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Cervical cancer (CC) is one of the most common gynecologic malignancies in the world.
The incidence and mortality keep high in some remote and poor medical condition regions
in China. In order to improve the current situation and promote the pathologists’ diagnostic
accuracy of CC in such regions, we tried to propose an intelligent and efficient classification
model for CC based on convolutional neural network (CNN) with relatively simple archi-
tecture compared with others. The model was trained and tested by two groups of image
datasets, respectively, which were original image group with a volume of 3012 datasets and
augmented image group with a volume of 108432 datasets. Each group has a number of
fixed-size RGB images (227*227) of keratinizing squamous, non-keratinizing squamous, and
basaloid squamous. The method of three-folder cross-validation was applied to the model.
And the classification accuracy of the models, overall, 93.33% for original image group and
89.48% for augmented image group. The improvement of 3.85% has been achieved by us-
ing augmented images as input data for the model. The results got from paired-samples t
test indicated that two models’ classification accuracy has a significant difference (P<0.05).
The developed scheme we proposed was useful for classifying CCs from cytological images
and the model can be served as a pathologist assistance to improve the doctor’s diagnos-
tic level of CC, which has a great meaning and huge potential application in poor medical
condition areas in China.

Introduction
Cervical cancer (CC) remains one of the leading causes of cancer-related deaths in women worldwide
[1], with 80% of the cases occurring in developing countries [2]. And China is one of them with high CC
incidence and mortality rates [3]. A study indicated that the crude incidence rates of CC in Chinese rural
and urban areas were 11.87/100000 and 11.98/100000, respectively in 2007–2008, meanwhile, the crude
mortality rates were 2.19/100000 and 3.20/100000 [4]. Moreover, the incidence of this cancer in young
Chinese women (≤30 years old) is increasing by 2–3% yearly [5]. In some remote districts like Xinjiang
Uyghur Autonomous Region in Northwest China, which has poor medical conditions like insufficient
healthcare accessibility and qualified medical staff, CC incidence and mortality are even higher. It has
already been an extremely important public health issue in Xinjiang area. The data from Chinese Health
Statistics Yearbook published in recent years indicated that the overall level of Xinjiang public medical and
health conditions, such as healthcare facilities, health funds, health technicians, medical service etc. are
lower than the national average. Due to the historical reasons and unbalanced development in China, the
situation of medical and health condition in Southern Xinjiang is even worse, which is urgently needed
to improve.
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Figure 1. Cytological image samples of CC in 400× magnification (2048*1536 pixels)

The contemporary artificial intelligence techniques such as machine learning applications were widely used in
medical health field in recent years and achieved the certain success [6–14]. It can serve as an excellent assistance
for disease diagnosis, prognosis as well as treatment, and could greatly enhance the work of medical experts and
ultimately to improve the efficiency and quality of medical care, which have important meanings to improve medical
level especially for those poor medical resource areas.

During the past few years, an important machine learning algorithm named deep convolutional neural network
(DCNN) has a very prominent achievement on medical image classification and tremendous progress has been made
in this area [15–20]. Dorj et al. [15] proposed an intelligent and rapid classification system of skin cancer using con-
temporary, highly efficient DCNN, whose overall value of average accuracy is greater than 90%. Teramoto et al. [16]
developed an automated classification scheme for lung cancers presented in microscopic images using DCNN and
the results showed that approximately 71% of images were correctly classified, which is at par with the accuracy of
cytotechnologists and pathologists. Tsehay et al. [17] developed a computer-aided detection (CAD) system based on
DCNN, which can automatically detect lesions on multi-parametric MRI. Wahab et al. [18] presented a two-phase
model to mitigate the class biasness issue while classifying mitotic and non-mitotic nuclei in breast cancer histopathol-
ogy images through DCNN. Sharma et al. [19] explored DCNN for computer-aided classification on histopathological
images of gastric carcinoma, with an overall classification accuracy of 0.699 for cancer classification and 0.8144 for
necrosis detection. Khosravi et al. [20] utilized several computational methods based on convolutional neural net-
works (CNN) and built a stand-alone pipeline to classify different histopathology images across different types of
cancers effectively.

Our study is inspired by the current medical and disease situation in Xinjiang where the qualified medical staff is
insufficient and the incidence and mortality of CC are high. Moreover, precise and rapid diagnosis is an important
prerequisite for further treatment. So, we are trying to develop computer-aided diagnosis (CADx) [21] schemes with
the main purpose of automatically classifying the different CC types from pathological images so as to enhance the
pathologist’s work efficiency.

