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Abstract

The effect of single nucleotide variants (SNVs) in coding and
noncoding regions is of great interest in genetics. Although many
computational methods aim to elucidate the effects of SNVs on
cellular mechanisms, it is not straightforward to comprehensively
cover different molecular effects. To address this, we compiled and
benchmarked sequence and structure-based variant effect predic-
tors and we computed the impact of nearly all possible amino acid
and nucleotide variants in the reference genomes of Homo sapiens,
Saccharomyces cerevisiae and Escherichia coli. Studied mechanisms
include protein stability, interaction interfaces, post-translational
modifications and transcription factor binding sites. We apply this
resource to the study of natural and disease coding variants. We
also show how variant effects can be aggregated to generate
protein complex burden scores that uncover protein complex to
phenotype associations based on a set of newly generated growth
profiles of 93 sequenced S. cerevisiae strains in 43 conditions. This
resource is available through mutfunc (www.mutfunc.com), a tool
by which users can query precomputed predictions by providing
amino acid or nucleotide-level variants.
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Introduction

One of the key challenges of biology is to understand how genetic

variation drives changes in phenotypes. Genome-wide association

studies (GWASs) have made progress in identifying causal genetic

loci, and over the past decade, a large number of associations have

been made between genetic variation and phenotypic traits

including disease risk (Welter et al, 2014). However, GWASs are

typically limited in their ability to identify the causal variant at the

associated locus and further limited by the ability to explain the

underlying mechanism that may be influenced by candidate causal

variants. This missing mechanistic layer severely limits our under-

standing of how variants cause phenotypic variability.

Variants occurring in coding and noncoding regions can influence

a diversity of molecular functions. For instance, noncoding variants

can affect chromatin accessibility (Kumasaka et al, 2016), splice sites

(Xiong et al, 2015) and epigenetic modifications (Rintisch et al,

2014). Coding variants can affect post-translational modification

(PTM) sites (Reimand et al, 2015; Wagih et al, 2015), protein folding

and stability (Lorch et al, 2000), protein interaction interfaces (Engin

et al, 2016) and subcellular localization (Björses et al, 2000), and

introduce premature stop codons. Understanding the disrupted

biological mechanisms underlying genetic variation is key to many

applications in genetics such as genetically engineering organisms,

assessing drug efficacy and drug discovery (Labaudinière, 2002; Lutz,

2010; Nelson et al, 2016).

The ability to predict the degree to which genetic variation would

alter such mechanisms offers a time and cost-effective alternative

over experimental approaches to prioritize variants of interest and

to facilitate the understanding of the mechanisms underlying causal

variants. A multitude of in silico predictors aimed at predicting such

effects has been proposed (Schymkowitz et al, 2005; Kumar et al,

2009; Adzhubei et al, 2010; Wagih et al, 2015), yet they often

require significant computational power, expertise and time to be

used. Furthermore, each of the currently available tools does not

comprehensively provide predicted effects across different molecu-

lar mechanisms (i.e. disruption of stability, interfaces, TF binding).

Accordingly, we have compiled and benchmarked commonly

used sequence and structure-based predictors of mutational conse-

quences and predicted the effect of nearly all possible variants in

the reference genomes of Homo sapiens, Saccharomyces cerevisiae

and Escherichia coli. The impact of variants was measured in the

context of conserved protein regions, protein stability, protein–

protein interaction (PPI) interfaces, PTMs, kinase–substrate interac-

tions, short linear motifs (SLiMs), start and stop codons, and tran-

scription factor (TF) binding sites (TFBSs). This resource is

available through the mutfunc resource (http://mutfunc.com/),

1 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
2 European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany

*Corresponding author. Tel: +44 1223 494 610; E-mail: pbeltrao@ebi.ac.uk

ª 2018 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 14: e8430 | 2018 1 of 16

https://orcid.org/0000-0003-3410-9998
https://orcid.org/0000-0003-3410-9998
https://orcid.org/0000-0003-3410-9998
https://orcid.org/0000-0002-0797-9018
https://orcid.org/0000-0002-0797-9018
https://orcid.org/0000-0002-0797-9018
https://orcid.org/0000-0002-2724-7703
https://orcid.org/0000-0002-2724-7703
https://orcid.org/0000-0002-2724-7703
http://www.mutfunc.com
https://doi.org/10.15252/msb.20188741
http://mutfunc.com/


which allows for prioritization of variants while providing insight

into the altered mechanisms.

To demonstrate the utility of mutfunc, we assessed variants of

uncertain clinical significance (VUSs) in H. sapiens. We further

applied mutfunc to publically available variants for yeast S. cere-

visiae strains to generate protein complex burden scores. We then

phenotyped 93 sequenced S. cerevisiae strains in 43 conditions and

utilized burden scores to associate protein complexes to phenotypes.

This yielded associations that would not be possible through tradi-

tional variant-based GWAS approaches. mutfunc is a computational

resource that will facilitate the study of the mechanistic impacts of

genetic variation.

