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Single-cell spatial architectures associated with clinical
outcome in head and neck squamous cell carcinoma
Katie E. Blise 1,2, Shamilene Sivagnanam 2,3, Grace L. Banik 3,4,5, Lisa M. Coussens 2,3 and Jeremy Goecks 1,2✉

There is increasing evidence that the spatial organization of cells within the tumor-immune microenvironment (TiME) of solid
tumors influences survival and response to therapy in numerous cancer types. Here, we report results and demonstrate the
applicability of quantitative single-cell spatial proteomics analyses in the TiME of primary and recurrent human papillomavirus
(HPV)-negative head and neck squamous cell carcinoma (HNSCC) tumors. Single-cell compositions of a nine patient, primary and
recurrent (n= 18), HNSCC cohort is presented, followed by deeper investigation into the spatial architecture of the TiME and its
relationship with clinical variables and progression free survival (PFS). Multiple spatial algorithms were used to quantify the spatial
landscapes of immune cells within TiMEs and demonstrate that neoplastic tumor-immune cell spatial compartmentalization, rather
than mixing, is associated with longer PFS. Mesenchymal (αSMA+) cellular neighborhoods describe distinct immune landscapes
associated with neoplastic tumor-immune compartmentalization and improved patient outcomes. Results from this investigation
are concordant with studies in other tumor types, suggesting that trends in TiME cellular heterogeneity and spatial organization
may be shared across cancers and may provide prognostic value in multiple cancer types.
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INTRODUCTION
Tumor microenvironments, comprising both neoplastic tumor
cells and recruited stromal cells of various lineages, including a
diverse assemblage of immune, mesenchymal, and vascular cells,
play a key role in both de novo progression of tumors and
regulating response to therapies1–3. Numerous studies have
reported that, in addition to the types and quantities of cells
present in the tumor immune-microenvironment (TiME), the
spatial organization of the TiME is prognostic for survival and
response to therapy in multiple cancer types4–13. Metrics that
quantify this spatial organization can range from simple density
ratios within specific tumor regions14, such as the Immunoscore15,
a now commonly used biomarker for colorectal tumor staging, to
more complex measures that account for the precise locations of
specific cells relative to other cells, such as mixing scores4 and
cellular neighborhood measures7. These more advanced spatial
quantifications are a result of emerging single-cell multiplex tissue
imaging modalities4,6,7,16–18, which provide detailed phenotypic
and effector proteomic markers for each cell, while maintaining
the spatial architecture of the tissue assayed. Knowing the precise
locations of cells in the TiME enables a deeper understanding of
how cells interact within the tumor, as both direct and indirect cell
signaling mechanisms require cells to be near, if not directly
adjacent to one another19. This understanding can aid treatment
decisions, as many therapies require spatial proximity of specific
cell types for efficacy10. Given that single-cell imaging technolo-
gies are still relatively new, there is much to be discovered
regarding how the spatial organization of cells within the TiME
relates to clinical outcome and may be used for patient
stratification decisions for therapy.
Head and neck squamous cell carcinoma (HNSCC) is the sixth

leading form of cancer worldwide20, and it accounts for more than
10,000 deaths per year in the US alone21. While patients harboring

human papillomavirus (HPV) within neoplastic cells tend to exhibit
a better prognosis, their HPV-negative [HPV(−)] counterparts
typically exhibit T cell suppressive TiMEs and have a significantly
greater risk of recurrence and shorter 3-year survival22–24. There is
a critical need to improve understanding of HNSCC TiMEs to
enable better patient stratification for therapy, as well as identify
new targets that could be leveraged for therapeutic intervention
to improve outcome, particularly for patients with HPV(−) tumors
who currently lack promising therapeutic options. We previously
developed a multiplex immunohistochemistry (mIHC) imaging
platform to aid studies investigating the immune contexture of
solid tumors and their response to therapies at the single-cell
level16,17. Using a sequential antibody staining protocol, detection
of 12–30 proteins can be enumerated at single-cell resolution
across a single formalin-fixed paraffin-embedded (FFPE) tissue
section. This enables single-cell phenotyping of discrete leukocyte
lineages, and importantly, reveals their spatial relationships with
other cells in the tissue section. Utilizing this mIHC approach on a
small cohort of eighteen HPV(−) primary and matched recurrent
HNSCC tumor samples collected from nine patients, we previously
reported immune contextures associated with disease recurrence,
most notably that myeloid inflamed profiles in primary tumors
exhibited shorter progression-free survival (PFS) compared to
lymphoid inflamed profiles16,17.
In this study, we have significantly extended our prior analysis

of this cohort, focusing on tumor heterogeneity and composi-
tional changes from primary to recurrent tumors, in addition to
using multiple spatial algorithms to quantify the spatial organiza-
tion of the TiMEs. We then correlated these spatial features with
PFS and identified TiME architectures that may be important for
therapeutic decision making. Overall, we found increased
neoplastic tumor-immune cell spatial compartmentalization in
primary tumors to be associated with longer PFS. These tumors
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also contained alpha smooth muscle actin (αSMA+) cells with
more organized structure located near T and B cells, as well as
near cells involved in antigen presentation. Our results are
concordant with those from other studies, indicating that the
features identified herein are likely shared and prognostic across
cancer types.

RESULTS
One to three regions of 25002 µm2 from each of the nine patients
primary and matched recurrent tumor resections (n= 18) were
analyzed, for a total of 47 regions (Table 1 and Fig. 1a). For this
study, we utilized a gating strategy with thirteen lineage or
functional protein biomarkers to classify cells as neoplastic tumor
cells, stromal cells (mesenchymal), or one of seven different
leukocyte subtypes spanning lymphoid and myeloid lineages
(Table 2 and Supplementary Fig. 1a). We investigated tumor
heterogeneity both within and across patient samples, quantified
the cellular spatial relationships within the TiME using a mixing
score and performed a neighborhood clustering method to
describe the association between TiME spatial architecture, clinical
features, and PFS.

Single-cell proteomic analyses reveal varying degrees of
tumor heterogeneity
To quantify how cellular composition varied across tumor regions,
we assessed tumor heterogeneity at multiple levels, including
intra-tumoral, intra-patient, and inter-patient cellular heterogene-
ity by calculating Kullback-Leibler (KL) divergences for each
region, performing hierarchical clustering, and conducting a
principal component analysis (PCA). The density of each cell type
per region was measured for all eighteen tumor specimens by
taking the count of each cell type divided by the measured tissue
area in mm2 (Fig. 1b, c). We then calculated the coefficient of
variation per cell type for each tumor, and averaged these values
to quantitatively describe the cell types contributing most to intra-
tumoral heterogeneity within the cohort. The coefficient of
variation is defined as the standard deviation divided by the
mean, and it provides a normalized measure of variability for
comparison across cell types with large differences in densities. On
average, B cells exhibited the greatest coefficient of variation
across the cohort relative to other cell types (Table 3). This is likely
due to the fact that B cells were frequently observed to be
spatially clustered together, resulting in regions of either high B
cell density or low B cell density despite being collected from the
same tumor (Supplementary Fig. 1b).
To further quantify and assess tumor heterogeneity both within

