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Abstract: This study utilized modeling and simulation to examine the effectiveness of current and
potential future COVID-19 response interventions in the West African countries of Guinea, Liberia,
and Sierra Leone. A comparison between simulations can highlight which interventions could have
an effect on the pandemic in these countries. An extended compartmental model was used to run
simulations incorporating multiple vaccination strategies and non-pharmaceutical interventions
(NPIs). In addition to the customary categories of susceptible, exposed, infected, and recovered
(SEIR) compartments, this COVID-19 model incorporated early and late disease states, isolation,
treatment, and death. Lessons learned from the 2014–2016 Ebola virus disease outbreak—especially
the optimization of each country’s resource allocation—were incorporated in the presented models.
For each country, models were calibrated to an estimated number of infections based on actual
reported cases and deaths. Simulations were run to test the potential future effects of vaccination and
NPIs. Multiple levels of vaccination were considered, based on announced vaccine allocation plans
and notional scenarios. Increased vaccination combined with NPI mitigation strategies resulted in
thousands of fewer COVID-19 infections in each country. This study demonstrates the importance of
increased vaccinations. The levels of vaccination in this study would require substantial increases
in vaccination supplies obtained through national purchases or international aid. While this study
does not aim to develop a model that predicts the future, it can provide useful information for
decision-makers in low- and middle-income nations. Such information can be used to prioritize and
optimize limited available resources for targeted interventions that will have the greatest impact on
COVID-19 pandemic response.

Keywords: coronavirus disease 2019 (COVID-19) pandemic; Ebola outbreak; susceptible–exposed–
infected–recovered (SEIR) models; vaccination; non-pharmaceutical interventions (NPIs); deci-
sion making

1. Introduction

The 2014–2016 Ebola virus disease (EVD) outbreak called global attention to existing
healthcare system limitations in Guinea, Liberia, and Sierra Leone—countries where EVD
raged unabated for months. Health system deficiencies included the lack of timely detection
and austere response in Guinea, the epicenter of the initial outbreak. Furthermore, Guinea’s
limited public health capacity as well as lack of early detection and identification of EVD
may have facilitated extensive viral transmission, both nationally, and across borders to
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the neighboring countries of Liberia and Sierra Leone [1]. These three countries accounted
for 99.9% of all Ebola outbreak cases and deaths recorded [2], and they received massive
international support to combat this regional outbreak, including USD 100 million provided
through the WHO’s Ebola response plan, and a USD 210 million pledge from the African
Development Bank [3].

Although the West African Ebola outbreak devastated the region, the lessons learned—
particularly the 2017 founding of the Africa Centers for Disease Control and Prevention
(Africa CDC, Addis Ababa, Ethiopia), and increased health system funding—are positive
outcomes. Coordinated efforts against the EVD outbreak contributed significantly to the
development of better health policies, improvement of public health infrastructure, and
increasing awareness of disease outbreaks among the wider population in this region [4].
A targeted, ring vaccination campaign was a major factor in ending the 2021 EVD outbreak
in Guinea, and serves as a timely regional public health lesson for controlling coronavirus
disease 2019 (COVID-19) in African nations.

The Defense Threat Reduction Agency (DTRA)’s Reachback is a multidisciplinary
team that provides information and assistance to Department of Defense agencies and
commands, as well as other federal agencies. Reachback was directly involved in the US
government’s response to the West African EVD outbreak, providing technical and disease
modeling support to US government agencies [5]. Reachback currently provides technical
support for the COVID-19 pandemic response, which presents a significant public health
threat to these nations—especially with the advent of a third COVID-19 pandemic wave in
Africa [6,7].

COVID-19 outbreaks in Guinea, Liberia, and Sierra Leone are currently uncontrolled.
New case reporting in these nations has increased during June and July of 2021, partly due
to increased coronavirus testing capacity. Liberia experienced a surge in new COVID-19
cases in June and July of 2021, when the daily case numbers were the highest since the
beginning of the pandemic. Guinea has the highest reported incidence of cases in all
three countries. As of 19 July 2021, COVID-19 cases in Guinea (24,668, or 18.2 cases per
100,000) [8,9] greatly exceed those in Liberia (5396, or 10.4 cases per 100,000) [10] and Sierra
Leone (6186, or 0.7 cases per 100,000) [11]. However, reported case fatality rates (CFRs) are
appreciably less in Guinea (0.76%) compared to neighboring Liberia (2.74%) and Sierra
Leone (1.86%).