Results

Functional genomic regions display evolutionary constraint
across yeast and human individuals

In order to set up the variant effect prediction approaches, we first

derived, for E. coli, S. cerevisiae and H. sapiens, molecular informa-

tion such as experimental and homology-based protein structural

models for individual proteins and protein interfaces, TF binding

sites, protein kinase targets sites, post-translational modification

sites and linear motif regions (Materials and Methods). Structural

models were used to identify interface residues and residues with dif-

ferent surface accessibility. Given that functionally relevant regions

of the genome are under evolutionary constraint, we took the oppor-

tunity to use this large collection of functional regions to test whether

these tend to be depleted of natural variants. For yeast, 896,772 natu-

ral variants and their allele frequencies were compiled from 405

yeast strains (Bergström et al, 2014; Strope et al, 2015; Gallone et al,

2016; Zhu et al, 2016), of which 478,857 were coding variants. For

human, over 3.2M coding variants from over 65,000 individuals

were obtained from the ExAC consortium (Lek et al, 2016).

Natural variants were mapped to 9,837 protein structures and

homology models (n = 6,737 human, n = 3,100 yeast), and the resi-

dues were binned according to relative surface accessibility (RSA).

Similarly, 9,883 structures (n = 7,693 human, n = 2,190 yeast) for

protein interaction pairs were obtained from Interactome3D and the

difference in surface accessibility (ΔRSA) between the unbound and

bound complex was determined to identify interface residues, corre-

sponding to those with the highest ΔRSA (Materials and Methods).

The number of variants per position of each bin of RSA and ΔRSA

was compared to counts observed in random positions in the

protein, permuted 1,000 times. Fewer variants were found in buried

regions and interface regions when compared to exposed regions

in both yeast and human (Fig 1A P < 1.28 × 10�34 and B

P < 2.28 × 10�33). To study variation at 296,147 and 26,560 human

and yeast PTM sites, the variant counts over random expectation

were calculated for a window of �5 residues flanking the PTM posi-

tions. The level of constraint was different across PTM types

(Fig 1C) with ubiquitylation showing the lowest level of constraint.

Interestingly, the level of constraint for PTMs increases with the

number of other neighbouring PTMs present in a 10 amino acid

window (Fig 1D) suggesting that the clustering of PTMs may have

important biological functions such as cross-talk regulation (Beltrao

et al, 2013).

It has been shown that TF binding sites tend to have lower-than-

expected variation across populations in particular for crucial speci-

ficity-determining positions (Spivakov et al, 2012). We therefore

tested if similar observations are found at our putative TF binding

sites for S. cerevisiae that were predicted using a combination of TF

specificity models, TF knockout gene expression studies and TF

ChIP-seq or ChIP-chip data (Materials and Methods). A total of 4,523

potential binding sites were identified across 93 TFs of S. cerevisiae.

We computed the ratio between the variant counts within the

predicted binding sites to that of random genomic sites of the same

length and within the same ChIP regions. By combining the analysis

across all putative binding sites of each TF, we observed that binding

sites for some TFs are generally more constrained than others

(Fig 1E). Those with higher levels of constraint include HAP4, a

global regulator of respiratory genes and general transcriptional

regulators such as REB1 and RAP1. At the level of individual TF

binding sites, we observed that those found within clusters of bind-

ing sites tended to show higher levels of constraints than isolated

sites (Fig 1F). Additionally, the TF binding positions for each TF

were stratified according to their importance for binding as measured

by the position-specific information content (IC) of the TF specificity

position weight matrices. In accordance with expectation, positions

with high IC, which correspond to positions that are important for

binding, tend to have fewer variants than less important positions

(Fig 1G). Position-specific constraint for individual TFs highlights

this difference between high and low IC positions (Fig 1H).

Overall, these results provide an overview of how population-level

variation differs across diverse set of genome functional elements and

recapitulates findings from analysis of specific types of functional

elements (Spivakov et al, 2012; de Beer et al, 2013; Reimand et al,

2015). Additionally, it suggests that our collection of functional

elements (e.g. structures, interfaces, PTMs and TF binding sites)

shows evolutionary constraints and therefore can be used further for

the establishment of the variant effect prediction pipeline.

A comprehensive resource of mechanistic effects of single
nucleotide variants

We sought to better understand the mechanistic impact of point

mutations affecting the above described functional elements. To do

this, a set of commonly used predictors were used to assess the

impact of every possible single amino acid or nucleotide substitution

across H. sapiens, S. cerevisiae and E. coli, where applicable. We

performed a large-scale computational estimation of the impact of

variants on conserved protein regions, protein stability, protein

interaction interfaces, kinase–substrate phosphorylation and other

PTMs, linear motifs, TFBSs and start and stop codons (illustrated in

Fig 2A, Materials and Methods). These results were deposited in the

mutfunc resource, which offers a quick and interactive way by

which users can gain predicted mechanistic insight for variants of

interest. Although the algorithms used have been previously

described, this resource allows to easily query all predictors in a

unified and consistent interface.

