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Individuals infected with HIV display varying rates of viral control and disease progression,

with a small percentage of individuals being able to spontaneously control infection in

the absence of treatment. In attempting to define the correlates associated with natural

protection against HIV, extreme heterogeneity in the datasets generated from systems

methodologies can be further complicated by the inherent variability encountered at the

population, individual, cellular and molecular levels. Furthermore, such studies have been

limited by the paucity of well-characterised samples and linked epidemiological data,

including duration of infection and clinical outcomes. To address this, we selected 10

volunteers who rapidly and persistently controlled HIV, and 10 volunteers each, from

two control groups who failed to control (based on set point viral loads) from an acute

and early HIV prospective cohort from East and Southern Africa. A propensity score

matching approach was applied to control for the influence of five factors (age, risk

group, virus subtype, gender, and country) known to influence disease progression on

causal observations. Fifty-two plasma proteins were assessed at two timepoints in the

1st year of infection. We independently confirmed factors known to influence disease

progression such as the B∗57 HLA Class I allele, and infecting virus Subtype. We

demonstrated associations between circulating levels of MIP-1α and IL-17C, and the

ability to control infection. IL-17C has not been described previously within the context of

HIV control, making it an interesting target for future studies to understand HIV infection

and transmission. An in-depth systems analysis is now underway to fully characterise

host, viral and immunological factors contributing to control.
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INTRODUCTION

Individuals infected with HIV display varying rates of viral
control and disease progression, with a small percentage
being able to spontaneously control in vivo viral replication
without the need for anti-retroviral treatment (ART) (1). Such
exquisite control is likely to happen in the very early battle
between host and virus in acute and early HIV infection
(2). Our understanding of host-pathogen interactions and
the mechanisms underpinning the immune response to HIV
infection have been informed by studies of individuals who
demonstrate an enhanced ability to control in vivo viral
replication, and on non-pathogenic SIV infection in non-human
primates (NHP) (3). However, many of the studies of HIV
control are cross-sectional after set point viral load and control
has been achieved. Many of these studies have been focussed
in Clade A and C infection. A full understanding of the
mechanisms governing such spontaneous control of infection
has been hampered by the paucity of informative and linked
samples coupled to technology with sufficient resolution to define
this phenomenon.

Systems-based approaches have helped define novel factors
driving disease progression and protection during infections
such as tuberculosis (4, 5), yellow fever (6), malaria (7), and
influenza (8). But their application to aid the definition of the
drivers of spontaneous control in HIV has been limited. The
gene signature analysis of early gut mucosal T cell responses
to HIV-1 suggest that the absence of an inflammatory gene
signature may define Long-term non-progressors (LTNPs) (9).
But recent scRNA-Seq profiling during acute HIV infection in
a limited number of treatment-naïve subjects from the Females
Rising through Education, Support and Health (FRESH) (10)
cohort described an interferon response gene signature before
peak viraemia as well as the presence of gene modules associated
with antiviral control (APOBEC3A, IFITM1, and IFITM3) in
individuals able to naturally control infection (11). The post
hoc integrated systems analysis to the RV144 trial samples also
uncovered roles for Type I and II interfons, as well as IRF7 and
mTORC1 in susceptibility to infection post-vaccination (12). The
mammalian target of rapamycinmetabolic pathway has also been
shown to be key to enhanced CD8 activity in elite controllers
(13). These studies highlight the potential to utilise systems
methods to define the correlates associated with the control of
HIV-1 infection.

Heterogeneity in the data generated using high throughput
systems methodologies can be further complicated by the
inherent variability encountered at the population, individual,
cellular and molecular levels (14). Studies by Chowdhury et al.
(13) and others (15, 16) have highlighted the diversity of
transcriptional profiles that exist within a single subset of T
lymphocytes that accounts in part for control of HIV infection.
The control of HIV replication in vivo is multifactorial. Indeed
viral control has been shown to be associated with age at
infection, time post-infection, gender, HLA type, virus subtype
and route of infection (17–22). Obtaining sufficient numbers of
samples to allow for the control of all these confounders and

the discovery of new correlates of disease trajectory poses a real
challenge (23, 24).