Steps already taken by each country to address the pandemic include total lockdowns
and school closures implemented during the first waves of the COVID-19 pandemic in 2020,
as well as establishing national COVID-19 task forces. Coronavirus task forces in Guinea,
Liberia, and Sierra Leone follow similar contact tracing and isolation protocols to those
used in China, including isolation of all individuals testing positive for COVID-19, hospi-
talization for the seriously ill, and sending those with mild symptoms or asymptomatic
infections to specialized facilities until they test negative [12].

Coordinated international efforts have expedited COVID-19 vaccine deliveries to all
three countries through the COVID-19 Vaccines Global Access (COVAX) initiative. Liberia
was able to continue its vaccination campaign as a result of a shipment of 123,000 doses of
AstraZeneca vaccine on 1 April 2021 [13], following an earlier shipment of 96,000 vaccine
doses received on 5 March [14]. Guinea has received its first COVAX vaccines (194,400 doses
of AstraZeneca vaccine), and has a projected allocation of 864,000 vaccine doses from this
source [15]. Guinea also received 300,000 doses of Sinovac vaccine on 18 April 2021, and
is scheduled to receive 200,000 doses of Sinopharm vaccine at a future, unannounced
date [16]. Sierra Leone received 96,000 doses of AstraZeneca vaccine on 8 March 2021, out
of a total allocation of 528,000 vaccine doses [17]. Sierra Leone also received 200,000 doses
of Sinopharm vaccine on 25 February 2021 [18].

Given the extremely scarce resources available to combat the spread of COVID-19 in
this region, our customizable modified SEIR (susceptible, exposed, infected, and recovered)
model provided projections (i.e., a potential interpretation of what the future may hold for
these nations). In addition to the standard compartments, this model also considered early
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and late disease states, isolation, treatment, and death. While not intended to forecast future
events, such projections can inform decision-makers trying to allocate limited resources.
This study sought to provide useful guidance for the distribution of scarce vaccines and
NPI resources to control the spread of COVID-19 in these three West African nations.

2. Methods

The EpiGrid epidemiological model [19] used in this study has the capacity to model
a variety of infectious diseases. EpiGrid is well suited to COVID-19 modeling, as it can
track the geographic spread of disease in a connected regional grid without imposed
administrative units (countries or regions) [19]. It can also incorporate specific infectious
agent transmission details, and identify individuals throughout various states of infection
or treatment, treatment modes, and different forms of NPIs [20]. The Los Alamos National
Laboratories (LANL) calibrated the default COVID-19 model parameters, listed in Supple-
mentary Table S1, using data from the early outbreaks in the city of Wuhan and eastern
Hubei Province in China, as well as Italy, the United States, and Singapore [21–27], along
with data about the healthcare response and capacity in New Mexico, USA [28]. Since the
default model represents the situation in the US and similar western countries, certain
parameters were adjusted to better represent the available resources in Guinea, Liberia, and
Sierra Leone. The changes to the default disease model used in this study are described in
the following sections.

2.1. Country-Specific Models

This study details the development of three separate, country-specific models reflect-
ing the current situations in Guinea, Liberia, and Sierra Leone. To build these models, first,
the default COVID-19 disease model parameters were adjusted to reflect the capacity and
capabilities of the healthcare infrastructure in each country. Second, the number of infec-
tions was estimated from reported cases and deaths. Third, models were then calibrated to
these estimated infections by adjusting the timing and intensity of transmission mitigations
(see Section 2.2). Finally, multiple COVID-19 spread simulations of future months were
conducted using various scenarios.

Supplementary Table S2 lists all of the specific modeling parameters and assumptions
for each country, but a few are described here in more detail. The estimated time of arrival
for the outbreak in each country was described previously [29,30]. The number of infections
required before the detection of the outbreak (threshold of detection) was set so that the
date of detection in the simulations occurred on or near the day of the first reported case in
each country.

In the model, progression rates between compartments are indicated by “k” with
subscripts. For example, kIIt denotes the rate of individuals moving from compartment
I (early disease state) to It (home isolation/quarantine). All of the compartments are
explained in Figure 1. For these three countries, little information was available about
contact tracing capabilities during the current pandemic. Instead, to inform kIIt, we used
data collected during the 2014 Ebola outbreak. According to a CDC study in Guinea,
approximately 33% of cases had been identified as contacts [31]. Another study reported
that 22.1% of confirmed cases were listed as contacts in Sierra Leone [32]. Using estimates
for the number of undetected cases (see Section 2.2), the fraction of infections that would
be both detected and isolated was calculated for Guinea (0.033), Liberia (0.0198), and Sierra
Leone (0.01). In all three models, kIIt was increased to 0.05 after 30 days. This increase
reflected the training of COVID-19 contact tracers, as reported from Sierra Leone [33].