To measure the impact on conserved regions, we constructed

29,027 multiple sequence alignments for proteins of the three organ-

isms (n = 19,497 H. sapiens, n = 5,498 S. cerevisiae, n = 4,032

E. coli) and used the SIFT algorithm (Ng & Henikoff, 2003) to assess

the impact of all possible 291.7M protein coding variants
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(n = 212.2M H. sapiens, n = 53.4M yeast, n = 26.1M E. coli). To

measure the impact on protein stability, the FoldX algorithm

(Schymkowitz et al, 2005) was applied to 11,771 structures (includ-

ing homology models) across the three organisms (Materials and

Methods and Fig EV1) and precomputed effects of 55.9M protein

coding substitutions (n = 42.7M H. sapiens, n = 5.3M S. cerevisiae,

n = 8.1M E. coli). We identified interface residues in 10,675 struc-

tures of binary PPIs from Interactome3D across the three organisms
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and similarly applied FoldX to compute the effects of 11.2M possible

interface mutations on binding stability (n = 7.2M H. sapiens,

n = 2.3M S. cerevisiae, n = 1.6M E. coli). To identify variants that

could impact kinase–substrate sites, we used MIMP (Wagih et al,

2015) to predict the impact of all possible 541,161 variants

(n = 485,736 H. sapiens, n = 55,425 S. cerevisiae) falling within �5

residues of a known kinase–substrate phosphorylation site (phos-

phosite) on a kinase’s specificity. Specificities for 56 kinases in

H. sapiens and 46 kinases in S. cerevisiae were considered. Kinase–

phosphosite relationships for E. coli are not well established and

cannot be scored in the same way. For all other PTMs such as

methylation, ubiquitination and acetylation for which we do not

have explicit flanking sequence specificity models, a variant was

considered damaging if it directly altered the modified site. This

resulted in a total of 6.3M possible variants that could alter such

PTM sites across the three organisms (n = 5.8M H. sapiens,

n = 537,434 S. cerevisiae, n = 9,177 E. coli). For linear motif infor-

mation, not available for E. coli, we gathered 1,668 experimentally

identified linear motifs (n = 1,525 H. sapiens, n = 143 S. cere-

visiae), along with their derived regular expression pattern from the

ELM database (Dinkel et al, 2012) and computed the impact of all

possible 226,920 variants (n = 205,120 H. sapiens, n = 21,800

S. cerevisiae) on binding patterns. Finally, for TFBSs, for organisms

without well-defined functional TFBSs (H. sapiens and S. cere-

visiae), we defined putative TF-gene regulatory network using TF-

knockdown expression data and/or ChIP-seq/ChIP-chip (Materials

and Methods). We then used PWMs to identify putative binding

sites, and predict the impact (Materials and Methods) of all possible

3.6M variant substitutions (n = 3.3M H. sapiens, n = 236,382 yeast,

n = 46,768 E. coli) on specificities of 217 TFs (n = 72 H. sapiens,

n = 104 S. cerevisiae, n = 41 E. coli).

These precomputed variant effect predictions constitute a resource

that can be used in diverse ways. In the next sections, we benchmark

this resource and illustrate some of its possible applications.

Functionally important positions are enriched in predicted
deleterious variants

In order to benchmark the variant effect predictions that underlie the

mutfunc resource, we first asked whether essential genes would

harbour fewer natural variants that are predicted to be deleterious.

Essential genes in yeast (Giaever & Nislow, 2014) and human

(Blomen et al, 2015) consistently demonstrated significantly lower

frequencies of variants predicted to affect conserved sites (SIFT

score < 0.05, P = 6.46 × 10�17 human, P = 3.64 × 10�24 yeast, Fig 2B)

and protein stability (ΔΔG pred > 2, P = 1.58 × 10�10 human,

P = 4.7 × 10�4 yeast, Fig 2B). Variants of higher allele frequency in

the population are expected to be less impactful, and in accordance

with this, we observed an increase in deleterious scores, as predicted

from SIFT and FoldX, for variants of lower allele frequencies (Fig 2C).

In addition to allele frequencies, we analysed mutations that are

known to be deleterious. For H. sapiens, we used 34,600 variants

annotated to be pathogenic (n = 17,167) or benign (n = 17,433) from

the ClinVar (Landrum et al, 2014). For S. cerevisiae, we used 8,083

variants consolidate by Jelier et al (2011) as either tolerated

(n = 5,271) or affecting function (n = 2,812; Materials and Methods).

The different predictors consistently discriminated tolerated from

pathogenic variants as measured by the area under the receiver oper-

ating characteristic curve (AUC). SIFT performed the best at discrimi-

nating pathogenic variants from benign (AUC H. sapiens = 0.87,

S. cerevisiae = 0.92), followed by FoldX interfaces (AUC H. sapi-

ens = 0.64, S. cerevisiae = 0.72) and FoldX stability (AUC H. sapi-

ens = 0.70, S. cerevisiae = 0.62, Fig 2D).

For other heuristic-based predictors such as SLiMs, PTMs or stop

gains/losses, we compared the proportion of pathogenic versus

benign variants that disrupt or not the annotation. Despite the low

number of pathogenic variants overlapping with these features, we

observed an enrichment of pathogenic variants for mutations that

disrupt such features (Fig 2E and F). The only exceptions were for

PTM-disrupting variants in human and for linear motif-disrupting

variants in yeast. In contrast, there were significant differences for

the enrichment of pathogenic variants disrupting human linear

motifs (P = 5.23 × 10�3) and yeast PTM sites (P = 8.44 × 10�7). For

some of annotations, the lack of statistical significance may be due

to the small number of testable variants.