We applied a unique approach to retrospectively classify HIV-
infected individuals in order to aid the delineation of a profile
associated with early and persistent in vivo control of HIV-1
replication in the absence of antiretroviral treatment. Using this
approach, we defined three groups of HIV infected volunteers
from Protocol C; a multisite early infection prospective cohort
consisting of 613 participants recruited from nine clinical
research centres in five African countries (25, 26) (Figure 1,
also on https://dataspace.iavi.org/). These groups comprised
volunteers with low (n = 10), medium (n = 10) and high (n
= 10) set point viral load who were identified within days of
their estimated date of HIV infection and followed over time
for up to 7 years. Importantly, the low viral load volunteers
showed rapid and persistent control of viral replication in the
absence of treatment, and had sufficient samples available during
the resolution of peak infection to enable the investigation of
signatures associated with rapid and persistent HIV control. We
present the profile for fifty-two soluble proteins in the acute phase
of HIV infection across the three groups, demonstrating the
potential to identify unique signatures associated with ART-naïve
viral control using this selection approach.

METHODS

Ethics
This study was reviewed and approved by the following ethical
review boards: the Kenya Medical Research Institute Ethical
Review Committee, the Kenyatta National Hospital Ethical
Review Committee of the University of Nairobi, the Rwanda
National Ethics Committee, the Uganda Virus Research Institute
Science and Ethics Committee (Currently the UVRI Research
Ethics Committee) and the Uganda National Council of Science
and Technology, the University of Cape Town Health Science
Research and Ethics Committee, the Bio-Medical Research Ethics
Committee at the University of KwaZulu Natal, the University of
Zambia Research Ethics Committee, and the Emory University
Institutional Review Board. Informed consent was obtained from
all volunteers prior to the collection of study related resource. All
methods were carried out in accordance with relevant guidelines
and regulations.

Study Population and Selection Approach
Volunteers included in this study were selected from a
historic acute and early HIV infection prospective cohort
drawn from nine clinical research centres in South Africa,
Zambia, Uganda, Kenya and Rwanda enrolled from 2006 to
2011 (Figure 1). Details of study characteristics, distributions,
recruitment procedures, initial immunological methods and
epidemiological profiling data of the Protocol C cohort are
described elsewhere (18, 22, 25, 26).

Individuals from the study were ranked according to
the magnitude of their mean viral load (Geometric mean)
measurements taken between 9–36 months post-EDI (estimated
day of infection), and divided into quartiles. Mean viral load was

Frontiers in Immunology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 634832

https://dataspace.iavi.org/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Makinde et al. Control of HIV-1 Infection

FIGURE 1 | Derivation by country of the 30 volunteers used in this study from the African incidence cohort [Protocol C (22)].

calculated for 362 of the 613 volunteers from the Protocol C
cohort who did not receive antiretroviral treatment. A matching
algorithm (27) based on the nearest neighbour was then applied
to define the groups of volunteers for this study. Briefly, we
selected 10 Low viral load volunteers (LVLVs) from the first
quartile of the ranked dataset who had a visible period of dynamic
control of infection demonstrated by the presence of a downslope
in their viral load measurements, and who were able to control
viral load to ≤2,000 copies/mL in the first 3 years of infection.
The LVLVs were then matched with Intermediate viral load
volunteers (IVLVs, n = 10) from the second and third quartiles,
and High viral load volunteers (HVLVs, n = 10) from the fourth
quartile of the ranked dataset. Volunteers were matched on
age, clade, country, gender and risk group. Soluble proteins in
plasma were assessed at two timepoints in the period following
peak viraemia and within the 1st year of infection for each of
the selected volunteers (Supplementary Table 1). All individuals
assessed for this study were treatment naïve.

HLA Frequency Calculation
To determine the HLA I frequencies within the 362 ART-
naïve Protocol C volunteers, two-digit allelic frequencies
were calculated using the Los Alamos National Laboratory
HLA frequency and Graphing tool (https://www.hiv.lanl.
gov/content/immunology/hla). For each MHC Class I
alleles with an allele frequency >5%, we compared the set
point viral load of all positive volunteers with those of all
negative volunteers. Statistical tests used are described in
subsequent sections.