and across patients, we calculated the KL divergence of each
tumor region from five average cell type distributions. KL
divergence is a relative measure of how similar two distributions
are, with larger values reflecting less similarity between the
distributions and smaller values reflecting more similarity between
the distributions. This measure has been used previously to
quantify tumor heterogeneity6. By calculating and comparing the
divergences of each tumor region from multiple average cell type
distributions, we were able to assess heterogeneity within and
across tumors and patients. Overall, we observed that hetero-
geneity was lower across regions from the same tumor and
tumors from the same patient (primary or recurrent), while higher
across tumors from different patients. This is evidenced by smaller
intra-tumoral and intra-patient KL divergence values for the
majority of tumor regions (Fig. 1d).
The cellular distributions used to calculate the five KL

divergence values per tumor region were (1) the average cellular
distribution across all regions sampled from the same tumor
[“Intra-Tumor (P or R only)”]; (2) the average cellular distribution
across the patient’s primary and recurrent tumors [“Intra-Patient (P Ta
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and R)”]; (3) the average cellular distribution across all tumors in
the cohort collected from the same timepoint [“Inter-Patient (P or
R only)”]; (4) the average cellular distribution across all tumors in
the cohort resected from the same anatomic site [“Inter-Patient
(Same Anatomic Site)”], and; (5) the average cellular distribution

across all tumors collected from all patients in the cohort,
regardless of primary or recurrent status or anatomic site [“Inter-
Patient (all)”]. By comparing the relative KL divergence values to
each other, we found tumor regions to be more similar to regions
sampled from the same tumor and patient than regions collected

KE Blise et al.

3

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2022)    10 



from tumors of other patients. Notably, we found no significant
difference between “Inter-Patient (Same Anatomic Site)” and
“Inter-Patient (all),” indicating that tumor regions diverged by the
same degree from regions sampled at the same anatomic site as
they did from regions sampled at all three anatomic sites (oral
cavity, oropharynx, and larynx) of the head and neck region (Fig.
1d). Finally, given the large proportion of neoplastic tumor cells
comprising the TiME for many of the tumor regions, we assessed
KL divergence using only the distribution of immune cells present
and found similar results (Supplementary Fig. 1c). This indicates
that immune cell composition is more similar within regions from
the same patient than across regions collected from different
patients.

To further investigate intra-patient heterogeneity, we per-
formed unsupervised hierarchical clustering on the 47 tumor
regions based on their normalized density composition (Fig. 1e).
We found that two patients (3, green; 7, pink) contained all tumor
regions clustering together, independent of primary or recurrent
state. These patients also had the smallest intra-patient KL
divergence values (Fig. 1d), indicating that the cell densities of
these patients’ primary and recurrent tumors were similar to each
other. Three patients (2, orange; 4, red; 9, yellow) contained nearly
all regions clustered together. The remaining four patients’ tumors
exhibited greater degrees of intra-patient heterogeneity, as
demonstrated by the distance between primary and recurrent
tumor regions on the clustered heatmap (Fig. 1e). Overall, we
found that regions evaluated from the same patient tended to
cluster together more than regions evaluated from different
patients (Fig. 1e), indicating increased heterogeneity between
patients as compared to between samples from the same patient.
We also examined whether tumor regions clustered by the
anatomic resection site and found that the clusters formed did not
group by site. These results, in addition to those of our KL
divergence analyses, indicate that anatomic site was likely not the
main contributor of cellular heterogeneity in this cohort. PCA
results also supported these observations (Fig. 1f, g).

TiME cellular composition altered by therapy
Multiple studies have reported differences in TiME cellular
makeup25,26 and tumor clonal diversity27 between primary and
recurrent tumors. To assess whether any immune contexture
changes occurred following post-operative therapy in our cohort,
we analyzed the cellular composition of primary tumors as
compared to their recurrent tumors. All patients received a
combination therapy of cisplatin and/or cetuximab accompanied
by radiation following surgical resections of their primary tumors.
We used the average density of each cell type present across
regions for a given tumor and compared primary tumor
composition to their matched recurrent tumor composition. While
we did not observe any significant differences in cell density
between primary and recurrent tumors (p > 0.112), we did find
that all patients experienced a decrease in the density of B cells
from their primary to recurrent tumors (Fig. 2a, b). This result is
supported by a recent study that found that a large cohort of
HNSCC patients experienced a decline in B cells from primary to
recurrent tumors, and this reduction was dependent upon
patients receiving adjuvant chemoradiotherapy28. We found no
common differences across all patients for any other cell type,
although eight of the nine patients saw a decrease in the density
of neoplastic tumor cells from their primary to recurrent tumors
(Fig. 2b).
We then assessed whether patients exhibited similar composi-

tional differences in primary and recurrent TiMEs by performing
unsupervised hierarchical clustering on the normalized average

Fig. 1 Heterogeneity across patients and tumor regions. a Cohort and tissue region selection overview. One to three regions of 25002 µm2

were assayed with mIHC per eighteen tumor resections and are represented by the green boxes in the tissue images. Black scale bar =
2500 µm. b Density (cells/mm2) of each cell type present per individual primary (P) and recurrent (R) tumor. Each dot represents a single tumor
region (n= 47). c Density (cells/mm2) of each immune cell type present per individual primary (P) and recurrent (R) tumor. Each dot represents
a single tumor region (n= 47). d Box plot of the Kullback–Leibler divergences from a single tumor region’s cellular distribution compared to:
the tumor’s average cellular distribution [Intra-Tumor (P or R only)], the patient’s average cellular distribution [Intra-Patient (P and R)], the
cohort’s average cellular distribution across tumors of the same timepoint [Inter-Patient (P or R only)], the cohort’s average cellular distribution
across tumors of the same anatomic site [Inter-Patient (Same Anatomic Site)], the cohort’s average cellular distribution across all tumors from
all patients [Inter-Patient (all)]. P-values calculated using a one-way ANOVA multi-group significance test followed by a Tukey honestly
significant difference post-hoc test. e Heatmap of cellular composition across tumor regions. Rows are individual tumor regions that are
ordered by the hierarchical clustering of their cellular composition. Columns are the cell types used as clustering features. Composition was
normalized using a log10+ 1 transformation before clustering. Leftmost three columns are color coded by patient, tumor timepoint, and
anatomic site. f Principal component analysis on cellular density following a log10+ 1 transformation. Each point (n= 47) represents one
tumor region and is colored by patient. The shape of each point denotes primary or recurrent status. g Principal component analysis on
cellular density following a log10+ 1 transformation. Each dot (n= 47) represents one tumor region and is colored by anatomic resection site.

Table 2. mIHC cell phenotype classification.