By reading the extensive literature, we found researchers around the world had carried out various studies on
CADx on CC recent years. Zhang et al. [22] proposed a method based on CNNs to directly classify SINGLE cervical
cell into normal and abnormal from image patches centered on the nucleus centroid. Xu et al. [23] designed a deep
learning framework for cervical dysplasia diagnosis by leveraging multimodal information such as non-image data
and image data. Devi et al. [24] discussed the different types of methods used for the detection of CC based on
neural networks. Taha et al. [25] proposed a deep learning approach for detecting cervix cancer from pap-smear
images, employing pre-trained CNN architecture as a feature extractor and using the output features as input to
train a Support Vector Machine Classifier. However, the methods mentioned above did not meet our requirements
as they needed strict prerequisites. For example, a nucleus center was pre-required for applying the method of Zhang
et al. [22], and was obtained from the ground truth segmentation. However, screening of abnormal cells within a
given field-of-view required automated detection of nucleus centers. The method proposed by Xu et al. [23] needed
multimodal information which was not easily to collect completely in practical such as cervigram, data of Pap test
and HPV test etc. Devi et al. [24] only discussed the methods in theory which were not implemented. Taha et al.
[25] methods also needed pre-required work like accurate cell image segmentation which remained a tough problem
especially when the images contained adherent cells.

In the present paper, we proposed an easy and practical method for the classification of CC from cytological images
without handcraft feature extraction or precise cell image segmentation work. Instead, we directly used the cytological
images containing several CC cells as input to the pipeline. Actually, our previous work [9] demonstrated a DCNN
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Figure 2. Images preprocessing for classification of CC by DCNN

Figure 3. Image rotation

system based on AlexNet to automatically classify the different types of ovarian cancers from cytological images with
preferable classification accuracy. Based on the experience of previous research, we tried to construct and verified the
model whether it can correctly classify the CC images as well.

Squamous cell carcinoma (SCC) is the predominant histological type accounting for three-fourths of all CCs. Ade-
nocarcinoma and adenosquamous cell carcinoma represent 10–15%, and other or unspecified histology represent
the remaining 10–15% [26]. According to WHO Histological Classification Of Tumors Of The Uterine Cervix [27],
the current subtypes of SCC are as follows: Keratinizing, Non-keratinizing, Basaloid, Verrucous, Warty, Papillary,
Squamotransitional, Lymphoepithelioma-like. While adenocarcinomas’ subtypes are endocervical adenocarcinoma,
mucinous carcinoma, villoglandular carcinoma, endometrioid carcinoma, clear cell carcinoma, serous carcinoma,
mesonephric carcinoma, adenocarcinoma admixed with neuroendocrine carcinoma. As our previous research has
demonstrated that the DCNN model has the ability to distinguish the different subtypes, cytological images from
ovarian adenocarcinomas including serous, mucinous, endometrioid and clear cell, which have similar morphology
to cervical adenocarcinomas, we believe that the DCNN model can also distinguish adenocarcinomas subtypes of
CC. And in the present study, we focussed on augmenting image datasets and constructing the DCNN model to rec-
ognize SCC subtypes images of CC. To the best of our knowledge, DCNN have not been applied to the classification
works on SCC of CC from cytological images yet.

Materials and methods
Image dataset
Image acquisition
Seventy-nine (79 specimens in total, 31 Keratinizing squamous, 27 Non-keratinizing squamous, 21 Basaloid squa-
mous) Hematoxylin–Eosin (H&E) stained 3 μm-thick tissue sections of CC from years 2003 to 2015 were collected
from the First Affiliated Hospital of Xinjiang Medical University for subtype classification. And every H&E slide was
histologically confirmed. In order to get more image datasets for the later research work, we captured several images
(5–12 pieces) manually from different regions of each H&E stained tissue sections by a digital still camera attached
to a microscope (Model: Leica, Brand: DM300, Place of origin: Germany) with 40× objective lens, while keeping
their orientation invariable. For the purpose of getting qualified image data, we tried to select the clear images for the
experiment, which were fulfilled with unique subtype cells of CC. Most of them had prominent clinic pathological
features, such as tissue morphologies and colors etc. Figure 1 showed the different subtype image samples of CC.

Image preprocessing
Thus, a total of 502 pathological images containing three different subtypes were collected in JPG format. The ini-
tial matrix size of each JPG image was 2048*1536 pixels. For the needs of follow-up research, we did the following
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Figure 4. Image flipping

Table 1 Image quantities of three distinct subtypes at different stages

Keratinizing squamous Non-keratinizing squamous Basaloid squamous

H&E slice (3-μm-thick) 31 25 23

Images captured (Size: 2048*1536 pixel) 173 166 163

Original images (Size: 227*227 pixel) 1038 996 978

Images rotated (Size: 227*227 pixel) 4152 3984 3912

Images flipped (Size: 227*227 pixel) 12456 11952 11736

Images enhanced (Size: 227*227 pixel) 37368 35856 35208

preprocessing work for each image. First, the initial images were cropped to the size of 2043*1362 pixels. Second, we
divided each of 2043*1362 pixels image into six square patches with the same size which was 681*681 pixels. Third,
all the square patches were resized into 227*227 pixels and named as original images. At last, we got 3012 original
images. Figure 2 showed the image preprocessing work.