Plasma Analyte Quantification
Fifty-two soluble analytes were quantified in plasma using a
combination of six Meso Scale Discovery (MSD) human V-PLEX

panels including the Angiogenesis Panel 1 (VEGF-A, VEGF-C,
VEGF-D, Tie-2, Flt-1, PIGF, bFGF), TH17 Panel 1 (IL-17A, IL-21,
IL-31, IL-27, IL-23, IL-22, MIP-3α), Chemokine Panel 1 (Eotaxin,
MIP-1β, Eotaxin-3, TARC, IP-10, MIP-1α, IL-8, MCP-1, MDC,
MCP-4), Cytokine Panel 1 (GM-CSF, IL-1α, IL-5, IL-7, IL-12/IL-
23p40, IL-15, IL-16, IL-17A, TNF-β, VEGF-A), Cytokine Panel
2 (IL-1RA, IL-3, IL-9, IL-17A/F, IL-17B, IL-17C, IL-17D, TSLP),
Proinflammatory Panel 1 (IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-
8, IL-10, IL-12p70, IL-13, TNF-α), and Vascular Injury Panel 2
(SAA, CRP, VCAM-1, ICAM-1). Cryopreserved plasma from the
incidence study were thawed at room temperature and applied to
the panels according to the manufacturer’s protocol. Plates were
read on the MSD plate reader model MESO QuickPlex SQ 120.
All plasma samples for the study were thawed and run at the
same time and grouped on plates in the order in which they were
selected for the study to avoid intra-assay variability. Data was
collected for two replicates per sample using the MSD software
(Discovery Workbench Version 4.0). A five-parameter logistic
regression formula was used to derive sample concentrations
from the standard curves. Analytes below the lower limit of
detection were assigned a concentration of half the lower limit
of quantification (LLOQ).

Statistical Analysis
We analysed the MSD data using a non-parametric approach,
because of the small sample size and the non-Gaussian
distribution, as determined using the Shapiro-Wilk test.

Non-parametric analysis (Mann-Whitney test, comparing
ranks) of the differences in VL measurements for individuals
expressing HLA alleles was performed in Graphpad
Prism 8 Software. P-values <0.05 were considered
significant. Propensity score matching to define study
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FIGURE 2 | (A) Ranks of set point VL calculated for 362 volunteers between 9 and 36 months post infection showing distribution of Low viral load volunteers (LVLVs),

Intermediate viral load volunteers (IVLVs) and High viral load volunteers (HVLVs). Ranked dataset was also divided into equal quartiles based on set point viral load.

(B) Set point VL correlates inversely with mean CD4 counts calculated over the same period (Pearson’s r = −0.2892; p < 0.0001). (C) Subtype and gender

distribution of ART naïve volunteers by quartiles of the ranked dataset. Infecting subtype and gender both have a relationship with set point VL.

populations was executed using the MatchIT package
(27) in R. Non-parametric test for similarities in the age
distribution between the study groups was performed in
SPSS 24.

We computed descriptive summary statistics, including
the median and inter–quartile range (IQR) and Spearman
correlations and excluded MIP-3α from further analyses due
to missing data (40%). The null hypothesis of the difference
between the two time points was assessed using Wilcoxon
Signed Ranks tests. We computed the (rank based) correlation
matrix for each group (LVLVs, IVLVs, HVLVs) by averaging the
concentrations over time and presented the correlation matrices
as heat maps.

To investigate the association between the mean viral load
of volunteers (which was used to define the study groups)
and the concentration of proteins in peripheral blood we
fitted a linear robust regression model where a function of
the ranks of the residuals was used instead of the Euclidian
distance in the least square estimation (28). SAA and CRP were
excluded from the model due to singularity issues. Based on
these univariate results, we selected the significant proteins
and estimated a multivariate robust regression model after
adjusting for multiple comparison (Bonferroni). We then fitted
a multivariate regression model with the significant (p-value
adjusted 0.05) proteins and removed those that eventually
where highly correlated to avoid multicollinearity issues in the
regression fitting.

R analysis was conducted using version 3.1.2, 2014, (available
at https://www.R-project.org).

RESULTS

The Outcome of Infection Is Linked to
Gender, Viral Subtype, and the Expression
of Immune Receptors on Lymphocytes
Set-point viral load represents a dynamic state of equilibrium
between infecting virus and the immune response in the
absence of complete elimination of the virus (29). It remains an
important measure of disease progression. Set-point viral load
was calculated for 362 of the 613 volunteers who did not receive
antiretroviral treatment over at least 36 months of follow-up.
Volunteers were then ranked and divided into equal quartiles
to explore any associations with disease progression (Figure 2A).
Median set point VL for the 362 volunteers was 26,061 copies/ml
(IQR: 6,981–65,813 copies/mL). Mean CD4 counts calculated for
the same period for all 362 volunteers was inversely correlated
with mean viral load (r =−0.2892, p <0.0001) (Figure 2B).