Cell phenotype Antibody markers

CD8+ T Cell CD45+ CD20– CD3+ CD8+

CD4+ T helper CD45+ CD20– CD3+ CD8– FOXP3–

CD4+ regulatory T cell CD45+ CD20– CD3+ CD8– FOXP3+

B Cell CD45+ CD20+

Macrophage CD45+ CD20– CD3– CD66B– CD68+

Granulocyte CD45+ CD20– CD3– CD66B+

Antigen presenting cell CD45+ CD20– CD3– CD66B– CD68– MHCII+

Other immune CD45+ CD20– CD3– CD66B– CD68– MHCII–

CD8– FOXP3–

αSMA+ mesenchymal CD45– PANCK– αSMA+

Neoplastic tumor CD45– PANCK+

Functional markers PD-1, PD-L1, Ki-67

Table 3. Coefficient of variation.

Cell phenotype Average coefficient of variation

B Cell 0.658

Macrophage 0.563

αSMA+ mesenchymal 0.545

Neoplastic tumor 0.541

Granulocyte 0.523

Antigen presenting cell 0.519

Other immune 0.402

CD8+ T cell 0.384

CD4+ T helper 0.376

CD4+ regulatory T cell 0.311
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difference in cellular composition for each cell type. This resulted
in two groups of patients (Fig. 2c). Interestingly, the two patients
that received cetuximab (2, orange; 5, purple), rather than
cisplatin, clustered together within one of these groups and were
the only two patients to experience a decrease in the density of
every cell type following therapy. Across the cohort these patients
had the greatest decrease in the density of macrophages,
granulocytes, and other CD45+ immune cells present from their

primary tumors to their recurrent tumors following therapy (Fig.
2b, c). Interestingly, the one patient who received both cisplatin
and cetuximab (7, pink) was present in the other cluster from the
two patients who received only cetuximab. This was the only
patient to experience an increase in the density of neoplastic
tumor cells (Fig. 2b, c). This patient also experienced the second
largest increase in CD8+ T cells as well as the greatest decrease in
CD4+ regulatory T cells, potentially indicating a pro-inflammatory

a

c

b

d

CD8 + T Cell

CD4 + T Helper

CD4 + Regulatory T Cell

B Cell
Macrophage

Granulocyte

Antigen Presenting Cell

Other Immune

αSMA + Mesenchymal

Neoplastic Tumor

−2000

−1000

0

1000

2000

3000
Short PFS
Long PFS

Cell Phenotype

C
ha

ng
e 

in
 D

en
si

ty
 (c

el
ls

/m
m

2 )
(A

ve
ra

ge
d 

Ac
ro

ss
 R

eg
io

ns
)

CD8 + T Cell

CD4 + T Helper

CD4 + Regulatory T Cell

B Cell
Macrophage

Granulocyte

Antigen Presenting Cell

Other Immune

αSMA + Mesenchymal

Neoplastic Tumor

0

1000

2000

3000

4000

5000

Cell Phenotype

D
en

si
ty

 (c
el

ls
/m

m
2 )

(A
ve

ra
ge

d 
Ac

ro
ss

 R
eg

io
ns

)
Primary
Recurrent

Patient
1
2
3
4
5
6
7
8
9

0-

1000-

2000-

3000-

4000-

5000-350-

300-

250-

200-

150-

100-

50-

800-

600-

400-

200-

0-

300-

250-

200-

150-

100-

50-

0-0-

200-

400-

600-

800-

1000-

1200-

0-

50-

100-

150-

200-

250-

300-

350-

0-

200-

400-

600-

800-

1000-

1200-

1400-

1600-

0-

50-

100-

150-

200-

250-

300-

350-

0-

100-

200-

300-

400-

500-

600-

700-

800-

0-

250-

500-

750-

1000-

1250-

1500-

1750-

RPRPRPRPRPRPRPRPRPR

D
en

si
ty

 (c
el

ls
/m

m
2 )

(A
ve

ra
ge

d 
Ac

ro
ss

 R
eg

io
ns

)

Neoplastic Tumor

P

αSMA+ MesenchymalOther Immune
Antigen Presenting

CellGranulocyteMacrophageB Cell
CD4+ Regulatory

T CellCD4+ T HelperCD8+ T Cell

N
eo

pl
as

tic
Tu

m
or

 -

O
th

er
 Im

m
un

e 
-

C
D

8+  T
 C

el
l -

 C
D

4+  T
 H

el
pe

r -

 C
D

4+  R
eg

ul
at

or
y

T 
C

el
l -

αS
M

A+  M
es

en
ch

ym
al

 -

M
ac

ro
ph

ag
e 

-

G
ra

nu
lo

cy
te

 -

B 
C

el
l -

Pa
tie

nt
 ID

 -
Th

er
ap

y 
- - ll e

C
gnit neser P

negit nA

Cell Phenotype

- 9

- 1

- 2

- 5

- 6

- 8

- 7

- 3

- 4

Pa
tie

nt

- 0.8

- -0.4

- 0.4
- 0.0

- -0.8

Both
Cisplatin
Cetuximab
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features. Compositional change was normalized [−1,1] before clustering (see “Methods” section). Leftmost two columns are color coded by
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largest datapoints within 1.5*IQR+/− Q3/Q1; solid line = median; dotted line = mean.
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response to—or despite—increased neoplastic tumor cell density.
Altogether, these results indicate that shared trends in TiME
composition changes from primary to recurrent tumors specific to
therapy exist, and regardless of therapy, all patients exhibited a
decrease in B cells from primary to recurrent tumors.
Approximately half (n= 4) of the patients in the cohort

experienced an increase in CD8+ T cell density while the other
half (n= 5) experienced a decrease in CD8+ T cell density

following therapy. This was the only cell type that increased in
density for nearly half of the cohort and decreased for the other
half. To determine if there was a survival advantage for patients
that experienced this increase, we split our cohort into short-term
or long-term survivor groups using median PFS and observed that
all patients, who experienced an increase in CD8+ T cell density
from their primary to recurrent tumors were long-term survivors
(Fig. 2d). Interestingly, the density of CD8+ T cells in the primary
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tumor alone did not associate with PFS (p= 0.829). Prior research
has revealed that increased CD8+ T cell abundance in the primary
tumor is associated with better outcomes in HNSCC29–33. However,
these studies largely included HPV-positive HNSCCs, which is more
often associated with greater densities of CD8+ T cells and
improved survival22–24, thus unsurprising that our results differ.
However, our results are concordant with a recent study in HNSCC
that reported longer survival was associated with patients who
had experienced an increase in CD8+ tumor-infiltrating lympho-
cytes from their primary to recurrent tumor34. Another study in
HNSCC found a similar trend between increased CD8+ T cell
infiltration, longer survival, presence of specific neoantigens, and
increased cytolytic activity in recurrent tumors35. Notably, the four
patients in our cohort that experienced the greatest decrease in
CD8+ T cell density in recurrence had TNM stage 4 primary
tumors, while patients that experienced an increase in CD8+ T cell
density in recurrence included TNM stages 1, 2, 3, and 4.