Two parameters were scaled from the default US model, based on country-specific
data: (1) the fraction of severely ill individuals that are treated, kHHt, and (2) the relative in-
fectivity of those severely ill receiving treatment compared to those not receiving treatment.
The values for kHHt in the default model were scaled according to the known numbers
of beds and doctors available in each country [34,35]. Similarly, the values for relative
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infectivity of severely ill individuals in the default model were scaled using the Infectious
Disease Vulnerability Index for each country [36].
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2.2. Model Calibration

The EpiGrid model required the geographic location of initial infections. The number
and location of initial infections differed for each model based on the availability of data
for each country [37,38].

The daily number of reported cases and the total number of deaths were obtained
from public sources [8–11,38]. Estimates were made of the percentage of undetected
infections, which were therefore not reported in official case counts. The models used an
open-source COVID-19 prevalence calculator [39] to make this estimate and then adjust
the daily reported cases to account for the “true” number of daily infections. Notably,
since Guinea is only reporting hospitalized deaths, the original calculator estimate was
significantly different from those of the other two countries. To compensate, the reported
deaths were adjusted 5-fold based on the modeling assumption that 20% of severe disease
is treated. The calculator results for all three countries indicated that over 90% of infections
were undetected; this is congruent with other sources [40,41].

The models did not directly incorporate individual non-pharmaceutical interventions
(NPIs), due to differences in country implementation and compliance, as well as a poor
understanding of how to measure their effects. Instead, by calibrating the transmission
parameter beta over time, the model accounted for the effects of all NPIs and changes
in behavior. Beta is the coefficient used in a pair of differential equations [18] describing
the movement of individuals from susceptible (S) to exposed (E). Throughout the cali-
bration phase of the simulations (February 2020–June 2021, Supplementary Figure S1),
modifications to the beta term were added to reflect changes in NPIs. The fraction listed in
Supplementary Table S2, under transmission mitigations, was multiplied by beta on the
indicated day, and the modification remained in effect until another was applied.

During calibration, two different data comparisons were made to determine when and
by how much to adjust the beta term. The first comparison was between the 7-day floating
average of estimated incident infections and the model results for incident infections.
The second was between the estimated cumulative infections and the model results for
cumulative infections. In addition to these data comparisons, current local mitigation
policies were also referenced in order to determine adjustments to beta [37,42–46].

To measure calibration accuracy, a simple correlation was calculated between esti-
mated and modeled infection datasets. The Pearson coefficients for the incident infections
were 0.9472, 0.7908, and 0.8998 for Guinea, Liberia, and Sierra Leone, respectively, while
the coefficients between the cumulative datasets were higher, at 0.9999, 0.9984, and 0.9982,
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respectively. The lower coefficients for the incident datasets were not significant (p-value
for a two-tailed, paired t-test: 0.932, 0.955, and 0.813, respectively), and demonstrate the
large amount of variability in daily reported cases, even with smoothing applied. The
coefficients for the cumulative datasets show a significant fit between the model and the
estimated cumulative infections (p-value for a two-tailed, paired t-test: 1.28 × 10−18, 0.050,
and 2.50 × 10−18, respectively).

2.3. Vaccination

Vaccination was modeled as a single dose with 63% efficacy after 14 days. Vaccina-
tion was also concentrated geographically, with a 5–10 km radius around locations with
infections, in order to approximate the vaccination strategy utilized during the 2014 Ebola
outbreaks in Guinea, Liberia, and Sierra Leone [47,48]. During the calibration portion of
the model, the daily rates of vaccination were set to reflect the reported number of vac-
cine doses administered in each country [49] (see Supplementary Table S3). Total vaccine
doses administered are illustrated in Supplementary Table S4, while the percentage of
the population vaccinated in each country is shown in Tables 1 and S5. For example, the
realistic scenario that we used shows the percentage of the population vaccinated (% of
total population) as 8.6% in Guinea, 1.7% in Liberia, and 5.3% in Sierra Leone. Reported
vaccination rates were incorporated in the calibration stage, and then dose rate assumptions
were applied based on various scenarios (see Section 2.4).

Table 1. Percentage of the population vaccinated in each scenario.

