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There is great need for a therapeutic that would limit tuberculosis related pathology and thus curtail spread of disease between
individuals by establishing a “firebreak” to slow transmission. A promising avenue to increase current therapeutic efficacy may
be through incorporation of adjunct components that slow or stop development of aggressive destructive pulmonary pathology.
Lactoferrin, an iron-binding glycoprotein found in mucosal secretions and granules of neutrophils, is just such a potential adjunct
therapeutic agent. The focus of this review is to explore the utility of lactoferrin to serve as a therapeutic tool to investigate
“disruption” of the mycobacterial granuloma. Proposed concepts for mechanisms underlying lactoferrin efficacy to control
immunopathology are supported by data generated based on in vivomodels using nonpathogenic trehalose 6,6󸀠-dimycolate (TDM,
cord factor).

1. Introduction

There is great need for a therapeutic that would limit tubercu-
losis pathology and thus limit spread of disease between indi-
viduals by establishment of a “firebreak” to slow transmission
[1]. A promising avenue to increase current therapeutic effi-
cacy may be through incorporation of adjunct components
that curtail development of aggressive destructive pulmonary
pathology. Lactoferrin, an iron-binding glycoprotein found
in mucosal secretions and granules of neutrophils, is just
such a potential adjunct therapeutic agent. The focus of
this review is therefore to explore the utility of lactoferrin
to serve as a therapeutic tool to investigate “disruption” of
the mycobacterial granuloma during infection. In addition,
mechanisms for lactoferrin efficacy will be proposed based
on manipulation of trehalose 6,6󸀠-dimycolate (TDM, cord
factor) immunopathology developed in a nonpathogenic in
vivo setting. The studies here indicate that lactoferrin may be
a useful adjunct therapeutic for amelioration of pathological
response to mycobacteria.

Mycobacterial Granulomas. Primary Tuberculosis (TB)
begins with infection that spreads via lymphatics and blood

stream before inducing systemic immunity that contains and
controls the organisms within granulomas. Induction of the
Mycobacterium tuberculosis (MTB) disease-induced granu-
loma is dependent on factors involved in response initiation
and associated immune activity [2–7]. In the most extreme
simplification of the process, the underlying initiator is the
existence of a poorly degradable persistent antigenic source.
Mycobacterial organisms survive within macrophages,
exhibiting slow release of antigens to recruited cells. The net
result of granuloma formation is of initial benefit to both
the host and the organism, allowing control of infection
while providing a place for organisms to hide until time for
expansion and subsequent transmission to other individuals
[8, 9]. In reality, the organism exhibits effects on tissues
surrounding infected cells through released potent, bioactive
cell wall constituents [10]. New paradigms implicate inflam-
matory processes beginning with induction of a lipid-related
necrotic pneumonia that may transition to become the focus
of granulomas and fibrocaseous disease [11–14]. Regardless
of event initiation, it is clear that over time the disruptive
nature of the granuloma causes harm to the infected host.

Our laboratory has studied granuloma pathobiology in
detail in mouse models of tuberculosis [8, 15–20] and made
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contributions to factors involved in the development of pro-
gressive pathology. Furthermore, we utilized our knowledge
to design protocols to maximize immune-modulating agents
to investigate the relationship of protection and pathology
[21–24]. An area of study used lactoferrin as an immunemod-
ulator to augment the BCG vaccine and relative responses
to mycobacterial antigens [22–27], leading to reduction in
pathological damage after challenge with virulent organisms.
They were the observations made during development of
human lactoferrin as a vaccine adjuvant that led us to
believe it also had utility as an immune modulator to reduce
inflammation during granuloma formation [23, 28].

Many of the molecular mechanisms involved in develop-
ment, maintenance, and initiation of factors related to myco-
bacterial pathology in the lung have been identified. A system
of choice is amodel based on the noninfectious proinflamma-
tory granuloma induced by the major surface glycolipid from
pathogenic organisms, developed by multiple investigators,
including Retzinger, Behling, and Hunter [29–32]. This has
permitted a global understanding of the immunopathology.
Injection with cord factor (trehalose 6,6󸀠-dimycolate, TDM)
induces transient pulmonary granulomas that increase in
number and complexity over a 7-day period, followed by
resolution of pathology [33]. Manipulation of host factors has
allowed definition of immune parameters contributing to the
initiation, maintenance, and resolution phases of response.