We examined the distribution of gender and viral subtype
within our ranked dataset. In agreement with previous studies
(18, 22) our analysis showed that that women had lower set point
viral loads than men. There was also a higher representation of
Subtype A in the lower quartiles, with the opposite being true for
Subtype C infected subjects (Figure 2C).

To assess the impact of MHC on disease progression, we
compared the influence of Class I alleles with an allele frequency
> 5% on the set point viral load and found that individuals with
B∗57 (p < 0.0001) and C∗04 (p = 0.0335) had lower and higher
set point viral loads, respectively, compared with individuals
lacking either HLA allele (Figures 3A,B).
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FIGURE 3 | Distribution of set point VL based on the presence of MHC Class I (A,B). Violin plots show individual data points as well as the 25th, 50th, and 75th

percentiles. The null hypothesis was tested using a non-parametric unpaired test (Mann-Whitney p < 0.05 considered significant).

FIGURE 4 | Locally weighted scatterplot smoothing (LOWESS) curves

showing the overall trend in VL (black circles) and CD4 counts (red squares) for

Low viral load volunteers (LVLVs) (A), Intermediate viral load volunteers (IVLVs)

(B) and High viral load volunteers (HVLVs) (C) over 36 months post infection. N

= 10 for each group. The shaded region indicates the dynamic period of

immune control observed in the LVLVs following peak viraemia.

A Propensity-Based Approach to Sampling
an HIV Incidence Cohort to Aid Systems
Analysis
During untreated HIV infection, the rate of viral replication
and set-point probably reflects the dynamic interaction between
the virus and host responses (23). We defined Low Viral Load
Volunteers (LVLVs) as those with a set point of<2,000 copies/mL
in line with previous studies (1) and were able to identify 40
Protocol C volunteers within this category. Ten of the 40 LVLVs
identified had sufficient samples and viral load measurements
collected over the period following peak viraemia for analysis.
There was a steady decrease in viral load in the LVLVs over
the 12 months following peak viraemia in the absence of ART
(Figure 4A, Supplementary Figure 1). We focussed initially on
the period immediately following peak viraemia in an effort to
describe correlates of the early control of viral replication.

The ability to control viral replication in vivo has been linked
to factors such as age at infection, time post-infection, gender,
HLA type, route of virus entry and HIV subtype (17–22). In an
effort to control for the confounding effects of some of these
factors, we utilised a propensity score matching approach (27),
which allows the matching of persons in one group with persons
in another group based on each case’s propensity score. For all
the volunteers in the first group (LVLVs), we selected an equal
number of volunteers from quartiles 2 and 3 (Figure 2A) based
on their propensity scores for age, time post infection, gender,
route of virus entry and infecting virus subtype. We designated
the group selected from quartiles 2 and 3 as Intermediate
viral load volunteers (IVLVs). We applied the same matching
approach to volunteers in quartile 4 to identify 10 High viral load
volunteers (HVLVs), from the ranked dataset. It was impossible
to match on HLA haplotypes due to the diversity of alleles
represented in the cohort.

We successfully identified three distinct groups consisting of
10 individuals per group, from the ranked dataset that were
matched on age, gender, risk group (route of infection), country
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TABLE 1 | Characteristics of groups selected from the HIV incidence cohort.

Study group

LVLVs IVLVs HVLVs

Age (years)α 27.5 (23–32) 28.5 (28–32) 35 (29–38)

Gender Female 5 5 5

Male 5 5 5

Risk group Discordant couple 8 8 8

MSM 1 1 1

Other heterosexual 1 1 1

Clade A1 5 5 5

C 3 3 3

D 2 2 2

Country Kenya 1 1 1

Rwanda 3 3 3

South Africa 1 1 1

Uganda 3 3 3

Zambia 2 2 2

Mean VL 909.86

(86.16–

1426.02)

12744.535

(9163.02–

25803.85)

114331.03

(81899.77–

268402.30)

Mean CD4 count 710.345

(561.37–

817.22)

533.955

(424.95–

584.08)

506.085

(365.42–

692.21)

Continuous variables shown as median (interquartile range), other variables expressed

as count.