Quantifying the spatial organization of neoplastic and
immune cells
Prior studies reported the abundance of various cell types,
including CD8+ T cells33, CD4+ regulatory T cells36, and macro-
phages37 to be associated with survival in HNSCC. We analyzed
the average density of each cell type across primary tumors for
their correlations with PFS, but found no significant association
with PFS for any single cell type (p > 0.159). Given the prognostic
potential of TiME cellular spatial organization as has been reported
in other cancer types5–13, we quantified the spatial organization of
cells within tumor regions and examined the association of the
spatial features with clinical outcome.
We first deployed a mixing score, used previously to analyze

immune cell spatial compartmentalization in triple negative breast
cancers4. The mixing score measures the enrichment of neoplastic
tumor-immune cell proximity relative to immune-immune cell
proximity within a set distance. We quantified the number of
immune and neoplastic tumor cells within 15 µm of each other,
divided by the number of immune cells within 15 µm from
another immune cell. Each region was labeled as mixed or
compartmentalized using the median mixing score value for all
primary tumors as the threshold (Fig. 3a, b; see “Methods” section).
This threshold classified tumor regions as mixed if at least one
neoplastic tumor cell was within 15 µm from an immune cell for

approximately every ten immune cells within 15 µm from another
immune cell. Tumor regions were considered compartmentalized
when this ratio was smaller. Regions with fewer than 250 CD45+

immune cells per 8002 µm2 present were labeled as cold, utilizing
the same immune cell density threshold from the original study4.
Of the 47 total tumor regions, 25 were mixed, 20 were
compartmentalized, and two were cold.
After calculating the mixing score for each region, we examined

the spatial heterogeneity of our cohort. Our tumor compositional
heterogeneity analyses revealed that intra-tumoral and intra-
patient heterogeneity was less than inter-patient heterogeneity.
To determine whether this observation held for spatial organiza-
tion heterogeneity, we compared each region’s mixing score to
five groups of average mixing scores, which were computed from
the same five groups as the analysis in Fig. 1d: Intra-tumor (P or R
only), Intra-patient (P and R), Inter-patient (P or R only), Inter-
patient (Same Anatomic Site), and Inter-patient (all). Contrary to
our analysis in Fig. 1d, the mixing score is only one feature, not a
distribution of features, thus we used the difference in mixing
scores, rather than the KL divergence. In addition, we calculated
the absolute values of these differences as a way to normalize the
data in order to capture the degree of difference in spatial
organization, allowing us to subsequently test for differences
across the five levels of heterogeneity. We found there to be less
intra-tumoral heterogeneity than inter-patient heterogeneity
(Supplementary Fig. 2a). This result indicates that, in terms of
neoplastic tumor-immune cell mixing, tumor regions resemble
regions sampled from the same tumor more than regions sampled
from tumors of other patients.
We then considered whether tumor regions sampled from the

same anatomic site differed in their spatial organization and found
that of the three anatomic sites, tumor regions from the oral cavity
contained significantly different average mixing scores than tumor
regions from the larynx (p= 0.016, Fig. 3c). No significant
differences were found in average mixing scores between the
oral cavity and the oropharynx or the larynx and the oropharynx.
Regions from larynx tumors did exhibit a greater range of mixing
scores than oral cavity or oropharynx (Fig. 3c) indicating that
larynx tumors exhibit greater spatial heterogeneity in terms of
neoplastic tumor-immune cell proximity. We found no significant
difference in the mixing scores of primary versus recurrent tumors
(Wilcoxon signed rank test, p= 0.441).

Fig. 3 Mixing score quantifies the spatial organization of tumors. a mIHC images of a representative mixed tumor region (top) versus a
compartmentalized tumor region (bottom). Leftmost panel shows tumor regions with neoplastic tumor cells (purple) and CD45+ immune
cells (green); white scale bar = 200 µm. Remaining panels show zoomed in areas of mixing (top) and compartmentalization (bottom), first with
both cell populations present and then separated; white scale bar = 100 µm. b Box plot showing the mixing scores across all primary and
recurrent tumors (n= 18). Each dot (n= 47) represents the mixing score for one tumor region and is colored according to its spatial
architecture. The average spatial architecture designation for the overall tumor is printed above each box. Boxes = Q1 to Q3; whiskers =
smallest and largest datapoints within 1.5*IQR+/− Q3/Q1; solid line = median; dotted line = mean. c Box plot showing the mixing score of
each tumor region split by the anatomic site of its resection. Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR+/−
Q3/Q1; solid line = median. p-value calculated using a one-way ANOVA multi-group significance test followed by a Tukey honestly significant
difference post-hoc test. d Kaplan–Meier curve of progression free survival for patients split by the mixing score of their primary tumors.
Patients were split on the median value. p-value calculated using the log-rank test. e Principal component analysis on cellular density
following a log10+ 1 transformation. Each dot (n= 47) represents one tumor region and is colored according to the region’s spatial
architecture. f Box plot showing the density of each cell type split by the tumor region’s spatial architecture. Each dot represents the density of
that cell type for one region (n= 47 per cell type). Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR+/− Q3/Q1;
solid line = median; dotted line = mean. Statistical significance calculated using independent one-tailed t-tests for cell types whose
differences follow a normal distribution and non-parametric one-tailed t-tests (Mann–Whitney U-test) for cell types whose differences do not
follow a normal distribution. P-values were corrected using the Benjamini–Hochberg procedure. g PD-1 expression on CD8+ T cells, CD4+ T
helper cells, and B cells by spatial architecture. Each dot represents the percentage of each cell type positive for PD-1 for a single tumor region
(n= 45, excluding cold regions). Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR+/− Q3/Q1; solid line =median.
P-values calculated using a one-tailed Mann–Whitney U-test and corrected using the Benjamini–Hochberg procedure. h Ki-67 expression on
APCs by spatial architecture. Each dot represents the percentage of cells positive for Ki-67 for a single tumor region (n= 45, excluding cold
regions). Boxes = Q1 to Q3; whiskers = smallest and largest datapoints within 1.5*IQR+ /− Q3/Q1; solid line = median. P-value calculated
using a Mann–Whitney U-test and corrected across all cell types using the Benjamini–Hochberg procedure. i Bar chart showing the density of
αSMA+ mesenchymal cells present per tumor region. Bars are ordered by αSMA+ cell density and are colored according to the region’s spatial
architecture.
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Spatial compartmentalization associated with longer
progression free survival
To investigate how spatial mixing correlated with patient
outcome, we averaged the mixing scores across regions and
assigned a final mixing score and spatial label for each tumor.

Patients with more compartmentalization between neoplastic
cells and immune cells in their primary tumors exhibited
significantly longer PFS than those with greater mixing between
these cell types (p= 0.032, Fig. 3d). We then examined how the
average mixing score of the tumors related to the TNM stage and
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anatomic site of each primary tumor. Four of the five mixed
primary tumors were TNM stage 4, and one was TNM stage 1. The
four compartmentalized primary tumors were TNM stages 1, 2, 3,
and 4. All anatomic sites were present in both mixed and
compartmentalized spatial architecture groups (mixed: 2 oral
cavity, 1 oropharynx, 2 larynx; compartmentalized: 2 oral cavity, 1
oropharynx, 1 larynx), indicating no single anatomic site had
predominantly mixed or compartmentalized spatial architecture.