Percent of Total Population

Guinea Liberia Sierra Leone

Baseline Vaccination 3.5 2.2 1.7

Realistic Vaccination 8.6 1.7 5.3

Optimistic Vaccination 32 24 25

2.4. Simulations

After the models were calibrated, simulations of future events were run based on
various scenarios to test the effects of relaxing NPIs and increasing vaccinations. Each
simulation was run once in a deterministic fashion. The baseline future scenario was
completed by running the calibrated model without any additional changes, and is included
for purposes of comparison.

Two scenarios looking at increased rates of vaccination were included. The first, named
“realistic”, shows the possible outcome if promised COVAX doses were administered by
the end of the simulation. The daily vaccination rate, V, applied after the calibration phase,
was calculated according to the equation:

V =
(Dt − Da)

N
(1)

where Dt is the total doses promised by the COVAX program [13,15,17], Da is the total
number of COVAX doses that have already been administered, and N is the number of
days in the simulation after the calibration phase. The second vaccination scenario, named
“optimistic”, assumed that the rate of vaccination in the realistic scenario was further
amplified by the addition of 500 million doses spread across the African continent. The
number of additional doses was distributed pro rata, where PC is the population in the
country and PA is the population on the African continent:

V =

(
500,000,000 ∗ PC

PA

)
+

(Dt − Da)
N

(2)
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The baseline vaccination scenario did not include any changes in vaccination or
transmission rates after the calibration phase. In order to look at the combined effects of
relaxing NPIs and increasing vaccination, the three scenarios above were repeated, but
the transmission term, beta, was increased by 0.5 every 14 days until the maximum seen
during the calibration phase was reached.

All simulations ran for 18 weeks past the calibration phase, or a total of 88 weeks
since the date of SARS-CoV-2’s arrival in each country. In the case of Liberia, since the
transmission was so high, 18 weeks captured both a rise and a fall in daily infections as
the susceptible population became depleted. The lower transmission rates in both Guinea
and Sierra Leone did not capture a peak within the 18-week period. Additional simula-
tions based on the baseline scenario confirm that a slow and steady rate of transmission
continues in these countries through the end of 2022, without a depletion of the susceptible
population (data not shown). Longer periods were not feasible for this study, due to
computational limitations.

2.5. Geographic Data

Hospital and clinic locations were obtained from a UN dataset [50]. The EpiGrid
model provided the weekly number of cumulative infections (I) at each location on a
geographic grid. The grid and population numbers were derived from the LandScan
Global 2018 dataset provided by Oak Ridge National Laboratory [51].

3. Results
3.1. Model Calibration

Since many COVID-19 cases go undetected, modeling necessitates estimating the true
number of infections. Based on the local public health infrastructure and the reported num-
ber of deaths, our models assumed that over 90% of infections are undetected. Models were
calibrated to estimated infections through 13 June 2021 (Supplementary Figure S1). The
calibrated models predicted the basic reproduction number (R0) for COVID-19 as 2.76, 2.1,
and 2.32 for Guinea, Liberia, and Sierra Leone, respectively (see Supplementary Materials).

Based on the modeling results, the effectiveness of NPI measures was usually visible
within 1–4 weeks following implementation. In the Guinea model, the transmission rate
decreased significantly during the first COVID-19 wave at the end of April 2020, 4 weeks
after the lockdown began. Additionally, the transmission rate increased at the beginning of
July 2020, 1 week after the reopening of schools and worship services.

The model indicates that around 17 July 2020, the number of COVID-19 cases in
Liberia began to decrease. However, based on available information, the model assumed
that the decrease in the reported number of cases was a result of lack of testing availability,
and not due to a decrease in actual infections.

In Sierra Leone, schools closed on 31 March 2020, and the transmission rate incor-
porated in the model decreased one week later. Despite the introduction of inter-district
travel bans and curfew on 11 April 2020, several health districts reported cases for the first
time, complicating mitigation strategies. The combination of a lockdown in May 2020 and
continued testing was successful at keeping disease transmission down, even after the
reopening of schools on 5 October 2020.

3.2. Geographic Distribution

Models in EpiGrid have a geographic component depicting visualization of the geo-
graphic spread of an outbreak (Figure 2). In Guinea, there was almost no information about
the location of cases. In contrast, the MOH situation reports from Sierra Leone provided
regular case summaries by health district.

