maps during the
period of immersion. At the beginning of the immersion, the current density peak (iA,max) approaches
260 µA·cm−2 in the middle of the circular region, developing a strong anodic activity, shown as a
red plateau in Figure 7a. The current density of remaining film surface is around zero, behaving
essentially as cathodic. Due to the diffusion of metal cations into solution, a gradation zone appears at
the periphery of anodic red region, shown in yellow-green color. At the end of 30-min immersion (in
Figure 7b), the iA,max on the fresh metal region falls to about 190 µA·cm−2, and the anodic red plateau
shrinks to the hill, which is observed in the 3D-map. Clearly, the anodic area and the value of anodic
current density both decrease dramatically during the first 30-min immersion period. After 30 min of
immersion, however, the change of local electrochemical properties follows a different rule.
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Comparing Figure 7c with Figure 7b, from 30 to 60 min of immersion, the iA,max gradually reduces
to 160 µA·cm−2 while the area of anodic region has no obvious change. At the end of 90-min immersion
(in Figure 7d), the anodic area shrinks sharply, and it becomes a red spire shape, as shown in the
3D-map. Differing from the previous stages, the peak value of current density increases to 340 µA·cm−2

suddenly, instead of decreasing. This phenomenon is related to the significant decline of the ratio
between the anode and cathode area. The corrosion product film is constantly deposited and formed
at the periphery of red anodic region, and it shrinks the area of anodic activities. The middle of the
metal without product film is supposed to transfer the same amount of charge with small area and,
thus, the current density shows an incredible rise. After 120-min immersion, the red anodic spire
disappeared and only a low yellow anodic hill is detected in Figure 7e. The corrosion product film is
deposited and covers on the last small area, resulting in stop of anodic activities. Finally, at the end of
150 min (Figure 7f), the current density of the circular region is approximate to the remaining region
with the 240-h immersion protective film, indicating that after 150-min immersion, the protective
film on the surface of the NAB alloy has formed again. Figure 8 shows the corresponding optical
micrographs of the specimen in the in-situ SVET measurement. With the increase of immersion time,
the circular region of bare fresh metal lost its metallic luster and became darker, indicating that the
corrosion product gradually covers this region. In addition, it is found that the corrosion product film
preferentially formed at the periphery of the fresh metal region.
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3.4. In-Situ AFM Measurements

An in-situ AFM analytical technique with high sensitivity was employed to further quantitatively
elucidate the corrosion product film formation process of various phases by using the data of height
change, making up for the deficiency of accuracy in SVET measurements. Figure 9 shows the in-situ
AFM topography images of NAB specimen surface during 180-min immersion in 3.5 wt % NaCl
solution. Before contacting with the corrosive medium, the surface of NAB specimen was vibration
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polished, and there was no obvious surface relief but only some little κII bulge, as shown in Figure 9a.
After 60 min of immersion, the phases in NAB can be distinguished clearly (in Figure 9c). The brightest
areas are κ phases, including κII and κIII. The darkest areas are referred as β′ phases, and the rest of
the area largely is α matrix, which could be verified by the distribution feature and their corrosion
behaviors [8,32]. The corresponding in-situ line profiles of different phases are shown in Figure 10
(site 1 corresponds to α phase, site 2 corresponds to α + κIII eutectoid structure, and site 3 corresponds
to κII phase, while site 4 corresponds to β′ phase, as marked in Figure 9).
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The different phases in NAB alloy present different height changes during the immersion process
(in Figure 9), indicating that there is a marked difference between the formations of corrosion product
film on various phases. According to Figures 9 and 10, it is clear that the α phases at different locations
present different corrosion behaviors. The lamellar α phase within the α + κIII eutectoid structure is
corroded by approximately 25 nm at 60 min (in the middle of Figure 10b), whereas the α phase far
away from κ phases is not corroded in the whole period, and forms a thin film of approximately 6 nm
after 150-min immersion (in Figure 10a). This difference can result from the fact that the α phases in
the eutectoid form many microgalvanic cells with lamellar κIII phases, and are dissolved dramatically
as anodic parts [33,34]. In addition, since κIII phase is based on aluminum-nickel intermetallic (NiAl),
the Ni and Al content of α phase in the α + κIII eutectoid is less than that in the alone α phase. Thus,
the decrease of chemical content making the protective film thinner and more unstable also results
in this difference [17,35]. After 60 min, the corrosion of the α phases within the eutectoid structure
gradually stagnate as a result of protective film formation.