Spatial architecture associated with cellular composition
We next explored how cellular composition related to spatial
organization, in an effort to explain the association found between
mixing score and PFS. By coloring the initial PCA on TiME
composition by mixing score, we found that tumor regions from
the same mixing group clustered together (Fig. 3e). Due to this
association between cellular composition and spatial organization,
we wondered whether certain cell types would be more frequent
in mixed or compartmentalized tumors. Given how the mixing
score is calculated, we hypothesized that compartmentalized
tumor regions would have greater densities of immune cells than
mixed regions, while mixed tumor regions would have greater
densities of neoplastic tumor cells than compartmentalized
regions, and found this to be the case (Fig. 3f). Namely,
compartmentalized tumor regions had greater densities of CD4+

T helper cells (p= 0.016), B cells (p= 0.048), antigen presenting
cells (APCs) (p= 0.037), and other CD45+ immune cells (p= 0.048)
than mixed tumor regions. Given the role of CD4+ T helper cells, B
cells, and other MHCII+ immune cells in antigen presentation,
these results could indicate enhanced antigen presentation in
compartmentalized tumor regions as compared to mixed regions.
Conversely, mixed tumor regions contained greater densities of
neoplastic tumor cells than compartmentalized regions (p <
0.001).
We further examined associations between functional pheno-

types of leukocytes and mixing scores for each tumor region.
Mixed regions contained a greater proportion of lymphocytes,
including CD8+ T cells (p= 0.023), CD4+ T helper cells (p= 0.017),
and B cells (p= 0.016), expressing the immunoregulatory protein
programmed death ligand (PD)-1 than compartmentalized regions
(Fig. 3g). PD-1 is recognized as an indicator of T cell antigen
experience, whereas its expression on B cells has been reported to
suppress T cell effector function38,39, indicating a suppressive and
potentially dysfunctional immune environment in mixed tumors.
On the contrary, compartmentalized regions contained a greater
proportion of APCs expressing the proliferation marker Ki-67 than
mixed regions (p= 0.032, Fig. 3h), supporting the notion that
antigen presentation is a key feature of compartmentalized
regions. We performed a bootstrapping analysis to confirm the
robustness of these results and demonstrate that no one tumor

was biasing the functional marker results (Supplementary Fig.
2b–e).
In addition to identifying differences between spatial architec-

tures and their respective immune and neoplastic tumor cell
densities and functional marker expressions, we found that tumor
regions with more compartmentalization between neoplastic cells
and immune cells also contained greater densities of αSMA+

mesenchymal cells, as compared to those with higher mixing (p=
0.002, Fig. 3f). This result was intriguing because these cells were
not included when computing the mixing score, yet there is a
clear association between αSMA+ cell density and the tumor’s
spatial organization (Fig. 3i).

αSMA+ mesenchymal spatial cellular neighborhoods reveal
spatial landscapes associated with progression free survival
advantage
Given the relationship between mixing score and αSMA+

mesenchymal cell density, we deployed a cellular neighborhood
clustering analysis to identify which cell types were spatially
proximal to αSMA+ cells across tumors in order to gain a better
understanding of whether these cells were contributing to the
neoplastic tumor-immune spatial compartmentalization observed.
This analysis first involved calculating neighborhoods, which were
defined as physical groupings of cells within a set distance
threshold from a seed cell (Fig. 4a). Each cell within the distance
threshold was deemed a neighbor of the seed cell, contributing to
that seed cell’s neighborhood’s composition. After identifying
neighborhoods for each seed cell present across all tumor regions,
neighborhoods were grouped with K-means clustering, using the
fraction of each cell type present in the neighborhoods as the
clustering features. This revealed clusters of αSMA+ cell neighbor-
hoods with similar cellular makeups across all tumor regions.
We applied a neighborhood clustering analysis with αSMA+

cells as the seed cells with a distance threshold of 30 µm, as this
produced neighborhoods with an average of approximately ten
neighbor cells. A recent study involving cellular neighborhood
analyses employed a method that selected the ten nearest spatial
neighbors of the seed cell, regardless of the distance between the
seed cell and its neighbors7. By setting a distance threshold of
30 µm, our method required the cells be close, if not directly
touching, while still capturing enough neighbors to cluster on.
Any αSMA+ cell that did not have any neighbors was removed
from downstream clustering analyses. Clustering results yielded
seven groups, each different in their average composition of
αSMA+ neighborhoods (Fig. 4b). Clusters 1 and 2 contained
mostly other αSMA+ cells comprising the neighborhoods; in fact,
cluster 1 was almost exclusively made up of αSMA+ cells. Cluster 3
contained the greatest proportion of neoplastic tumor cell
neighbors. Clusters 4, 5, 6, and 7 were all comprised of roughly
75% immune cells as neighbors, although they differed in the

Fig. 4 αSMA+ mesenchymal cellular neighborhood clustering. a Cellular neighborhoods were defined by drawing a circle of a specified
radius around each seed cell (green) of a designated phenotype. Cells whose centers were inside the circle were considered neighbors of that
seed cell. This figure was created using BioRender.com. b Stacked bar chart showing the average cellular composition of each αSMA+

mesenchymal cell neighborhood cluster (n= 7). Bars are colored by cell type and represent the average fraction (out of 1.0) of each cell type
present in the neighborhoods belonging to each cluster. c Heatmap of αSMA+ cell neighborhood clusters present averaged across primary
tumors. Rows are primary tumors that are ordered by the hierarchical clustering of their average of αSMA+ neighborhood cluster presence.
Columns are the αSMA+ cell neighborhood clusters used as clustering features. Percent (out of 100) of αSMA+ neighborhood clusters was
normalized using a log10+ 1 transformation before clustering. Leftmost column is color coded by patient. d Stacked bar chart showing the
average proportion (out of 1.0) of αSMA+ cell neighborhood clusters present in each of the two hierarchically clustered groups of primary
tumors. e Panel of mIHC images containing two merged pseudo-colored images of one region from four patients visually illustrates
representative regions from patients in group 1 and group 2. The top panel of images are merged pseudo-colored stains containing CD3, CD8,
CD20, αSMA, and PANCK. The bottom panel of images are the same regions as the top panel with merged pseudo-colored stains containing
MHCII, CD66B, Ki-67, αSMA, and PANCK. White arrows point out representative αSMA+ cells. White scale bar = 200 µm. f Kaplan–Meier curve
of progression free survival for patients grouped together in the hierarchical clustering of their primary tumor αSMA+ mesenchymal cell
neighborhood abundance. P-value calculated using the log-rank test. g Stacked bar chart showing the average proportion (out of 1.0) of
αSMA+ cell neighborhood clusters present in each of the primary tumors (n= 9). Tumors are ordered by descending proportions of cluster 1.
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types of immune cells present. Cluster 4 was defined by a majority
of other CD45+ immune cells not explicitly defined within our
gating strategy. To elucidate marker expression within these other
CD45+ cells, we performed a post-hoc t-distributed stochastic
neighbor embedding (t-SNE) analysis on cells classified as “other
immune”, and found them to contain a large population of
CD163+ cells and a smaller population of mast cells (tryptase+)
(Supplementary Fig. 3a). Cluster 5 contained primarily CD8+ T cells
as the dominant immune population. Cluster 6 consisted of CD4+