TheCord Factor Model of theMycobacterial Granuloma. Cord
factor (trehalose 6,6󸀠-dimycolate, TDM) is the most abun-
dant glycolipid produced on the surface of mycobacterial
organisms. TDM plays multiple roles in the pathogenesis of
MTB [34, 35], including the formation of caseation in the
lung after infection [36]. TDM formulated into an emulsion,
or placed on beads, and injected intravenously into mice
induces a lung pathology that mimics many aspects of
early MTB infection, including granulomatous response and
the production of proinflammatory cytokines. The TDM
model of granuloma formation has been used to elucidate
the immunological factors involved in the granulomatous
response [37, 38]. Furthermore, TDM can induce activated
foreign body type granulomas in näıve mice [33, 39], and
hypersensitivity (immune) granulomas in appropriately sen-
sitized mice [36, 40, 41]. Therefore, this model system is
ideal for exploring the potential of immunomodulators to
alter granuloma structure, with perhaps specific utility to
extrapolate findings to immune related pathology identified
during clinical manifestation of tuberculosis disease.

The interactions of mycobacteria and its lipid com-
ponents with cell surface antigens to elicit inflammatory
responses have been characterized [42] and are the subject of
other papers and reviews [43–46]. Recent discoveries link the
C-type lectin mincle [47–49] as a prime candidate receptor
for TDM. This is augmented in part by interactions with
MARCO, TLR2, and/or CD14, all of which are critical to
mediate activity [44]. These are combined with internal-
ized signaling events that possibly function through Card9-
dependentmechanisms [50, 51]. Suffice to say, TDM’s interac-
tionwith surface “receptors” is critical for initiation of cellular
activation of TLR and NOD pathways, as well as control of

intracellular trafficking events [52, 53]. Using knockout mice,
established patterns of cytokine production were found to
be associated with pathology. This allowed the delineation
of the major molecular events in innate establishment and
maintenance of the TDM induced granuloma [17, 33, 37, 38,
41, 52–56]. A link was also established to adaptive (T-cell
mediated) hypersensitive responses critical for development
of pathological granulomas [57, 58] (Figure 1).

Lactoferrin as a First-Line Defense Protein. Lactoferrin is a
monomeric 80 kDa single polypeptide chain contained in
most mammalian exocrine secretions, including milk, tears,
saliva, and bronchial and intestinal secretions. It is also
present in the secondary granules of neutrophils. It is consid-
ered a first-line defense protein involved in protection against
microbial infections [59, 60] and subsequent development of
systemic inflammatory response syndrome (SIRS) and sepsis
[61–67]. More recently, lactoferrin has been implicated in
immunoregulatory functions [62, 68–73], and modulation of
vaccine function [22–27].

There are two primary forms of human lactoferrin,
one contained in exocrine secretions and the other present
in secondary granules of neutrophils. The two forms are
identical in their amino acid sequence but differ in glycan
content [75, 76]. While the secreted form is thought to
be involved in the host defense against microbial infec-
tion at mucosal sites, granulocytic/neutrophilic lactoferrin
has notable immunomodulatory function [74]. Neutrophilic
lactoferrin is an integral part of the cytokine-mediated
cascade during insult-induced metabolic imbalance [77–81]
(Figure 2), with a subset of biological properties unique
from lactoferrins produced at other sources by other cell
phenotypes [82].

The key to understanding the molecular basis of its
activities is thought to reside in both patterns of glycosylation
and sialylation [83, 84]. The primary structure of human
LF is characterized by a single polypeptide chain containing
692 amino acids organized in two highly homologous lobes,
designated the N- and C-lobe, each capable of binding
single ferric ion (Fe+++). Lactoferrin is a glycoprotein and
in humans the glycans are the N-acetyllactosaminic type,
𝛼1,3-fucosylated on the N-acetyl-glucosamine residue linked
to the peptide chain. There are three possible N-linked
glycosylation sites in hLF, one at Asn138, a second site at
Asn479, and a third site at Asn624; differential utilization
of these sites results in distinct glycosylation variants [85].
Many observed activities of LF are dependent upon specific
glycosylation patterns. For example, the immunoregulatory
activity of LF in humans is dependent on the interaction of
this glycoprotein with a receptor specific for sialic acid, and
direct lymphocyte activation by LF requires sialylation [86].