The κ phases, including κII and κIII, present the most stable topography condition during
the period of immersion. Neither of the two phases show a deepening corrosion, as shown from
the phenomenon that the heights of two phases surfaces have not decreased in Figure 10b,c.
The protective film on κIII phases forms rapidly after contacting with the corrosive medium and
remains approximately 5 nm, as shown in Figure 10b. The film on the κII phases, however, starts
forming after 30-min immersion, and the maximum thickness can reach 15 nm; it then thins down to
stability at 150 min (Figure 10c). The difference of the film formation can be attributable to the difference
of morphology and chemical content of two phases. Compared with the particle κII, the lamellar κIII

phase has a greater contact area with αmatrix, resulting in that electrons exchanging more rapidly and
the corrosion product film forming more quickly [3]. On the other hand, κII phase is based on a Fe3Al
intermetallic and contains more iron [7]. It is well accepted that the oxides of iron present are fluffier
and more unstable compared to the nickel oxides. Therefore, the film on the κII phase is thicker and,
meanwhile, shows solubility, to some extent.

The β′ phases have no obvious corrosion in the first 30 min of immersion, but begin to be corroded
quickly towards the end of 60 min, as shown in Figures 9a–c and 10d. The corrosion depth of β′ phases
exceeds 50 nm at the end of 60 min. According to earlier works, the β′ phases are found to be vulnerable
to corrosion due to the high chemical reactivity of their metastable martensitic phase [6,12,36]. During
the next monitoring period, it is found that with the corrosion of β′ phase, the sites around the corroded
β′ phases turn lighter (pointed by the red arrows in Figure 9c–f), indicating that the corrosion products
prefer to be deposited around the β′ phase region than inside the β′ phases, which is also supported
by Figure 10d. From 60 to 150 min of immersion, most of β′ phases maintain a fast corrosion rate until
the corrosion depth finally stabilized at around 500 nm. At this time, some corrosion product starts to
deposit on β′ phases to form a protective film to inhibit further corrosion of β′ phases. Interestingly,
a small piece of β′ phase seems to be corroded earlier, as shown in Figure 9b with a red circle.
This phenomenon can be attributed to the small ratio between the anode and cathode area, which
causes the more serious and earlier anodic (β′ phase) dissolution reaction in a local galvanic effect.

When the immersion timing is up to 150 min, the corrosion product deposition disperses on
almost the whole surface (Figure 9e), and the corrosion depth of each phase is inhibited, as shown in
Figure 10. At the end of 180 min (Figure 9f), the corrosion product film of NAB alloy is preliminarily
formed, and becomes more uniform.

4. Conclusions

In this study, the formation process of corrosion product film on NAB alloy was investigated
methodically via morphology characterization, electrochemical measurement, and various in-situ
analysis technologies. The corrosion behavior of film during the immersion time and its anti-corrosion
mechanisms were demonstrated scientifically. The main analyses are based on the experimental results
and reasonable conclusions can be drawn:
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1. The corrosion resistance of NAB alloy is due to the protective film covered on the surface,
avoiding the contact with corrosion medium and the transportation of ion and charge.

2. Due to difference of location and chemical content, the lamellar α phase within the α + κIII

eutectoid is corroded sharply, while the α phase far away from κ phases is well preserved.
3. The κII and κIII phases present a remarkable corroded resistance as they form a stable and dense

protective film within a short time when coming into contact with the corrosion medium. As a
result of the metastable martensitic structure and the difficulty to form protective film, the β′

phase suffers the most serious corrosion damage.
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