T helper cells, B cells, and the greatest proportion of APCs of any
cluster. Finally, cluster 7 was defined by its large proportion of
granulocytes.
We confirmed that no single tumor region, entire tumor, or

patient dominated any of the αSMA+ neighborhood clusters by
examining the percent contribution of each of the seven clusters
per 47 tumor regions, eighteen tumors, and nine patients. While
clusters were present in varying degrees across tumor regions, our
results indicated that no region (Supplementary Fig. 3b), tumor
(Supplementary Fig. 3c), or patient (Supplementary Fig. 3d) was
solely responsible for giving rise to any of the clusters. We also
confirmed that all seven clusters were present in tumors collected
from each of the three anatomic sites (Supplementary Fig. 3e), as
well as each of the four TNM stages (Supplementary Fig. 3f).
To identify groups of patients with primary tumors of similar

αSMA+ cellular neighborhoods, we performed unsupervised
hierarchical clustering on the normalized average αSMA+ cellular
neighborhood composition across the nine primary tumors. This
resulted in two groups of patients, differing in proportional
compositions of αSMA+ cellular neighborhoods (Fig. 4c). On
average, both groups had roughly 20% of their αSMA+ cells
assigned to cluster 2 and roughly 10% of their αSMA+ cells
assigned to cluster 5 (Fig. 4d). However, the two groups differed in
that group 1 (blue) included patients with αSMA+ cells
predominantly assigned to clusters 1 and 6, meaning their
αSMA+ cells were primarily surrounded by CD4+ T helper cells,
B cells, and other αSMA+ cells. On the contrary, group 2 (orange)
included patients with more of their αSMA+ cells assigned to
clusters 3, 4, and 7, meaning their αSMA+ cells were mostly
surrounded by neoplastic tumor cells, other immune cells, and
granulocytes. Consistent with our results, visualization of tissue
regions illustrates primary tumors in group 1 containing more
αSMA+ stromal cells overall, frequently neighboring CD4+ T
helper cells and B cells, with greater MHCII positivity (Fig. 4e).
Primary tumors in group 2 contained less structured αSMA+

stromal cells, fewer neighboring immune cells, and less MHCII
positivity, differences that were strikingly apparent in the mIHC
stained tissue images (Fig. 4e). Despite both groups containing
nearly equal proportions of CD8+ T cells neighboring αSMA+ cells,
group 1 contained higher densities of CD4+ T cells and increased
MHCII positivity as compared to group 2 (Fig. 4e).
To determine if the composition of αSMA+ cellular neighbor-

hood groups was correlated with clinical outcome, we performed
a survival analysis on the two groups of patients. We found that
patients in group 1 had significantly longer PFS than patients in
group 2 (p= 0.047, Fig. 4f). Patients in group 1 had primary tumors
annotated as TNM stages 1, 2, 3, and 4, while patients in group 2
had four primary tumors annotated as TNM stage 4 and one
annotated as TNM stage 1. Tumors from all three anatomic sites
were represented in both groups. An analysis of the proportions of
αSMA+ neighborhood clusters present in each of the nine primary
tumors revealed the varying degrees to which each of the seven
clusters were present in each of the tumors (Fig. 4g). Notably, we
found there to be a positive correlation between the presence of
clusters 1 and 6 (r=+0.69) as well as clusters 4 and 7 (r=+0.66).
We found negative correlations between the presence of clusters
1 and 4 (r=−0.88), clusters 3 and 6 (r=−0.69), and clusters 6 and
7 (r=−0.65). Finally, we found the two groups resulting from
hierarchical clustering to be associated with mixing status.

Specifically, group 1 consisted of 75% compartmentalized tumors,
and group 2 consisted of 80% mixed tumors. Overall, these results
describe interesting spatial relationships between immune cells,
mesenchymal stroma, and neoplastic tumor cells, indicating
increased antigen presentation and immune activity associated
with compartmentalization and progression-free survival.

DISCUSSION
The significant role that TiME cellular composition plays in tumor
progression and response to therapy has been accepted for over a
decade40. However, recent findings powered by single-cell
proteomics imaging technologies have found that the spatial
organization of the cells present in the TiME also plays a critical
role4–13. TiME spatial quantifications are just beginning to provide
novel insights into tumor biology, and thus it is still unclear exactly
which spatial features are important in dictating response to
therapy or clinical outcome, as well as whether these features are
shared across cancer types, and how they could be leveraged for
therapeutic decisions and patient stratification. Here, we lever-
aged single-cell spatial proteomics data generated by our mIHC
immunoassay-based imaging platform to quantitatively assess the
TiME of nine matched primary and recurrent HPV(−) HNSCCs in
order to demonstrate the use of spatial features in disease
prognosis. Our results on this cohort of nine patients provide
insight into the heterogeneity and spatial landscape of HPV(−)
HNSCCs, and highlight possible TiME spatial landscapes that may
impact clinical outcome across cancer types.
We found concordance between the results from our hetero-

geneity and composition analyses and those from several other
studies. Our results are similar to a study that clustered HNSCC
biopsies based on their neoplastic and immune gene signatures as
determined by RNA-sequencing, and reported that samples from
the same patient were more similar to each other than samples
from different patients41. This trend has also been observed across
cancer types, including melanoma42, hepatocellular carcinoma43,
pancreatic ductal adenocarcinoma44, and breast cancer45. More-
over, we found that patients who experienced an increase in CD8+

T cell density from their primary to recurrent tumors were
associated with improved PFS, which has previously been
reported in head and neck cancer34,35. Conversely, patients
experiencing the greatest decrease in CD8+ T cell density in
recurrence had TNM stage 4 primary tumors. This could indicate
that later staged primary tumors are better equipped to evade
immune attack in recurrence, and a therapy to elicit an anti-tumor
immune response may be beneficial.
Despite the fact that HPV(−) HNSCCs often contain limited

immune infiltrates22, our analyses revealed significant differences
in the immune cell spatial organization within these tumors that
were associated with progression-free survival, highlighting the
importance of considering the spatial context of the TiME. Most
strikingly, patients whose primary tumors contained more
compartmentalization between their neoplastic tumor cell and
immune cell populations demonstrated longer PFS. This correla-
tion was also identified in a similar analysis of triple negative
breast cancer patients4, indicating that a compartmentalized
spatial architecture may play a favorable role in survival across
cancer types. Our analyses of TiME composition and functional
marker expression indicate there is likely more antigen presenta-
tion and less immunoregulation in regions of compartmentaliza-
tion rather than in regions of mixing. This favorable immune
landscape in compartmentalized tumors may contribute to
improved survival. On the contrary, four of the five of the mixed
primary tumors were classified as TNM stage 4, which may
contribute to shortened survival for these patients. However,
given that compartmentalized tumors were not all classified as an
early TNM stage and instead ranged from TNM stage 1 to 4, it is
difficult to determine the exact association between neoplastic
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tumor and immune cell mixing versus TNM stage, and further
investigation is warranted to understand these correlations and
impact on prognosis.
Prior studies have identified a mesenchymal HNSCC sub-