Figure 2B–D show the geographic distribution of cumulative infections near the end of
the model calibration phase. Comparing the geographic spread in each country illustrates
the effects of multiple SARS-CoV-2 virus-seeding (infection origin) locations. When data on



Pathogens 2021, 10, 1266 7 of 16

case locations are available, informed decisions can be made on the geographic allocation
of supplies and resources.
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3.3. Simulations on the Effects of Vaccination

A summary of the estimates for percentages of the total population vaccinated for
each West African nation for the baseline, realistic, and optimistic vaccination scenarios
are provided in Table 1. Additional summary information regarding scenario details, total
vaccine doses administered, and cumulative COVID-19 infections predicted after 18 weeks
in each nation can be found in the Supplementary Materials.

Baseline vaccination rate: After calibration, the baseline vaccination simulations (solid
black lines in Figure 3) were projected for 88 weeks (70-week model calibration with
an 18-week projection). The vaccination rate at the end of calibration was continued
unchanged for the duration of the simulation, resulting in a total of 609,640 vaccinations
administered in Guinea, 230,200 vaccinations in Liberia, and 194,056 vaccinations in Sierra
Leone. The baseline simulation estimated 353,960 infections on 18 October 2021 in Guinea.
In Liberia, the results showed 3,553,072 infections on 23 October 2021, while in Sierra
Leonne, 363,373 infections are projected on 21 October 2021.

Realistic vaccination rate: This scenario examines the effects of moderately increased
vaccination on controlling the spread of COVID-19. During the projection phase, vaccina-
tion rates are adjusted so that all vaccine doses promised through the COVAX program are
delivered and administered by the end of 18 weeks. In Guinea, the increased rate resulted
in a total 1,645,612 vaccinations. However, in Liberia, a decreased rate resulted in a total of
123,000 vaccinations. The Liberian rate decreased because Liberia has already administered
many of the promised COVAX doses; thus, there were fewer to administer going forward.
In Sierra Leone, the total vaccinations delivered in this scenario were 102,816.

Optimistic Vaccination Rate: This scenario aimed to study the effects of increasing
vaccination rates even further through additional vaccine purchases by each nation, or
substantial international aid. This scenario was based on the very optimistic assumption
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that, in addition to the COVAX program, 500 million doses of vaccine are delivered and
administered across the African continent. In the model, the doses were allocated to each
country based solely on population. The result in Guinea was 6,522,526 total vaccinations.
In Liberia, the total was 2,000,000 vaccinations administered. In Sierra Leone, the optimistic
total was 3,636,211 vaccinations administered.

Overall, the models projected fewer infections as a result of increased vaccination
(Figure 3). The results for Guinea showed that the realistic vaccination scenario predicted
1087 fewer infections, while the optimistic scenario predicted 4799 fewer infections com-
pared to the baseline total. In Sierra Leone, the trend was similar, with 1885 fewer infections
in the realistic scenario, and an impressive 20,876 fewer infections in the optimistic scenario.
In Liberia, the optimistic scenario produces 187,812 fewer infections. In contrast, the real-
istic scenario produced 4176 more infections compared to the baseline, due to decreased
vaccination rates. Finally, a population-wide percentage infection reduction can also be
calculated by taking the number of cumulative infections minus the number of baseline
cumulative infections, and dividing by baseline cumulative infections.
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Figure 3. Graphs showing the projected results for vaccination scenarios for Guinea (A,D),
Liberia (B,E), and Sierra Leone (C,F): (A–C) show daily incident infections; (D–F) show daily cumu-
lative infections. The black line shows results for the baseline simulation. The dark grey, dotted line
shows results for the realistic scenario when all of the promised COVAX doses are administered.
The light grey, dashed line shows results for the optimistic scenario when additional vaccination is
supported by national efforts or international aid.
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3.4. Combined Effects of Vaccination and Relaxed NPIs under Baseline, Realistic, and
Optimistic Scenarios

To study the effects of vaccination in the background of decreasing NPI compliance,
we ran three additional simulations under the existing vaccination scenarios (baseline,
realistic, and optimistic), but with increasing transmission rates. The scenarios used more
closely reflect the reality of decreasing NPI compliance and policy changes in response
to increased levels of vaccination. In these simulations, the transmission term beta was
increased by 0.05 every 14 days, until the maximum transmission rate from the calibration
phase was reached, or until the simulation ended (details in Supplementary Table S2).