2. Lactoferrin as an Immune Modulator

2.1. Lactoferrin: A Balance between Potentiation and Media-
tion. Lactoferrin bridges innate and adaptive immune func-
tions by regulating specific target cell responses [87, 88]. By
acting as a homeostatic modulator, lactoferrin can work both
ends of the immunological spectrum to increase low response
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Figure 1: Mechanisms of TDM-induced granulomas. Cytokines and immune-regulatory factors induced by mycobacterial glycolipid
TDM play key roles in the development of pathology induced during mycobacterial infection. Model systems using isolated TDM allow
identification of host immune function to extrapolate findings of immune related pathology occurring during clinical manifestation of
tuberculosis disease [17, 33, 37, 38, 41, 52–58].
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Figure 2: Lactoferrin mediation of insult-induced inflammation. Insult, defined as infection, trauma, or chronic illness, leads to activation of
macrophage and dendritic cells. Activated neutrophils degranulate at the site of injury and releasemassive amounts of lactoferrin. Lactoferrin,
in turn, can either augment low level responses or modulate overaggressive cytokine activity. Both effects serve to control inflammation to
assist with tissue repair after insult (modified from [74]).

or dampen aggressive ones. It has direct capacity to regulate
both proinflammatory and anti-inflammatory responses [62,
63]. The utility of such an immune mediator represents a
novel therapeutic agent dependent on elicited responses for
outcome [74]. A direct example of how lactoferrin canmanip-
ulate outcomes of response is exemplified by knowledge that
lactoferrin can bind to the soluble CD14 and the CD14/LPS
complex [89], an interaction which has been shown to medi-
ate toll-like receptor-4 (TLR-4) pattern recognition events
[90]. Indeed, lactoferrin mediated events related to TLR-4
may represent a strong strategy to block excessive antigen
presenting cell activation [91].What remains unknown is how
lactoferrin might affect PAMP signaling processes during
tuberculosis infection. While some data suggests that Myd88
pathways may not be as critical in transition to adaptive
defense against tuberculosis [92], more recent studies suggest
that subversion of theTLR-2-MyD88 pathway is an important

factor in intracellular processing [93]. In either case, it would
seem that lactoferrin may function as a regulator in an
independent manner during immune modulation during TB
challenge.

We and collaborators investigated lactoferrin to modify
innate events during inflammation, such as those seen dur-
ing systemic inflammatory response syndrome and models
of oxidative stress [78, 94–97]. Our laboratory also spent
years investigating lactoferrin augmentation of the BCG
vaccine to protect against subsequent challenge with virulent
MTB, functioning through strong induction of cell-mediated
immunity [64, 98] and generation of IFN-𝛾 antigen specific
recall responses [24, 26, 27, 69, 98, 99]. Lactoferrin has a
profound modulatory action on adaptive immune functions
[70, 73] by promoting maturation of T-cell precursors into
competent helper cells and differentiation of immature B-
cells into efficient antigen presenting cells [100]. The innate
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and adaptive events are not mutually exclusive, but rather
complementary, and lend credence to utility of lactoferrin for
immune homeostasis in insult-inducedmetabolic disparities.

2.2. Lactoferrin Modulation of the Tuberculoid Granuloma.
An examination of lactoferrin to modulate granulomatous
responses was performed in mice injected intravenously
with TDM. A subset of mice were intravenously given 1mg
bovine lactoferrin 24 h after TDM challenge. Lung tissue was
analyzed for histological response and for the production
of proinflammatory mediators. Treatment with lactoferrin
showed statistically significant fewer and smaller granulomas
compared to TDM alone [101]. Of importance, the protective
proinflammatory mediators were not statistically diminished
by lactoferrin treatment. Nontreated mice demonstrated
a granuloma formation that correlated with an increased
production of tumor necrosis factor-𝛼 (TNF-𝛼), interleukin-
(IL-) 1𝛽, and IL-6.This is important, as it suggests that innate
functions critical during infectious disease are maintained,
even though immunopathology is reduced by treatment.