The study was reviewed and approved by an institutional review board (ethics committee). With the main pur-
pose of protecting the patients’ privacy, all the H&E-stained tissue sections were anonymous and the information of
patients’ identification was kept secret.

Image augmentation
Deep learning, such as DCNNs, is a recently developed method that yields very successful results in image classifi-
cation. DCNNs, which have a high number of parameters, require a large amount of data to avoid overfitting during
training [28]. Because the sample size in our study was limited, the image datasets for training were augmented by im-
age rotation, image flipping, and image enhancement technology, after which the sample size were greatly expended.
Figure 3 showed the process of image rotation. Figure 4 showed image flipping. A Gaussian High Pass-filter with
kernel size = 4*4 for image denoting and An Unsharp Mask (USM sharpen) with kernel size = 5*5, threshold value
= 20 color gradation, quantities = 170% for edge sharping, were applied to enhancement images clarity and sharp-
ness. Figure 5 showed the process of image enhancement. The above manipulations made a sample size 36-times the
original sample size. Table 1 and Figure 6 showed image quantities of three distinct CC subtypes at different stages,
which indicated that the sample size of the subtypes are almost the same. Then we trained and validated the DCNN
model with original image data and augmented image data separately. The results were compared and explained.

DCNNs architecture
DCNN is a biologically inspired class of deep learning models that has achieved excellent performance on visual and
speech recognition problems [29]. A typical DCNN involves four types of layers: convolutional, activation, pooling,
and fully connected layers [30]. Our DCNN model was constructed based on a very famous DCNN named AlexNet,
which was first proposed by Krizhevsky et al. [31] in the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2012). Compared with the other structure–complex DCNN architectures (e.g. GoogLeNet [32], VGG et
al. [33]), AlexNet is a structure-simple and highly efficient DCNN, which is easy to train and optimize. It mainly
consisted of cascaded stages, namely, convolution layers, pooling layers, rectified linear unit (ReLU) layers and fully
connected layers. Figure 7 showed the architecture and annotation of our DCNN model for CC pathological image
classification.

From Figure 7 we can see RGB image with size 227*227 was the input part of DCNN, meanwhile the output part
was probabilities of three CC subtypes, which were calculated by a soft-max function. Our DCNN model was com-
posed of five convolutional layers, each of which (yellow cube) was followed by ReLU. They were usually used to
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Figure 5. Image enhancement

extract image features automatically. And three max pooling layers (blue cube) with filter size of 3*3 and stride of 2
were inserted between the convolutional layers to decrease the spatial size of input images and the amount of tunable
parameters. Two fully connected layers (purple cube) were applied at the end of model, which consisted of all previous
4096 neurone connections. It normally promotes the reduction in spatial information [34]. Dropout is a regulariza-
tion technique for reducing overfitting in neural networks by preventing complex co-adaptations on training data. It
is a very efficient way to perform model averaging with neural networks [35]. And the dropout rate in our model was
50%.

Transfer learning and fine-tuning
Deep learning often requires large datasets to train the networks, which are lacking in the medical domain espe-
cially for CC images, while transfer learning proved to be an efficient way to deal with such problems [37]. Bengio
[38] demonstrated that transfer learning in CNN could be achieved first by training a CNN on a domain with a
large amount of data, and then re-training that CNN on a small and different domain via fine-tuning its weights.
Hoochang et al. [39,40] showed that transfer learning can be beneficial even in two very different domains (natural
and medical). The advantages of transfer learning even extended beyond the limited data issue, where it was proven
to be an effective initialization technique for building robust deep learning models [41,42]. In our study, we first ini-
tialized the model with pre-training on ImageNet dataset [43] and then duplicated it to create two same models. One
model was fine-tuned on the original image sets and the other one was fine-tuned on the augmented image sets. Both
of the convolutional layers in the models were initialized with pre-trained weights and learning rate multipliers of 0.1
were applied.

The hardware and software for performing classification works by DCNN
Traditional calculation work usually performed by Central Processing Unit (CPU) optimized for single-threaded
performance. However, applying CNNs to large images is much computationally expensive (work) because of
large amount of computation scales linearly with the number of image pixels [36]. Thus, we used multithreaded
GPU to train the model as it achieved high throughput by running thousands of threads in parallel. Our study
was carried out with the help of GeForce GTX TITAN X with 12 GB of Random Access Memory (RAM),
Intel R© CoreTM i7-7500U Processor (4 M Cache, up to 3.50 GHz ), and 4 GB DDR SDRAM. The DCNN was built
and trained by the deep learning freamwork-Caffe package under the Ubuntu 16.04 operation system.