The results here demonstrate that the predictors used in mutfunc

are generally capable of enriching for variants of functional signifi-

cance. The resource can be used to prioritize variants according to

the degree of pathogenicity as well as provide molecular mecha-

nisms affected.

Predicting mechanistic impacts of variants of
uncertain significance

Variants that have been identified through disease-related genetic

testing but are yet to be deemed benign or pathogenic are termed

◀ Figure 1. Population-level sequence constraint in genome functional elements.

The level of sequence constraint was estimated using a ratio of the counts of genome variants across individuals of yeast and human compared with a random control region
for different functional elements.

A Regions buried within a protein structure with a low RSA typically exhibit higher evolutionary constraint.
B Similarly, regions buried within interaction interfaces exhibit a high ΔRSA and demonstrate stronger sequence constraints.
C Sequence constraint on PTMs, where numbers reflect the number of PTM sites for each modification.
D PTMs with a higher number of neighbouring PTMs show stronger constraint.
E Variability in constraint among bindings sites for TFs with at least 40 sites.
F TFBSs that coexist with other binding sites are under stronger constraint.
G Position-specific constraint shows that positions of higher relevance for binding in TFs with at least 20 sites are under stronger constraint. Notches represent the 95%

CI in the median, box limits the IQR and upper whiskers the 75th percentile. The horizontal line represents the null expectation of no difference between observed
and expected, same as in all other panels of this figure.

H Four examples where the bar plots reflect the position-specific constraint in (blue) and around (grey) the binding site, along with sequence logos for the binding specificities.

Data information: (A, B, F) P-values represent a one-sided Wilcoxon test. (A, B, C, D, F) Error bars represent the standard deviation. One hundred random samples were
used. (G) P-value shown is computed using a one-sided Kolmogorov–Smirnov test.
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variants of uncertain significance (VUS). The interpretation of such

variants is a common challenge in genetics, one that is often aided

by computational predictors. A total of 64,692 variants labelled with

“uncertain significance” were collected from ClinVar (Landrum

et al, 2014). VUSs were annotated using mutfunc and 21,584 vari-

ants were predicted impactful by at least one of the mechanistic

predictors, not including SIFT (n = 7,547 stability, n = 751 inter-

faces, n = 139 linear motifs, 2,372 PTMs, 57 kinase binding). From

these, we focused on variants predicted to impact the structural

integrity of proteins (stability and interaction interfaces) since they

hold the highest coverage.

Of the VUSs predicted to interfere with interface or protein stabil-

ity, we retained those in which (i) the protein also harbours a

known pathogenic variant with the same predicted structural

impact, and (ii) both the pathogenic variant and VUSs are identified

in patients with the same disease. This allows us to connect a vari-

ant of uncertain significance with a pathogenic variant by the fact

that they occur in patients of the same disease and are predicted to

have the same molecular consequence at the protein level. We

demonstrate a few examples of VUSs that are predicted to alter bind-

ing (Fig 3A–C) or structural stability (Fig 3D and E). For instance,

primary hyperoxaluria is a disease caused primarily by mutations in

GRHPR, a glyoxylate and hydroxypyruvate reductase (Cramer et al,

1999; Cregeen et al, 2003), and its enzymatic activity requires

homodimerization (Booth et al, 2006). For this enzyme, the variants

R302H and E113K have been implicated in primary hyperoxaluria,

are annotated to be pathogenic in ClinVar (Landrum et al, 2014)

and are predicted here to impact on binding stability (Fig 3A,

DDG > 2.15). We can reason that other variants in patients of the

same disease impacting on GRHPR homodimerization are therefore

also likely to have the same phenotypic outcome. For example, the

variant R171H is predicted to impact a conserved region as well as

the homodimerization stability (Fig 3A, DDG = 2.19, s < 0.018) and

found in primary hyperoxaluria patients. Although R171H is of

uncertain significance, our analysis strongly suggests that it is very

likely to have the same phenotypic consequences and act via the

same molecular mechanism as R302H and E113K. Similarly compel-

ling examples are found for other proteins such as fumarate hydra-

tase (Fig 3B) and lamin (Fig 3C).

Similar to interface variants, we analysed variants that destabi-

lize the protein structure. We identified 1,182 VUSs predicted to

alter stability in proteins containing pathogenic variants also

predicted to be destabilizing. For instance, the ubiquitin ligase

PARK2, implicated in Parkinson’s disease, contains two variants

(V56E and C232Y) annotated to be pathogenic in ClinVar (Landrum

et al, 2014) that we predict to impact on its stability. For this

protein, two other variants of uncertain significance (R42H, V148E)

were found in Parkinson’s disease patients and also predicted to

destabilize the protein (DDG > 4.7, Fig 3D). Therefore, we would

suggest that the R42H and V148E variants are likely to cause the

same phenotypes as the V56E and C232Y variants. In the tumour

suppressor serine/threonine-protein kinase STK11, pathogenic and

VUS identified in Peutz–Jeghers syndrome patients can be similarly

linked (Fig 3E).

The analysis here demonstrates how mutfunc could be applied to

systematically prioritize pathogenic variants through altered mecha-

nisms that may be the molecular cause of the phenotype and

the combination of algorithms that cover different molecular

mechanisms.