α Wilcoxon test (p = 0.183).

and infecting subtype (Figures 4A–C, Table 1) and for whom
samples were available at two timepoints within the initial phase
of control of viral replication immediately after peak viraemia.
Given the age of the cohort, sample availability within this period
(obtained from dataspace.iavi.org) was a real challenge. Days
post EDI was also considered during the selection of these early
timepoints with matched timepoints no more than 6 months
apart where possible (Supplementary Table 1).

Concentrations of Soluble Markers in the
Acute Phase Are Associated With Early
and Sustained Control of in vivo Viral Load
We measured the levels of 52 soluble proteins in plasma at two
timepoints following peak viraemia and report the median and
IQR for the two timepoints for all volunteers (Table 2). For the
most part, protein concentrations were not significantly different
across the two early timepoints assessed with the exception of
VCAM1 (p = 0.02) and IL-10 (p = 0.012) for the overall dataset,
IL-6 (p = 0.037) and IL-17C (0.006) for LVLVs, SAA (p = 0.027)
and CRP (p= 0.027) for IVLVs, and IFN-γ (p= 0.01) for HVLVs
(group data also shown in Supplementary Figures 2, 3).

To further investigate the association between the mean viral
load of volunteers (which was used to define the study groups)
and the concentration of proteins in peripheral blood we applied
a univariate regressionmodel where a function of the ranks of the
residuals was used instead of the Euclidian distance in the least
square estimation (28). The estimates for nine analytes that were

significant are shown in Table 3 (GM-CSF, p < 0.001; MIP 1-α, p
<0.001; IL-8, p < 0.001; IFN-γ, p < 0.001; IL-2, p < 0.001; IL-13,
p= 0.05; IL-17C, p < 0.001; IL-9= 0.02; IL-31= 0.02).

Based on the results of the univariate analyses, we generated
a multivariate robust regression model using the proteins
which were associated with mean viral load, after adjusting
for multiple comparison (Bonferroni) and excluding highly
correlated analytes to avoid issues of multicollinearity. The
only protein that remained significantly associated with mean
viral load was MIP1-α (p < 0.001) after p-value adjustment
(Holmmel). IL-8 was excluded from the model because it was
highly correlated with GM-CSF (Spearman correlation, 0.71).

Exploratory heatmaps based on the lower triangle Spearman
correlation matrices and using the average plasma protein
value between the two timepoints for each group suggests
that differences exist in the relationships between different
plasma proteins across the groups (Figure 5) with more frequent
positively correlated proteins seen in IVLVs and HVLVs
compared to LVLVs.

DISCUSSION

We present a unique approach to classifying individuals drawn
from an acute and early HIV infection cohort that considers a
range of factors known to have an impact on disease progression,
to efficiently define the peripheral secretory profile associated
with early and sustained control of in vivo viral replication. This
selection approach enabled us to define the profile of 52 proteins
deployed within the specific period of dynamic immunological
control of viral replication for all volunteers in the absence of
antiretroviral treatment. Expectedly our ranking approach show
that measurements for CD4 cells, which are the first cells to
become infected during transmission (30, 31) and continue to be
a primary target for HIV-1 (32), were negatively correlated with
set point viral load calculations.

HIV subtype has been shown to be associated with disease
trajectory and outcome (21, 22, 33, 34) but limitations of study
size and design have meant that such findings have been largely
descriptive in nature. By matching the selected individuals from
Protocol C based on other relevant confounding variables, we
were able to address the independent contribution of viral
subtype to the control of viral replication in vivo. We report
similar observations to Price et al. (22) who performed a subtype-
by-geographic-region covariate analysis on the whole Protocol C
cohort and showed that Subtype A-infected volunteers weremore
likely to control viral load than Subtype-C infected volunteers.
Also in this cohort, Amornkul et al. (18) show that subtype
C is associated with faster progression to AIDS and CD4+
T cell decline compared to subtype A. Here we also show
a higher representation of Subtype-A relative to Subtype-C
infected subjects in the lower quartiles of the viral load-ranked
ranked dataset of the same cohort.