Results
Two classification models that had the same architecture as shown in Figure 7 were trained and tested by two groups
of image dataset respectively, which were original image group with a volume of 3012 datasets and augmented image
group with a volume of 108432 datasets. For each image group, images were divided into three sets including training,
validation, and test sets. For this purpose, 70% of all images were allocated to the training sets and the remaining im-
ages were devoted to validation sets (15%) and test sets (15%). By using our models, the image features were extracted
automatically and the images were classified into three groups, i.e. keratinizing squamous, non-keratinizing squa-
mous, and basaloid squamous. The classification accuracy was calculated by means of three-folder cross-validation
method, as all the image datasets were randomly divided into three same-size groups. Table 2 showed the number of
image datasets in each folder. Table 3 showed the result of classification accuracy, overall, 89.48% for original data and
93.33% for augmented data. Table 4 was the confusion matrix of CC subtype classification results for original images
and augmented data, respectively. It can be seen that Keratinizing squamous and Non-keratinizing squamous were
often misclassified. Figure 8 showed the misclassified image samples of CC by the models.
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Table 2 Number of image datasets in every group for three-fold cross-validation test

Keratinizing squamous Non-keratinizing squamous Basaloid squamous
Original Augmented Original Augmented Original Augmented

Image datasets 346 12456 332 11952 97 11736

Table 3 Classification accuracy of two models

Model trained by original dataset Model trained by augmented dataset

Keratinizing squamous 88.74% 94.41%

Non-keratinizing squamous 89.56% 92.03%

Basaloid squamous 90.14% 93.54%

Average 89.48% 93.33%

Table 4 Confusion matrix of CC subtype classification results

Keratinizing squamous Non-keratinizing squamous Basaloid squamous
Original Augmented Original Augmented Original Augmented

Keratinizing squamous 88.74% 94.41% 5.33% 3.62% 5.93% 1.97%

Non-keratinizing
squamous

6.97% 5.38% 89.56% 92.03% 3.47% 2.59%

Basaloid squamous 6.38% 3.72% 3.48% 2.74% 90.14% 93.54%

Figure 6. Image quantities of three distinct CC subtypes at different stages

Discussion
In general, more than 93.33% CC images were classified correctly, which is a satisfactory result compared with other
classification models. It indicates that our DCNN model has a strong ability to recognize SCC subtypes images of CC.
Most correctly classified images had a certain number of cells in it with notable pathological features, such as cell mor-
phology, tissue color, cell distribution etc., while misclassified images had poor features. The results showed images
of keratinizing squamous and non-keratinizing squamous are often misclassified. We thought this might be caused
by the process of image splitting. An image obtained by the digital still camera was split automatically into six parts
without pathologists’ confirmation, some of which might have less pathological features such as insufficient cancer
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Figure 7. The DCNN architecture and annotation for pathological image classification of CC

cells and intercellular substance etc. Furth more, few images (size: 2048*1536 pixel) may even have both keratinizing
squamous part and non-keratinizing squamous part before splitting. However, in our study we simply treat the six
parts (size: 227*227 pixel) generated from them as ONE subtype images, which could easily lead to training prob-
lems and misclassification. Due to the large number of splitting images (3012), it was difficult to confirm every image
manually by few pathologists, which required us to get clear images as fulfilled with one subtype cells and tissues as
possible in the process of image acquisition. Another point worth mentioning is that the classification accuracy of
model trained by augmented data was 93.33%, which was 3.85% greater than the result of model trained by original
data (89.48%). A paired samples t test was performed base on the results of three-folder cross validation, which indi-
cated two models’ classification accuracy has a significant difference (P-value less than 0.05). As two models with the
same architecture were trained, tested under the same environment, we firmly believed that the significant difference
is mainly caused by the process of image augmentation (image rotation, image flipping, image denoising, and image
sharpness).

Ultimately, three facts have been proved through our study: first, the DCNN model we proposed had a strong ability
to recognize the different cytological images of CCs subtype. Second, the classification accuracy of the model can be
improved by image augmentation. Last but not the least, our method is easy to perform and has practical meanings
for CADx of CC. However, in order to improve the results our further investigations will mainly aimed at improving
the classification accuracy by means of using other DCNN models such as GoogLeNet, VGG etc. and new methods
of data augmentations.

Conclusion
We have investigated the utility of the DCNN for classifying of CC subtypes on cytological image received from
H&E-stained tissue sections. By increasing the training sample size with help of image process (including image
rotation, flipping, enhancement), classification accuracy of the model has been improved by 3.85% and a satisfactory
classification accuracy of 93.33% was achieved. The model and scheme we proposed in the present study can serve as
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Figure 8. Misclassified samples of CCs by the DCNN

a pathologist’s assistance to improve the doctor’s diagnostic level of CC for those regions where the medical condition
is poor and the pathologist is insufficient.
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