S. cerevisiae strain genomic differences are a significant but
weak predictor of phenotypic similarity

We sought to illustrate the use of mutfunc for genotype-to-pheno-

type association analysis. Using S. cerevisiae as a case study, we

first phenotyped growth for a panel of 166 strains in 43 conditions

(Materials and Methods). Colony sizes for strains were quantified,

normalized and scored relative to all strains in a condition to

produce a phenotypic measure defined as the S-score (Collins et al,

2006). Positive and negative values indicate higher or lower than

expected growth for a given strain and a specific condition (Materi-

als and Methods). S-scores for biological replicates demonstrated a

high degree of concordance (r = 0.91, P < 2.22 × 10�16, Fig 4A)

suggesting a high degree of confidence in phenotypic measure-

ments. S-scores for each strain and growth condition are provided

in Dataset EV1.

Hierarchical clustering of growth phenotypes revealed known

clusters of related stressors (Fig 4B). Clusters of similar phenotypic

profiles included, for example, UV light, cisplatin and MMS, which

are all DNA-damaging agents (mean Pearson’s r = 0.51); nystatin

and caspofungin (Kathiravan et al, 2012), known to interfere with

the cell wall (r = 0.49); and caffeine and rapamycin (Reinke et al,

2006), both known to inhibit TOR signalling (r = 0.41). Further-

more, strains belonging to the same population structure (Strope

et al, 2015) or environmental origin often showed similar pheno-

typic profiles (Fig 4B). Genome sequences were available for 93 of

the 166 profiled strains and used to calculate pairwise genomic simi-

larity as the euclidean distance of the vector of SNPs. As expected,

genetic similarity is significantly correlated with phenotypic similar-

ity (Fig 4C, r = 0.12, P < 0.0001) but alone explains a small amount

◀ Figure 2. The mutfunc resource and benchmarking of underlying variant effect predictors.

A The mutfunc interface provides an intuitive, user-friendly way by which users can query the resource using DNA or protein substitutions provided in plain text
format or the variant call format (VCF). The impact of variants across different mechanisms is provided with information on impact strength in downloadable
format and/or protein structural views.

B The fraction of variants predicted to affect a conserved or structural important residues for essential and nonessential genes. For yeast SIFT, the number of
essential/non-essential genes are 3,967 and 906, respectively. For yeast foldx the numbers are 925 and 281. For human sift the numbers are 15,542 and 1,575. For
human foldx the numbers are 3,702 and 499.

C Mean SIFT scores and predicted ΔΔG values for human and yeast variants within different MAF bins. Error bars represent the standard error, and P-values are
calculated based on a one-sided Wilcoxon test.

D Pathogenic and benign variants were obtained for human (from ClinVar) and yeast (curated) as described in the Materials and Methods section. These were used to
benchmark the capacity of different predictors to discriminate between known pathogenic and benign variants.

E, F The proportion of pathogenic versus benign variants that disrupt or not different functional annotations (SLiMs, PTMs or stop gains/losses) in human (E) and yeast (F).
Number of replicates is 100 (i.e. random samples).

Data information: (B, E, F) P-values represent a one-sided Wilcoxon test. (E, F) Error bars for random samples represent the standard deviation.
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of the phenotypic diversity. This is not unexpected since most

genetic variation is neutral and distantly related strains accumulate

variation that may not have an impact on the phenotypes tested.

While strains having very similar genomes tend to have very similar

phenotypes, strains with more divergent genotypes can show either

a similar or very different phenotypic profiles (Fig 4C).

Gene and complex disruption scores for genotype-to-
phenotype associations

Given that most variants are expected to be neutral, we used the

predictions collected in mutfunc to interpret the observed variants

in each strain at the gene level by computing a total gene burden or

disruption score using the mechanistic predictions for conservation

(SIFT), protein stability (FoldX) and protein truncating variants

(PTVs, including start loss, nonstop and nonsense variants; Fig 5A).

Scores produced by predictors are standardized to reflect the likeli-

hood they are deleterious (Fig 5B, Materials and Methods). This

allows for effects of rare variants to be combined across different

protein positions and predictors into a single probability that the

gene is affected (PAF score or burden score; Jelier et al, 2011;

Galardini et al, 2017).

Using the gene-level disruption scores, we performed phenotype

association analysis. Scores were binned based on high

A B C

D E

Figure 3. Analysis of variants of uncertain clinical significance using mutfunc.

A–C Three examples of interaction interfaces containing variants predicted to impact binding stability. Subunits of the interaction complex are coloured in dark grey
and white, and respective interface residues in dark green and green.

D, E Two examples of variants predicted to impact protein stability. Pathogenic variants are labelled “P” in red, and VUSs “U” in blue.
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(PAF > 0.90) or low (PAF < 0.90) burden (Fig 5C). Associations

were carried out for 1,446 genes (with at least three strains

containing a PAF > 0.90) against growth phenotypes across 43

conditions (Materials and Methods). We identified 872 statistically

significant gene–phenotype associations at P < 1 × 10�3 and

FDR < 10%, with 82% (717/872) being negative. A negative asso-

ciation here indicates that the disruption of the gene is linked to

decreased growth, while a positive association would suggest that

the disruption is associated with a better than expected growth.