In the baseline vaccination scenario with relaxed NPIs, there were 394,273 cumulative
infections at the end of the projection period for Guinea, which was 10% greater than the
cumulative infections simulated with constant NPI compliance (Figure 4). For Liberia, the
result was 3,755,340 cumulative infections—a 5% increase. In Sierra Leone, the change
from decreasing NPI compliance was the greatest, leading to a 63% increase that resulted
in 974,184 cumulative infections.
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Figure 4. Graphs showing the results for vaccination with relaxed NPI compliance for Guinea (A,D),
Liberia (B,E), and Sierra Leone (C,F): (A–C) show daily incident infections; (D–F) show daily cumula-
tive infections. The black line shows results for the baseline simulation with relaxed NPIs. The dark
grey, dotted line shows results for the realistic scenario, when all of the promised COVAX doses are
administered, with relaxed NPIs. The light grey, dashed line shows results for the optimistic scenario,
when additional vaccination is supported by national efforts or international aid, with relaxed NPIs.

In Guinea, comparing the vaccine scenarios with and without relaxation of NPI com-
pliance shows an inverse trend. The realistic scenario had 8% more infections when NPIs
were relaxed, while the optimistic only had 4% more infections. In Sierra Leone, the trend
was similar, with 63% more infections for the realistic scenario and 61% for the optimistic
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scenario. In contrast, the changes for Liberia were smaller, with 5% more infections in the
realistic scenario with decreasing NPI compliance, and 6% in the optimistic scenario.

4. Discussion
4.1. Vaccination

Arguably, the greatest public health tool to control a highly contagious disease out-
break such as COVID-19 is an effective vaccination campaign. Fortunately, efficacious
COVID-19 vaccines are now becoming available in Africa through the COVAX initia-
tive [52,53], Africa CDC [54], and other donation sources [55–57]. An important goal for
COVID-19 vaccination campaigns is to rapidly vaccinate as much of the population as
possible. Importantly, vaccination alone cannot halt SARS-CoV-2 transmission [58]. Since
inhalation is the predominant route of transmission for COVID-19, the public is at greater
risk from an infected individual. COVID-19 therefore spreads more rapidly than EVD, but
is less fatal.

Initial vaccination efforts in Africa have included priority vaccination of healthcare
providers and those at high risk of severe disease and death [59]. Working against gov-
ernment vaccination efforts in these West African nations are vaccine hesitancy and low
trust of government interventions. For example, a recent survey indicated that only one in
three Liberians were interested in receiving COVID-19 vaccination [60]. Given that 78%
of Liberians responding to this survey indicated that they mistrust their government’s
assurance that COVID-19 vaccines are safe, this vaccine skepticism is unsurprising.

Concerns over rare blood clotting that occurred in Europe from the Oxford–AstraZeneca
vaccine have worked against COVAX vaccine acceptance. In response to the initial con-
cerns over blood clotting from the Oxford–AstraZeneca vaccine, some European countries
restricted vaccine distribution to certain age groups, or gave away their vaccine sup-
ply [61,62]. Following thorough investigation of this rare blood clotting disorder, the
Oxford–AstraZeneca vaccine is now authorized for distribution in over 144 countries
worldwide. Serious adverse events with this vaccine are notably quite rare, with 455 out
of nearly 2 million vaccine doses being associated with an anaphylaxis-related adverse
vaccine reaction [63]. However, information alone does not alleviate the public’s mis-
trust of government, particularly once concerns have become widespread on social media
platforms [64].

Given global circulation of ever-emerging variant strains of SARS-CoV-2—including
from Brazil, India, South Africa, and the UK—as well as the fact that many variants have
the potential to spread COVID-19 more rapidly, it is imperative to vaccinate as many
persons as possible against COVID-19. Current research demonstrates that the Oxford–
AstraZeneca vaccine (distributed through COVAX) is partially (66%) protective against the
Alpha variant (formerly: B.1.1.7 SARS-CoV-2 variant), and is also 60% effective against
the Delta variant (formerly: B.1.617.2). Recent information indicates that a booster dose
(i.e., vaccine dose #3) of the AstraZeneca vaccine imparts enhanced immunity against all
SARS-CoV-2 variants [65].

Our models limited the role of the healthcare system to the removal of infected and
contagious individuals from the general population. Such interventions primarily depend
on implementing barriers to the methods of transmission, early detection and identification
of infected or potentially infected individuals, and sequestration of those individuals away
from the susceptible population.