Whilst the diversity of HLA types represented in the cohort
did not permit complete matching of volunteers based on this
factor, well-reported trends like the favourable influence of B∗57
on disease control were evident. The presence of the less studied
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TABLE 2 | Descriptive statistics for all the proteins assessed.

A B C D E

Protein Time 1 (pg/mL) Time 2 (pg/mL) Wilcoxon Signed Ranked Test p-values

Median IQR Median IQR Overall LVLVs IVLVs HVLVs

GM-CSF 0.247 0.154 0.252 0.148 0.629 0.432 0.61 0.695

IL-1α 0.318 0.961 0.13 0.499 0.162 0.236 0.624 0.722

IL-5 0.755 1.022 0.767 0.886 0.339 0.77 0.492 0.193

IL-7 1.279 0.573 1.306 1.016 0.792 0.695 0.695 0.922

IL-12/IL-23p40 84.18 86.74 72.94 61.74 0.164 0.432 1 0.084

IL-15 1.494 1.914 1.355 2.045 0.502 0.919 0.636 0.407

IL-16 216.6 118.9 205.1 148.5 0.641 0.846 0.625 0.232

TNF 0.164 0.102 0.159 0.08 0.175 0.103 0.922 0.492

IFN-γ 5.577 5.834 6.08 3.984 0.245 0.695 0.77 0.01

IL-1β 0.112 0.06 0.119 0.053 0.764 0.141 1 0.636

IL-2 0.403 0.356 0.303 0.307 0.202 0.695 0.636 0.16

IL-4 0.041 0.035 0.043 0.062 0.665 0.492 0.193 0.636

IL-6 0.851 0.701 1.074 0.83 0.245 0.037 0.232 0.131

IL-10 0.992 1.409 0.706 0.808 0.012 0.064 0.492 0.084

IL-12p70 0.143 0.291 0.169 0.245 0.863 0.432 0.922 0.407

IL-13 0.69 4.281 0.974 2.534 0.903 0.557 0.846 0.625

IL-1Rα 106.6 97.5 96.12 89.15 0.262 0.492 0.922 0.131

IL-17A 3.058 2.193 2.802 1.457 0.171 0.557 0.625 0.084

IL-17AF 2.043 2.281 2.143 1.428 0.968 0.77 0.77 0.625

IL-17B 0.952 0.684 1.058 0.894 0.428 1 1 0.084

IL-17C 3.065 4.577 1.943 4.364 0.07 0.006 0.557 0.922

IL-17D 14.68 10.25 13.69 9.831 0.761 0.625 0.557 0.625

Eotaxin 99.99 37.99 91.61 67.6 0.584 1 0.846 0.322

MIP-1β 24.13 13.78 25.5 20.39 0.871 0.922 0.695 0.846

Eotaxin3 14.73 11.03 13.9 12.95 0.67 0.846 0.625 0.557

TARC 42.4 36.19 39.67 37.17 0.109 0.432 0.432 0.375

IP-10 264.3 265.9 258.3 211 0.984 0.625 0.131 0.193

MIP-1α 9.032 4.086 8.558 4.78 0.655 0.232 0.77 1

IL-8 138.8 102.5 108.4 106.3 0.99 1 0.722 0.922

MCP-1 80.6 29.55 76.76 35.29 0.516 0.492 0.846 0.77

MDC 666.7 263.8 711.3 434.7 0.245 0.492 0.625 0.695

MCP-4 17.2 9.422 17.08 10.46 0.371 0.131 0.77 0.625

MIP-3α 7.554 4.884 5.984 4.640 – – – –

VEGF 11.01 6.808 10.61 5.739 0.67 1 0.77 0.922

VEGFC 7.471 13.21 10.14 18.31 0.221 0.695 0.625 0.322

VEGFD 154.6 204.5 127.7 196.1 0.328 0.77 0.846 0.492

Tie2 2636 3500 2644 4066 0.777 0.232 0.625 0.922

Flt-1 16.54 36.8 19.7 31.68 0.503 0.846 0.922 0.275

PIGF 0.585 2.367 0.734 2.384 0.73 0.625 0.492 0.846

βFGF 0.592 1.014 0.67 1.435 0.213 0.432 0.232 1

SAA 1219000 2977000 1384000 13780000 0.135 0.375 0.027 0.492

CRP 1029000 3681000 1455000 6862000 0.158 0.432 0.027 0.432

VCAM1 658600 334200 617900 168700 0.02 0.492 0.16 0.16

ICAM1 518300 287700 551800 258800 0.839 0.922 0.695 1

IL-3 6.858 7.636 6.777 6.496 0.57 0.432 0.322 0.432

IL-9 0.502 0.415 0.476 0.299 0.213 0.922 0.432 0.193

TSLP 0.75 0.488 0.706 0.413 0.158 0.064 0.432 0.695

(Continued)
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TABLE 2 | Continued