Under the assumption that gene function is conserved across

strains of S. cerevisiae, we expected these associations to be

enriched in genes that cause a condition-specific phenotype when

knocked out. Such association between gene KOs and condition-

specific growth phenotypes exists for the laboratory strain as part

A
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Figure 4. Phenotypic screening of 166 yeast strains.

A Concordance between replicate s-score measurements.
B Heatmap of s-scores showing hierarchical clustering of both strains and conditions reveals clusters of phenotypically similar strains and conditions.
C Comparison of pairwise genotype and phenotype distances between 93 sequenced strains shows little observable correlation.
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of extensive published chemical genetic studies. We found KO

chemical genetic data for 35 of the 43 conditions tested. Of the

significant negative associations, only 9% (65/717) are validated

by the chemical genetic data. The validation rate increases for

higher effect sizes (Fig EV2A) to 15% (55/367) and 28% (20/71)

for at D > 1 and at D > 1.8, respectively. However, based on

permutation testing only the enrichment found at large effect sizes

(D > 1.8) was significant (P = 0.04, Fig EV2A).

A

B

C

E

D

Figure 5. Gene and protein complex-level aggregation of variant effects for phenotype association analysis.

A Diagram demonstrating the aggregation of variant impact. Each variant is first assigned a probability of deleteriousness, which are aggregated at the gene level using
the maximum impact.

B The probability of deleteriousness for FoldX and SIFT was computed by assessing the proportion of deleterious variants in gold-standard data for FoldX and SIFT. A
logistic regression model (red line) is fit to compute subsequent probabilities. Protein complex-level burden scores were taken to be the maximal burden for any
complex member.

C Gene and complex burden scores for each strain, gene/complex-phenotype associations were carried out.
D Volcano plot with gene–complex associations highlighting the effect size and P-value of selected examples.
E S-score growth distributions for strains having a low (PAF < 90, red) or high (PAF > 90, blue) burden scores for three selected complexes. The protein subunits of each

complex are shown with affected subunits in blue with the number of strains in which the subunit is predicted to be impaired in parenthesis. Subunits in red are not
predicted to be impaired in any strain.
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We next reasoned that protein complex members often act as

coherent functional units and that the dysfunction of complex sub-

units often elicits similar phenotypic outcomes (Collins et al, 2007).

Therefore, we aggregated the gene-level scores to identify

complexes that were potentially defective in a given strain with the

assumption that the complex was defective if at least one subunit

was predicted to be impaired (PAF < 0.90). We performed protein

complex-level associations focusing on 263 complexes predicted to

be defective in more than two strains (Fig 5D). A total of 106 signifi-

cant complex–phenotype associations were identified (P < 1 × 10�3,

FDR < 10%), 80 (75%) of which had a high effect size (Δ > 1).

The 80 associations involved 31 conditions and were preferentially

negative associations (65 of 80, 81%). As we did for the gene-condi-

tion associations, we benchmarked the complex-condition associa-

tions and found a significant enrichment in KO chemical genetic

data (Fig EV2B) that was significantly higher than observed based

on random permutation testing (Fig EV2B, P = 0.04). This enrich-

ment is observed only for stringent cut-offs for defining gene-dele-

tion phenotypes from the KO chemical genetic studies (Hillenmeyer

et al, 2008).

Some examples illustrate how the analysis at the protein

complex level may increase power for the identification of associ-

ations (Fig 5E). For example, we found validated associations

between the ESCRT II complex and growth in low pH (Xu et al,

2004). We have also found an association between high heat and

the GID FBP degradation complex that contains several subunits

(VID24, GID8 and VID28) that cause increased sensitivity to heat

when deleted (as annotated in www.yeastgenome.org). In addi-

tion, we recover also the well-established requirement for the

nucleotide excision repair complex for growth under UV light

(Prakash et al, 1993). From these three validated examples, only

one subunit of the ESCRT II complex (SNF8) shows a significant

gene-level burden association with the respective condition (low

pH). The other two complexes would not have been associated

based on gene-level burden scores likely due to insufficient recur-

rency of mutation at the gene level.

This association analysis indicates that there is value in combin-

ing effects of rare variants at the protein and protein complex level

to perform association studies. Although the current study is limited

due to the relative small number of strains studied, it illustrates how

mutfunc can be applied to the study of diverse set of problems.

Discussion

The mutfunc resource makes use of established variant predictors to

precompute millions of variant effects across the reference genomes

of H. sapiens, S. cerevisiae and E. coli. This resource is not a new

variant effect predictor nor an attempt to create an integrated score.