As demonstrated by the modeling results, current vaccination rates reported in these
nations alone are insufficient to control the spread of COVID-19. At current rates, NPIs
must remain in place to protect the maximum number of individuals from becoming
exposed. Our simulations showed that immunization campaigns, where scarce vaccine
resources are deployed judiciously as ring vaccinations, can greatly help to contain the
spread of COVID-19 in these nations. We assigned a greater daily number of vaccinations to
Guinea—in part due to the greater number of vaccine doses currently allocated (>1 million),
but also due to this nation’s history of successful vaccination campaigns for EVD [66].
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4.2. Non-Pharmaceutical Interventions (NPIs)

Our model simulates a combined approximation of contact tracing, quarantine of
close contacts, and school closure NPIs. It also assumes that hospitalization of infected
individuals will be more effective than home isolation, since hospitalized patients are
less likely to violate isolation or quarantine than those not hospitalized. However, there
must be sufficient inpatient capacity, with effective infection control processes, to accept
infected individuals. As demonstrated during the Ebola outbreaks and the early phase
of the COVID-19 pandemic, healthcare workers are at increased risk of contracting these
diseases. Since infected workers are not sequestered until diagnosed, hospitalization of all
infected individuals might slow the spread of disease to the surrounding community, but
is unlikely to be 100% effective.

Contact tracing and isolation of infected individuals or quarantine of close contacts
should have a significant positive effect on reducing disease transmission. The CDC
estimates that between 25% and 40% of infected individuals remain asymptomatic [67].
Without real time testing and immediate sequestration, a significant number of unidentified
disease spreaders can remain at large. Compounding this—even among those who develop
symptoms—is the long COVID-19 incubation period (up to 12 days), and disease transmis-
sion potential at least two days prior to symptoms. Finally, regardless of the COVID-19
testing method used, inaccuracies will result in a failure to identify all infected individuals.
All COVID-19 tests have varying sensitivity, and can give false negatives.

Disease transmission most often occurs through inhalation exposure to aerosols, with
significantly lesser transmission due to indirect spread from contaminated surfaces [68].
Thus, physical distancing and reducing exposure to aerosols can optimize the benefits of
NPIs, especially through school closures and internal movement restrictions [69].

Importantly, community participation in NPI decision making enhances NPI accep-
tance [70]. Implementing successful NPIs is challenging, especially for many African
nations. Food scarcity, access to clean drinking water, and poverty all pose obstacles to the
mitigation efforts implemented in Western countries. Complicating matters, the COVID-
19 pandemic contributed to Africa’s first economic recession in 25 years [71]. Different
infectious diseases can have different economic effects, unrelated to case numbers [72].
Compared to EVD, the moderately lethal but much more highly transmissible COVID-19
triggered a steep economic downturn [73]. This reflects national and international policies
enacted to contain the COVID-19 pandemic [74].

Multiple NPIs that increase social distancing and strengthen healthcare systems can
reduce COVID-19 case numbers and deaths. Population compliance from prior NPI
adherence during the EVD outbreak may expedite many of these same measures during
the pandemic. For example, school closures during 2014–2015 lasted for 5 months in
Guinea [44], 6 months in Liberia [45], and 9 months in Sierra Leone [46]. Results from
this study of daily incident infections and cumulative infections in Guinea, Liberia, and
Sierra Leone (Figures 3 and 4) demonstrate differences in the effectiveness of the various
interventions. Such differences are dependent on the scale of intervention as well as the
country’s preparedness level. Assessments of the effects of possible changes to mitigation
strategies such as lockdowns or re-closing of schools and airports by each country resulted
in thousands of fewer infections, while relaxing current mitigation efforts resulted in
significant increases in the numbers of daily infections.

4.3. Modeling Limitations

Similar to other emerging diseases, modeling of the spread of COVID-19 is very
challenging. Erroneous assumptions may become magnified when modeling countries
with limited resources and restricted capabilities in their existing healthcare systems.

A major limitation is the under-reporting of COVID-19 cases, deaths, and hospital-
izations. The quality of data reported by disease surveillance systems impacts the quality
of modeling results. Additionally, low testing, limited laboratory capacity, and other
infrastructural limitations in the modeled countries suggest that under-detection and,
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consequently, under-reporting of cases and deaths are significant. However, the magnitude
of these problems is very difficult to quantify. Despite accounting for 17% of the world’s
population, COVID-19 reporting indicates that Africa accounts for <3% of global cases and
<4% of deaths. Heterogeneity in the reported data may be attributable to population demo-
graphic differences across African countries (i.e., COVID-19 mortality could be limited by
the younger age structure). Despite these data limitations, early incorporation of NPIs in
Africa is an important measure that potentially limited the spread of COVID-19.