In a similar manner, the utility of oral delivered lactofer-
rin was also examined. As previously mentioned, mice given
TDM alone also showed marked and statistically significant
increased production of proinflammatory cytokines TNF-𝛼,
IL-6, IL-1𝛽, IL-12p40, and KC (keratinocyte chemoattrac-
tant). Oral treatment with recombinant human LF (produced
in CHO cells) at 1 or 2mg led to statistically significant
reduction (𝑝 < 0.05) in cytokine levels at 7 days after TDM
administration in BALB/c and C57BL/6 mice (Figure 3, only
BALB/c data shown). This is consistent with reports that
these proinflammatory cytokines are protective in similar
infectious challenge models [102, 103], while molecules such
as IL-10 which are limited after lactoferrin administration
are detrimental during infection [104]. In a similar manner,
bovine lactoferrin given orally at 1 or 2mg doses also showed
statistical reduction in most cytokines, although there was
greater consistency of response in BALB/c mice than that
for the C57BL/6 strain. In particular, the 1mg dosage of
recombinant LF showed the most consistency in its ability to
control (reduce) production of proinflammatory cytokines.

Of major interest, the oral delivered human recombinant
lactoferrin demonstrated biologically relevant reduction in
pathology (Figure 4), similar to that seen in the published
results using intravenous administered bovine lactoferrin. In
fact, both the bovine and the recombinant human lactoferrins
were able to reduce inflammation due toTDMchallenge, with
doses of 1 or 2mg given on days 4 and 6 after challenge result-
ing in clear reduction in granuloma size and frequency. The
most effective dose for the recombinant human lactoferrin
was seen when used at 1mg, with some efficacy also seen
given as a single dose only on day 4 (data not shown).

Another point of special interest is that the classical
cytokines critical for control of MTB, namely, TNF-𝛼, IL-
6, and IFN-𝛾, were not statistically altered by lactoferrin
treatment [105]. This gave confidence that treatment would
retain control of organisms after infectious challenge. Indeed,
this is what was seen in a similar experiment performed
using bovine lactoferrin administered in drinking water
(5mg/mL), given to mice aerosol infected with virulent

mycobacteria (Erdman strain) [105]. While bacterial load
in tissue was slightly reduced, the major change was ame-
lioration of granulomatous severity. It is noteworthy that
bovine lactoferrin reduced bacterial burden, accompanied
by an increase in classical proinflammatory responses while
decreasing overall lung immunopathology [105]. Specifically,
lactoferrin-treated mice increased numbers of CD4+ IFN-
𝛾+ and IL-17 producing cells in the lung. It was shown that
lactoferrin by itself was not bactericidal, but rather enhanced
IFN-𝛾mediatedMTBkilling bymacrophages in a nitric oxide
dependent manner. These studies indicate that lactoferrin
may be a novel therapeutic for the treatment of tuberculosis
and may be useful in infectious diseases to reduced immune-
mediated tissue damage.

Finally, the molecular mechanism underlying resolution
of the granulomatous lesion is not yet defined. However, a
role for maintaining strong Th1 responses could possibly be
attributed to relationships due to COX-2 inhibition by lacto-
ferrin in inducedmacrophages (WBCs) [106], and knowledge
that prostaglandin E2 (PGE2) is able to shift T helper
responses during BCG activation of innate macrophages
[107]. It had been previously demonstrated that the PGE2
response could be reversed by a COX-2 inhibitor [108].
Therefore, lactoferrin functioning as a COX-2 inhibitor could
be an indirect method to maintain proinflammatory activity
of macrophages when infected.