A B C D E

Protein Time 1 (pg/mL) Time 2 (pg/mL) Wilcoxon Signed Ranked Test p-values

Median IQR Median IQR Overall LVLVs IVLVs HVLVs

IL-21 1.723 2.404 0.872 1.828 0.08 0.286 0.183 0.636

IL-31 0.117 0.123 0.088 0.104 0.114 0.131 0.322 1

IL-27 1425 431.2 1554 677 0.855 1 0.557 0.232

IL-23 0.359 8.859 0.359 3.284 0.74 0.813 0.371 1

IL-22 1.61 5.837 2.356 6.818 0.641 0.322 0.625 0.492

(A): Median and IQR shown at each timepoint for all 30 volunteers. (B–E): The null hypothesis of the difference between the two time points assessed was assessed using Wilcoxon

Signed Ranks tests for all volunteers (B), LVLVs (C), HVLVs (D) and HVLVs (E). p-values below 0.05 were interpreted to be significant. Proteins are presented by broad functional groups.

Bold values indicate where p values are less than 0.05.

TABLE 3 | Model estimates from the univariate non-parametric model to

investigate the association between the mean viral load of volunteers and the

concentration of proteins in peripheral blood.

Protein Beta- coefficient Standard error t-value P-value

GM-CSF 1 0 6.55E+14 <0.001

MIP1α 124.9 34.75 3.59 <0.001

IL-8 433 64.91 6.67 <0.001

IFN-γ 25,720 7,732 3.33 <0.001

IL-2 82,300 26,460 3.11 <0.001

IL-13 31,910 15,510 2.06 0.05

IL-17C 2,721 352.3 7.72 <0.001

IL-9 3,130 1,267 2.47 0.02

IL-31 563.1 231.7 2.43 0.02

Only proteins with a significant association with set point viral load are reported.

C∗04 HLA Class I allele, which is reportedly associated with B∗35
on chromosome 6 (35, 36) appeared to have a less favourable
influence on disease control in this study. This potentially
deleterious effect of the C∗04 allele on disease progression has
only been reported by a few studies that focused on either HIV-
1 subtype B alone (35–37) or mostly C (38). Our data covering
HIV-1 subtype A, C, D and recombinant viral subtypes suggests
that this effect of C∗04 may apply regardless of the subtype of
the virus. It has been suggested that this effect may be mitigated
by the association of C∗04 with other deleterious HLA Class I
alleles or with the killer-cell immunoglobulin-like receptor (KIR)
KIR2DS4 (37). These observations provide some validation of the
novel propensity matching method presented in this study.

Early HIV infection is characterised by a cytokine storm that
is detectable at the levels of gene (11) and protein expression (39).
We were able to focus on the dynamics of the plasma protein
response following peak viraemia and during the 1st year of
infection when the immune system is most actively involved in
the control of viral replication. The fact that the circulating levels
of most of the plasma proteins appeared to be largely stable in all
volunteers with a few exceptions (IL-6, IL-17C, SAA, CRP, and
IFN-γ) over the period assessed was somewhat surprising. For
the most part the indicated analytes have been linked previously

to HIV disease outcomes (40, 41), even if the strength of their
associations remain poorly understood. A notable exception was
the falling levels of IL-17C observed in LVLVs. In contrast to
other members of the IL-17 family (IL-17A and IL-17F), IL-
17C is predominantly produced by epithelial cells (42–44) and
not leucocytes (45), with broad activity on epithelial cells, TH17
leucocytes (46) and monocytic lineage cells (43). Although not
fully described within the context of HIV-1 infection, early
release of IL-17C in other models of infection suggest a dual
function in the regulation of both innate and adaptive immune
responses (45). The decreasing levels of serum IL-17C seen in
LVLVsmay suggest a role in early recruitment and differentiation
of innate and adaptive modulators in response to HIV infection-
i.e., prior to peak viral load, and subsequent downregulation in
those who eventually go on to control infection. The difference
in its cellular source compared to other members of the IL-
17 cytokine family makes it a potentially interesting target for
further studies to examine a potential role in barrier immunity
during and immediately after transmission at mucosal surfaces.