Potential confounding factors for detailed analysis in the countries modeled included
Guinea only reporting hospitalized COVID-19 deaths, Liberia only reporting sporadic
COVID-19 deaths, and no new COVID-19 deaths reported from Sierra Leone during
29 January–8 June 2021. Therefore, COVID-19 CFR approximations in these nations are
problematic. Of these three nations, COVID-19 reporting is most complete in Sierra Leone.

Demographics and incorporated measures are likely not the only factors that explain
the differences between COVID-19 data reported from Africa and from other regions of
the world. Poverty, food insecurity, political instability, and the public health burden from
endemic diseases (e.g., malaria, tuberculosis, HIV) are existing challenges affecting the
response to and impact of the COVID-19 pandemic in Africa.

Multiple assumptions may affect disease modeling efforts, especially model calibration
and estimation of the number of infections from reported cases and deaths. Based on the
scarce availability of data, the incorporated COVID-19 prevalence calculator [39] provides
an explicit method for estimating infections in modeling regions. However, underreporting
may still constrain results.

Incomplete data on the geographical location of cases and deaths required additional
assumptions for seed locations and infection distribution. In these models, the location of
initial seeding was chosen based on existing reports, focused mainly on capital regions and
large cities. However, it is likely that access to COVID-19 testing in the countries modeled
is not evenly distributed, and may be less available in remote areas, which could lead to dis-
proportionate numbers of cases at the regional level. Limited reporting on seroprevalence,
and testing policies focused on symptomatic cases admitted to hospitals, make assessing
the exact magnitude of under-detection difficult to validate. Additionally, the model design
did not incorporate the effects of waning immunity after COVID-19 infection.

In the model results presented, vaccine efficacy after the first vaccine dose was es-
timated at 63%, and the time to build immunity was estimated at 14 days. The applied
modeling methodology does not consider the effects of a second or third dose. Inability to
incorporate unknown local policies regarding timelines of administering additional doses
of COVID-19 vaccine is another modeling limitation.

Irregularities in vaccination rates in the modeled countries were not predicted. Our
model assumed constant daily vaccination rates, continued throughout the projected
timeline. However, based on available data on the progress of vaccination campaigns,
significant vaccine supply shortages, insufficient numbers of healthcare workers to support
the vaccination process, and day-to-day variations in vaccine delivery and administration
can all occur. Our model also does not account for vaccine hesitancy consequences.

The vaccination parameters incorporated in the model were chosen based on cur-
rently available information on the types and characteristics of the COVID-19 vaccines
administered. It is important to note influencing factors, such as increased vaccination man-
ufacturing capacities and political commitment, as these dynamics may strongly impact
vaccination capacity.

5. Conclusions

Our modeling of the effects of an improved vaccination campaign, combined with
relaxation of NPIs, showed that higher vaccination rates had a greater impact on the rate of
infections. A moderate vaccination rate in Guinea (realistic scenario) resulted in 2% fewer
infections, while the higher rate of vaccination (optimistic scenario) reduced infections by
8% compared to the baseline scenario. For Liberia, the moderate rate of vaccination resulted
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in a <1% increase in infections, while the higher rate of vaccination reduced infections
by 5%. In Sierra Leone, there was no effect from a moderate vaccination rate paired with
NPI relaxation, but a higher vaccination rate resulted in a 10% reduction in infections over
baseline.

The international support that similarly halted the Ebola epidemic—mainly via sig-
nificant improvements to healthcare infrastructure and human capacity-building in these
countries—could have the most impact on the spread of COVID-19. Targeted efforts should
be focused on activities that demonstrate the greatest effect in reducing disease transmis-
sion. Those measures that improve the effects of vaccination—community social distancing,
COVID-19 testing, and contact tracing—all appear to provide the greatest impact.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10101266/s1, Figure S1: Graphs showing the calibration phase of the simulations for
Guinea (A and D), Liberia (B and E), and Sierra Leone (C and F). A–C show daily incident infections.
D–F show daily cumulative infections. The black dots show the estimated infections. The grey
lines show the calibrated model results, Table S1: Default COVID-19 Modeling Parameters, Table S2:
Modeling parameters and assumptions employed for each country, Table S3: Summary of Vaccination
Scenarios, Table S4: Total Vaccine Doses Administered, Table S5: Percent Population Vaccinated,
Table S6: Cumulative COVID-19 Infections After 18-week Projection.
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