3. Conclusions

The studies here indicate that lactoferrin may be a useful
adjunct therapeutic for amelioration of pathological response
in an in vivo model of TB granulomas. Of high importance,
the change in pathology is accomplished with no loss of
innate immune function which would be critical for defense
against pathogenic organisms. A question arises concerning
the utility of using heterologous lactoferrins in the mouse
model. Preliminary investigations show that a newly devel-
oped, recombinant mouse lactoferrin produced in CHO sta-
ble cell lines functions in a manner very similar to the bovine
and human recombinant, to limit immunopathology after
oral delivery. Mechanistically, it was shown that the mouse
and human forms are nearly identical in modulation of den-
dritic cell function in response to Bacillus Calmette-Guerin
(BCG) [25, 109]. The dendritic cell population responds
with increased inflammatory cytokines and a shift towards
MHC Class II expression when BCG is combined with
the lactoferrins. However, more recent investigations reveal
that the macrophage population has a unique trend, with
potentially decreased antigen presentation and subsequent
T-cell stimulatory activity [110]. Overall, these results give
great confidence to move forward to test novel recombinant
lactoferrins for adjunct clinical therapeutic effects to alter
immunedependent granulomatous pathology occurring dur-
ing tuberculosis infection in humans.The studies here would
drive the next goals to explore novel recombinant lactoferrins
to mediate reductions in lung histopathology and bacterial
burden in BSL3 in vivo models of MTB infection. Further-
more, we hypothesize that reduction of TB-induced inflam-
matory pathology would also allow enhanced penetration
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Figure 3: Proinflammatory cytokines in lungs are reduced in lactoferrin-treated mice after challenge with TDM. BALB/c mice were
challenged with 25𝜇g TDM in a water-in-oil emulsion. Bovine or recombinant human lactoferrin (1 or 2mg) was orally administered at
4 and 6 days after TDM challenge. Methods of TDM induction are described elsewhere [38, 101]. Lungs were isolated on day 7 after TDM
challenge; cytokines were assessed by ELISA; values are shown per lung for individual mice. ∗𝑝 < 0.05 compared to the TDM emulsion alone
treated mice.

of antimycobacterial drugs to sites harboring infectious
agents, in essence permitting an efficient mechanism to
treat TB infection. Overall, these studies permit confidence
to target clinical implications and test novel strategies to

modulate MTB-induced granulomatous responses to allow
more efficacious delivery of therapeutics to mycobacterial
organisms residing within lung tissue during activemycobac-
terial disease states.
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Figure 4: Granuloma response to TDM challenge in oral recombinant human lactoferrin-treated mice. Two strains of mice (BALB/c and
C57BL/6) were challenged with 25𝜇g TDM in a water-in-oil emulsion, as described [38, 101]. Human lactoferrin (recombinant, 1mg) was
given orally at 4 and 6 days after TDM challenge. Comparisons are made to näıve mice, and to mice only administered TDM. H&E staining,
100x. Representative sections from mice at 7 days after TDM challenge;𝑁 ≥ 8 per experimental group.
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Postepy Higieny i Medycyny Doświadczalnej, vol. 61, pp. 277–
282, 2007.

[28] S. A. Hwang, M. L. Kruzel, and J. K. Actor, “CHO expressed
recombinant human lactoferrin as an adjuvant for BCG,”
International Journal of Immunopathology and Pharmacology,
vol. 28, no. 4, pp. 452–468, 2015.

[29] R. L. Perez, J. Roman, G. W. Staton Jr., and R. L. Hunter,
“Extravascular coagulation and fibrinolysis in murine lung
inflammation induced by the mycobacterial cord factor

trehalose-6,6’-dimycolate,”American Journal of Respiratory and
Critical Care Medicine, vol. 149, no. 2, pp. 510–518, 1994.

[30] C. A. Behling, R. L. Perez, M. R. Kidd, G. W. Staton Jr., and R.
L. Hunter, “Induction of pulmonary granulomas, macrophage
procoagulant activity, and tumor necrosis factor-alpha by tre-
halose glycolipids,” Annals of Clinical and Laboratory Science,
vol. 23, no. 4, pp. 256–266, 1993.

[31] G. S. Retzinger, S. C. Meredith, R. L. Hunter, K. Takayama, and
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