Our regression analysis suggests a relationship between the
levels of nine plasma proteins including IL-17C in the period
following peak viraemia and set point viral load, with MIP-1α
being themost significantly associated withmean viral load in the
multivariate analysis. MIP-1α is one of three well-characterised
β-chemokines produced by immune cells including CD8 and
CD4T cells that have been implicated in the inhibition of
HIV infection (47, 48). Whilst the evidence strongly suggests

that T cell capacity to secrete β-chemokines like MIP-1α is

strongly associated with in vivo and in vitro viral control (49–

52), the relationship between the quantity of circulating soluble

β chemokines and disease outcome appears to be less clear (53–

55). Our results suggest that the concentration of MIP-1α in the
period following peak viraemia is strongly associated with set
point viral load.

Several groups have assessed the relationships between
specific cytokines and the control of viral replication (56–
58). Our exploratory analysis of the correlations between
52 proteins during the period following peak viraemia
suggest that disease progression is underpinned by clear
differences in the deployment of immune modulators.
Whilst the functional implications of the negatively correlated
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FIGURE 5 | Correlograms of the correlations between 52 plasma protein concentrations for Low viral load volunteers (LVLVs), Intermediate viral load volunteers (IVLVs)

and High viral load volunteers (HVLVs). Blue and red squares represent positive and negative correlations, respectively with darker colours indicating a greater

magnitude of correlation.

proteins in LVLVs is not immediately clear, this and previous
observations validate the unique selection approach presented
here and the potential to apply it to support systems
investigation of the correlates that define natural control of
HIV-1 infection.

The impact of biological sex on the outcome of viral infections
has been highlighted by other groups (59, 60). Our ranked data
set showed that women had lower set point viral loads than men.
In comparing the two groups (men and women), we identified
differences in the levels of IL-7, a cytokine implicated in early
T cell development, proliferation and differentiation (61) in
the period studied. Levels of thymus and activation-regulated
chemokine (TARC), a chemokine constitutively produced in
the thymus and by keratinocytes and dendritic cells (62, 63)
with powerful chemoattractant effect on T cells was also
found to be higher in men in this study. Whilst recent
studies examining these sex differences point to a possible
role for increased levels of innate inflammatory cytokines (60)
on disease progression during viral infections, our data may
indicate differences in how T cells are activated/recruited and
deployed in men and women. A recent study by El-Badry
et al. highlights the impact of plasma levels of 17β-estradiol in
women on T cell activation in the acute phase of HIV infection.
It is worth noting the small sample size from which these
observations were made; confirmation of our observations will
be required.

Taken together with previous results, it is reasonable to state
that whilst our results suggest an association between levels of
soluble MIP-1α in the period of active immune suppression
of viral replication and disease progression, they also support
the notion that the mechanism of in vivo suppression of HIV
is likely multifactorial (64). As such efforts aimed at reducing
the potential for noise in datasets will go a long way to enable

the definition of the correlates associated with immunological
control of HIV.

We present our unique selection approach as a way to
potentially counter some of the noise associated with extreme
heterogeneity in datasets allowing for the application of high-
resolution systems methodologies to define the correlates
associated with natural control of HIV infection. Whilst the
ranking and propensity-based selection methods presented may
not directly predict correlates of natural protection against HIV-
1, they enable the exclusion of any noise arising as a result of
the factors that are controlled for in the study design. Given that
HIV pathogenesis is multifactorial, the tendency for such noise
to obscure valid observations is considered a real barrier to the
application of high dimensional (or systems) analytical methods
to aid the definition of the correlates of natural control (14). We
demonstrate the utility of the ranking and matching approach by
independently confirming known factors associated with disease
progression, albeit in a small study population. We also identify
novel soluble proteins such as IL-17C and illustrate differences
in the pattern of deployment of peripheral cytokines that tally
with disease progression. These findings demonstrate the utility
of the unique ranking and selection approach for systems analysis
is subsequent studies.
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