The predictors used and their performance have been previously

described, but the large computational effort and the accompanying

web service (mutfunc.com) constitute a resource that facilitates

their use. Within mutfunc, conservation effects hold the highest

coverage, (H. sapiens 98.6%, S. cerevisiae 87.9% and 96.1% E. coli)

followed by stability (H. sapiens 18.9%, S. cerevisiae 7.9% and

30.1% E. coli) and interfaces (H. sapiens 2.20%, S. cerevisiae

2.84% and 4.45% E. coli). Other mechanisms like PTMs and TFBSs

are likely to have lower coverage, but it is unclear at the moment

what would constitute 100% coverage for these features. As addi-

tional data become available, mutfunc will be updated to improve

coverage and future work could expand the set of mechanisms stud-

ied such as drug or small-molecule binding sites, RNA-binding inter-

faces, among others. The effects of variants on molecular and

cellular phenotypes are increasingly being probed directly by large-

scale mutagenesis experiments (Fowler & Fields, 2014; Weile et al,

2017), which will likely result in improved variant effect prediction

algorithms (Gray et al, 2018). The curation of such experimentally

determined effects and the improved algorithms can be integrated in

future iterations of mutfunc.

A strength of mutfunc lies in its large set of precomputed SNV

effects allowing for genome-wide variants to be rapidly queried.

However, within such a framework, combinatorial and potential

epistatic effects cannot be precomputed due to a large number of

possible combinations. Similarly, many other types of genetic varia-

tion such as copy number variations and indels (Chuzhanova et al,

2003; Beroukhim et al, 2010) have not be considered in mutfunc

due to their complex structure. Lastly, many organisms in which

genetic variation is commonly studied are not included in mutfunc.

These include Mus musculus, Drosophila melanogaster and

Arabidopsis thaliana, which contain an abundance of data and

could be added in the future.

Understanding how disrupted cellular mechanisms propagate to

changes in phenotypes is critical for variant interpretation. We

show here how different variants can be integrated using effect

predictors and protein complex annotations to perform genotype-

to-phenotype associations for full genome sequences. In addition,

we and others have also shown how prior knowledge of gene

function and variant effect predictions can be used to predict

growth differences of different strains of S. cerevisiae (Jelier et al,

2011) and E. coli (Galardini et al, 2017). These analyses illustrate

ways to calculate gene burden scores across different effect predic-

tors. We found a significant but limited overlap between the gene-

condition associations derived here with those found in gene KO

studies in the reference laboratory strain. This small overlap could

be due to a number of reasons including errors in variant effect

predictions; limited sample size for the associations (i.e. 93

strains); and epistatic interactions of variants and different proto-

cols for fitness measurements. The effects of a genetic variation

in vivo can be complex and depend on both genetic and environ-

mental factors (Burga et al, 2011; Wray et al, 2013; Perez et al,

2017). Several studies have shown that many variants annotated

as disease-causing or predicted as deleterious have been identified

in healthy humans (Xue et al, 2012). In addition to these potential

causes of error, it is assumed here that the loss of function of a

given gene will have the same phenotypic consequence across

individuals of the same species. The extent by which this assump-

tion is true remains to be tested.

Despite the limitations discussed, given the growing number of

efforts to sequence exome and genomes for panels of individuals,

the incorporation of variant prioritization by different approaches

into association analyses will become more prevalent. The mutfunc

resource can provide such variant effect predictions with mechanis-

tic annotations for three species. We illustrate how this resource can

be applied in different scenarios, and given the architecture used,

these analyses can be easily incorporated into large-scale full

genome or exome sequencing efforts.

10 of 16 Molecular Systems Biology 14: e8430 | 2018 ª 2018 The Authors

Molecular Systems Biology Mutfunc: precomputed impact of variants Omar Wagih et al

http://www.yeastgenome.org


Materials and Methods

Genetic variant data collection

A total of 896,772 genetic variants occurring in for 405 haploid

and diploid S. cerevisiae strains were collected from four studies

(Bergström et al, 2014; Strope et al, 2015; Gallone et al, 2016; Zhu

et al, 2016). All but one study by Strope et al provided processed

variant calls in VCF format. Variants were called for the Strope et al

study using the following pipeline. Raw reads were obtained from

the ENA resource (Leinonen et al, 2011). Adapter sequences were

removed using cutadapt v1.8.1, and reads were mapped to the

S. cerevisiae genome version 64 using BWA-MEM v0.7.8 (https://

arxiv.org/abs/1303.3997). Duplicate reads were discarded using

Picard v1.96 (https://github.com/broadinstitute/picard), and reads

were realigned using the GATK IndelRealigner v3.3 (McKenna et al,

2010). Base alignment qualities were computed using SAMtools

v1.2 (Li et al, 2009), and variants were called using FreeBayes

v0.9.21-15-g8a06a0b and the following parameters –no-complex,

–genotype-qualities, –ploidy 1 and –theta 0.006. The VCF was fil-

tered for calls with QUAL > 30, GQ > 30 and DP > 4. VCF for individ-

ual S. cerevisiae strains was combined, and coding variants were

called using the predictCoding function of the VariantAnnotation R

package (Obenchain et al, 2014).

A total of 3,198,692 coding variants in H. sapiens for over 65,000

individuals were collected from the ExAC consortium along with

corresponding adjusted allele frequencies. Ensembl transcript posi-

tions were mapped to UniProt by performing Needleman–Wunsch

global alignment of translated Ensembl transcript sequences against

the UniProt sequence using the pairwiseAlignment function in the

Biostrings R package. The mapping between Ensembl transcript IDs

(v81) and UniProt accessions was obtained from the biomaRt R

package (Smedley et al, 2015). In the case that multiple alleles

mapped to the sample single amino acid substitution, the one with

the highest adjusted allele frequency was retained.