type46,47; our αSMA+ mesenchymal cellular neighborhood ana-
lyses highlight the importance of considering how these cells are
organized within the TiME, beyond simply considering their
presence in the tumor. This could reveal more precise mesench-
ymal subtypes for improved stratification for patient care. αSMA is
a common marker for cancer-associated fibroblasts (CAFs)20,48,
whose presence in tumors, including HNSCC, tends to be
associated with tumor progression, metastasis, and resistance to
therapy49–54. However, despite compartmentalized tumors having
increased αSMA+ cell density, patients with compartmentalized
primary tumors demonstrated longer PFS, which indicates that the
spatial organization of αSMA+ cells may be related to their
function.
We found αSMA+ cells neighboring immune cells in both mixed

and compartmentalized primary tumors, but the types of immune
cells near αSMA+ cells differed. This is interesting, as emerging
research has found that CAFs, which are often defined by their
expression of αSMA, can modulate immune cell function within
the TiME. With our mIHC platform we were able to identify the
differences in the types of immune cells neighboring αSMA+ cells
and relate these differences to survival, supporting recent research
on the impact of CAFs on various immune cell populations. A
recent study in melanoma found CAFs to be instrumental in aiding
tertiary lymphoid structure (TLS) development55; TLS are defined
by their large concentration of B cells surrounded by T cells, and
their presence in tumors is associated with improved patient
outcome3,56,57. In compartmentalized tumors, we noticed the
αSMA+ cells to be more structured and located neighboring dense
pockets of T cells and B cells, perhaps indicating the formation of
TLS. Although this antibody panels did not include a biomarker for
high endothelial venules to confirm presence of TLS, our results
support the notion that CAF-lymphocyte interactions can be
clinically beneficial.
Conversely, patients with predominantly mixed primary tumors

and shorter PFS contained αSMA+ cells primarily located near
granulocytes and other CD45+ immune cells, many of which were

likely CD163+ myelomonocytic cells or mast cells. CD163 is a
marker for scavenger receptor activity and is commonly used to
demark pro-tumor type tumor-associated macrophages and
monocytes. Supporting these findings, a study in oral squamous
cell carcinoma found the presence of CAFs to be associated with
increased presence of CD163+ macrophages and worse survival58.
Another study reported CAFs to be correlated with an increase in
monocyte expression of CD163, which in turn suppressed T cell
proliferation and increased neoplastic cell proliferation in breast
cancer59. Mast cells mediate innate and acquired immune
response as a part of the myeloid lineage. They have been
reported to facilitate neo-vascularization and tumor dissemination
in HNSCC, and found to be correlated with increased angiogenesis
in advanced HNSCC60. However, interactions between mast cells
and CAFs is largely unknown; our results indicate this interaction
may be associated with increased neoplastic density and worse
PFS. Of note, a recent study in melanoma and pancreatic
adenocarcinoma found neutrophils, a subclass of granulocytes,
to exert pro-tumor effects when in the presence of CAFs61, and
another study found the combined presence of neutrophils and
CAFs to be associated with shortened survival in gastric
adenocarcinoma62.
Finally, patients with predominantly mixed primary tumors and

shorter PFS were found to contain fewer overall stromal cells and
greater proportions of those αSMA+ cells neighboring neoplastic
tumor cells. It has been reported that neoplastic tumor cells in
direct contact with CAFs move along tracks laid by the CAFs in the
extracellular matrix, promoting tumor growth63,64. It is possible
that αSMA+ cells in mixed tumors may provide avenues for
neoplastic tumor cells to transit, thus leading to more advanced
tumor progression. Overall, spatial analyses herein deepened our
understanding of neoplastic tumor and immune cell organization
relative to each other, and how this organization is related to
αSMA+ cells working in tandem with many cells, beyond single
cell–cell interactions, to impact TiME organization, and ultimately,
clinical outcome. The conclusions from our spatial analyses and
their relationship to clinical variables are summarized in Fig. 5.
The concordance found among results herein and those of the

aforementioned studies provides orthogonal support for our
conclusions and indicates that single-cell heterogeneity and

Mixed

More neoplastic tumor cells

Shorter PFS
Later TNM stage

αSMA+ cells neighboring
neoplastic tumor cells

αSMA+ cells neighboring
granulocytes

αSMA+ cells neighboring
other immune cells

More PD-1+ lymphocytes

a b

More immune cells involved
in antigen presentation

More αSMA+ cells

Longer PFS

αSMA+ cells neighboring
αSMA+ cells

αSMA+ cells neighboring
CD4+ T helper cells and B cells

More Ki-67+ APCs

Compartmentalized

Fig. 5 Proposed model of primary HPV(−) HNSCC tumor-immune microenvironments. a Depiction of a tumor with a compartmentalized
spatial architecture. These tumors have decreased mixing between immune cells and neoplastic tumor cells and tend to contain greater
immune cell density, specifically cells involved in antigen presentation, as well as increased density of αSMA+ mesenchymal cells. The αSMA+

cells present tend to be neighbored by CD4+ T helper cells and B cells, as well as other αSMA+ cells. Compartmentalized primary tumors were
found to be associated with longer progression-free survival. b Depiction of a tumor with a mixed spatial architecture. These tumors contain
increased mixing between immune cells and neoplastic tumor cells and tend to contain increased neoplastic tumor cells, as well as increased
PD-1-positive lymphocytes. The αSMA+ cells present tend to be neighbored by neoplastic tumor cells, other immune cells, many of which are
CD163+ or are mast cells, and granulocytes. Mixed primary tumors were found to be associated with shorter progression free survival and
later TNM stage. This figure was created using BioRender.com.
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spatial organization of tumors may share similarities across
different types of cancer and across different molecular assays.
Our spatial analyses demonstrate the use of various algorithms to
quantify the spatial landscape of tumors using single-cell imaging
data. Further, our computational methods provide a framework for
future single-cell imaging analyses, as they are applicable to any
multiplex imaging assay, including mIHC, co-detection by index-
ing technology (CODEX)7, cyclic immunofluorescence18,65,66, and
imaging mass cytometry6. Our results highlight several spatial
architectures that may help guide precision medicine approaches
for HPV(−) HNSCC patients, including architectures that may help
stratify patients who may have shorter PFS, and thus warrant more
aggressive therapy or clinical follow-ups. While our results provide
evidence that the spatial organization of HPV(−) HNSCC tumors
correlates with clinical outcome, future studies with larger cohorts
will be needed to evaluate the strength and validity of our
observations. Studies with greater representation of anatomic site
and stage are also needed to assess the prognostic value of the
spatial features identified in this HNSCC cohort. Despite these
limitations, this study demonstrates practical analysis strategies
that elucidate spatial architecture features for potential use in
precision medicine.

METHODS
Multiplex immunohistochemistry data generation
mIHC is an immunohistochemical-based imaging platform that evaluates
sequentially stained immune lineage epitope-specific antibodies for
immunodetection on FFPE tissue sections16,17. Images were stained and
processed as described in our previous report17. A table of antibodies,
species, vendor, and concentration used in staining are previously reported
in Table 1 of Banik et al.17. Briefly, sequentially stained images were co-
registered in MATLAB. AEC signal from each antibody stain was extracted
and normalized, and the mean intensity of each single cell for each marker
was quantified in Cell Profiler. Watershed based nuclei segmentation on
hematoxylin staining was used to identify single cells in FIJI. Using a
hierarchical gating strategy, single cells were phenotyped using image
gating cytometry in FCS Express 7 Image Cytometry RUO (Supplementary
Fig. 1a). A threshold was set on the scatterplot of mean intensity for each
marker within the gating strategy, validated by visual live rendering of
masked cell objects within the selected gate on extracted marker signals.
Cartesian coordinates of each phenotyped cell were maintained relative to
the tissue region.
We applied the mIHC pipeline to analyze matched primary and recurrent

FFPE tissue specimens from nine HPV(−) HNSCC patients. Each patient
underwent surgical resection of their primary tumor prior to beginning a
regimen of chemotherapy and radiation therapy. Upon recurrence, the
patient underwent another surgical resection of their recurrent tumor.
Tissue specimens for each patient were obtained from the Oregon Health
& Science University Knight Biolibrary and were deidentified and coded
with a unique identifier prior to analysis. Patient demographic and clinical
data including HPV status, tobacco and alcohol use, treatment regimens,
and survival outcomes were collected. All HNSCC tumors were staged
according to the 8th edition AJCC/UIC TNM classification and cohort
characteristics are shown in Table 1 as reported in Banik et al17. All studies
involving human tissue were approved by institutional IRB (protocol #809
and #3609), and written informed consent was obtained.

Tumor heterogeneity analyses
The Kullback-Leibler divergence was calculated using the entropy function
from the Scipy Python package67. The distribution of each individual tumor
region’s cellular composition was compared to the average of five different
cellular composition distributions: the average distribution for the region’s
tumor, the average distribution for the patient’s primary and recurrent
tumors, the average distribution across all tumors of the same timepoint in
the cohort (primary or recurrent), the average distribution across all tumors
resected from the same anatomic site in the cohort, and the average
distribution across all tumors from all patients in the cohort (primary and
recurrent combined). Log base 2 was used for the calculation.
Unsupervised hierarchical clustering of each tumor region was performed
using the log10+ 1 normalized density of each cell type present as the

features. Euclidean distance was used to determine distances between
observations, and the Ward method was used for the linkage.

TiME compositional change clustering analysis
Unsupervised hierarchical clustering of each patient was performed using
the normalized change in density of each cell type as the features.
Euclidean distance was used to determine distances between observa-
tions, and the Ward method was used for the linkage. Normalization in the
change in density was computing by first calculating the absolute value of
the raw change in density for each cell type. These values were then
normalized to a range of [0, 1]. Finally, the values that were originally
negative (decreasing change), were flipped to be negative values again,
such that all values ranged from [−1, 1] with zero representing no change.

Mixing score analysis
Keren et al. developed a mixing score to quantify the ratio of neoplastic
and immune cell spatial interactions4. This score is defined as the number
of interactions between neoplastic tumor cells and immune cells divided
by the number of interactions between immune cells and another immune
cell within a tumor region. We defined there to be an interaction between
two cells if their centers [the (x, y) coordinates provided by mIHC] were
within 15 µm from one another. We used the median mixing score value
(0.107) for all primary tumors as the threshold to distinguish between
mixed and compartmentalized spatial organization groups. Tumor regions
with a mixing score of greater than 0.107 were defined as mixed. Tumor
regions with a mixing score of less than 0.107 were defined as
compartmentalized. We used a density threshold of less than 250 immune
cells per 8002 µm2 to define tumor regions as cold. We chose this threshold
to match that used by Keren et al.

Functional marker bootstrapping analyses
Bootstrapping analyses involved the following steps. First, one tumor
region per eighteen tumor samples was randomly selected. The regions
were then split into two groups based on their mixed or compartmenta-
lized spatial architecture designation, and the average proportion of the
specified cell population expressing the specified functional marker was
calculated for each group. Finally, this process was repeated 100 times,
yielding 100 values representing the proportion of the specified cell
population expressing the specified functional marker for mixed tumor
regions and 100 values representing the proportion of the specified cell
population expressing the specified functional marker for compartmenta-
lized tumor regions. These values were then compared between the mixed
and compartmentalized groups for differences.

Cellular neighborhood clustering analyses
Cellular neighborhoods were defined by drawing a circle of a specified
radius around all seed cells of a given phenotype. Cells whose centers were
inside the circle were considered neighbors of that seed cell and
contributed to that cell’s neighborhood. All neighborhoods across all
tumor regions were then clustered using scikit-learn’s MiniBatchKMeans
function68 to perform K-means clustering according to their normalized
cellular composition. The elbow method was used to determine the
number of clusters to form. Each resulting cluster was comprised of
neighborhoods with a similar cellular makeup. Unsupervised hierarchical
clustering of each primary tumor was performed using the log10+ 1
normalized proportion (out of 100) of αSMA+ cell neighborhood clusters
present in the tumor as the features. Euclidean distance was used to
determine distances between observations, and the Ward method was
used for the linkage.

Statistics
Independent t-tests were used to determine statistically significant
differences for independent samples whose differences followed a normal
distribution. Mann–Whitney U-tests were used to determine statistically
significant differences for independent samples whose differences did not
follow a normal distribution. Paired t-tests were used to determine
statistically significant differences for paired samples whose differences
followed a normal distribution. Wilcoxon signed rank tests were used to
determine statistically significant differences for paired samples whose
differences did not follow a normal distribution. One-way ANOVA tests
were used to determine statistically significant differences for multi-group
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comparisons. If the ANOVA result was significant, a Tukey honestly
significant difference post-hoc test was conducted to determine which
groups were significantly different from one another. A
Benjamini–Hochberg correction was used to account for multiple
hypothesis testing in analyses that involved systematically testing multiple
variables. p-values less than 0.05 were considered statistically significant.
All statistical calculations were performed with the Scipy and statsmodels
packages using Python software67,69.

Survival analyses
Kaplan–Meier curves were generated and a log-rank test was performed
using the lifelines package with Python software70. p-values less than 0.05
were considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All of the data produced by our mIHC computational image processing pipeline,
including protein abundance, cell phenotype, and cell location information saved in
the form of a matrix, in addition to survival data, is available for download on Zenodo
at https://doi.org/10.5281/zenodo.5540356.

CODE AVAILABILITY
All computational analyses in this study were performed using Python software,
version 3.6.5. The code created to produce the results of this study is available at
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