A total of 139,167 variants were obtained from ClinVar. Only

variants that did not match one of the following clinical significance

terms were removed: “Benign”, “Benign/Likely benign”, “Likely

benign”, “Likely pathogenic”, “Pathogenic/Likely pathogenic” and

“Pathogenic”. Variants with a review status of “no assertion criteria

provided” were also removed, as those reflect variants that have

been assigned clinical significance without any particular criteria.

The final filtered set contained 39,597 variants. Of these variants,

44% were classified as pathogenic or likely pathogenic. For S. cere-

visiae, a total of 8,083 manually curated variants were obtained

from Jelier et al (2011), 34.5% (2,812) of which were labelled as

deleterious. Variants were collected from a combination of the

UniProt database (Apweiler et al, 2004), Protein Mutant Database

(Kawabata et al, 1999), Saccharomyces Genome Database (Cherry

et al, 2012) and mutations that are identified in essential genes (Liti

et al, 2009). These variants were used for the benchmarking of the

variant effect predictors in Fig 2.

Essential genes

A total of 2,501 essential genes identified using gene trapping tech-

nology in two haploid H. sapiens cell lines KBM7 and HAP1 were

obtained from Blomen et al (2015). These were further filtered for

genes that were essential in both cell lines, for a total of 1,734 genes.

A total of 1,156 essential genes in S. cerevisiae were obtained from

the Saccharomyces Genome Deletion Project (Giaever et al, 2002).

Predicting impact on protein stability and protein
interaction interfaces

Experimentally determined structures were obtained from the

Protein Data Bank (PDB). Large structures that did not have a corre-

sponding PDB file were downloaded in mmCIF format and

converted to PDBs using the PyMOL Python library v1.2r3pre

(pymol.org). Mapping of coordinates from PDB to UniProt residues

was derived from the SIFTS database (Velankar et al, 2013). Struc-

tures with a resolution above three angstroms were discarded, and a

single representative structure maximizing the coverage of the

protein was retained. Homology modelling was carried out for

proteins with no experimentally determined structures using

ModPipe version 2.2.0 (Pieper et al, 2009) and the following param-

eters: –hits_mode 1110 and –score_by_tsvmod OFF. For each

protein, we excluded models with a ModPipe Protein Quality Score

lower than 1.1 and then kept the model with the highest normalized

DOPE score. Finally, we excluded residues with a residue-level

DOPE score (rDOPE) greater than 0 as stability predictions for such

residues are error prone (Fig EV1). Experimental and homology

modelled structures for protein interactions were obtained from the

Interactome3D database (Mosca et al, 2012). Relative solvent acces-

sibility (RSA) for all residue atoms was computed using NACCESS

for proteins individually, and in the interaction complex. Interface

residues were defined as those with any change in RSA. All other

calculation of RSA was carried out using FreeSASA v1.1

(Mitternacht, 2016).

The impact of variant on stability was computed using FoldX

v.4.0 (Schymkowitz et al, 2005). All structures were first split by

chain into individual PDB files and repaired using the RepairPDB

command, with default parameters. The Pssm command is then

used to predict DG with numberOfRuns=5. This performs the muta-

tion multiple times with variable rotamer configurations, to ensure

the algorithm achieves convergence. The average DG of all runs is

computed, and the DDG is computed as the difference between the

wildtype and mutant. The impact of variants on interaction inter-

faces is measured similarly, with the exception of structures being

provided in binary interaction, rather than individual chains.

Predicting the impact of variants on PTMs and linear motifs

For S. cerevisiae, a total of 20,056 phosphosites and 2,219 kinase–

substrate associations were obtained from the PhosphoGRID data-

base (Sadowski et al, 2013). A total of 1,070 of other PTM sites were

obtained from the dbPTM database (Lee et al, 2006). For H. sapi-

ens, all PTM data, including that of phosphorylation and kinase–

substrate associations, were obtained from PhosphoSitePlus

(Hornbeck et al, 2012), for a total of 296,147 sites. For E. coli, a

total of 483 PTM sites were obtained from dbPTM (Lee et al, 2006).

Linear motif data for S. cerevisiae and H. sapiens, including anno-

tated linear motif binding sites and regular expression patterns,

were obtained from the ELM database (Dinkel et al, 2016).

Impact of variants on phosphosites and flanking regions was

measured using the MIMP algorithm (Wagih et al, 2015), with
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default parameters. For other PTMs, a variant was predicted to be

impactful if it resulted in the change of the modified residue. For

linear motifs, a variant was predicted to be impactful if it causes a

loss of match for associated regular expression pattern.

Predicting the functional impact of variants using conservation

All protein alignments were built against UniRef50 (Suzek et al,

2015), using the seqs_chosen_via_median_info.csh script in SIFT

5.1.1 (Ng & Henikoff, 2003). The siftr R package (https://github.

com/omarwagih/siftr), an implementation of the SIFT algorithm,

was used to generate SIFT scores with parameters ic_thresh=3.25

and residue_thresh=2.

Transcription factor binding sites

A total of 177 S. cerevisiae TFs binding models were collected in

form of a position frequency matrices (PFMs) from JASPAR

(Sandelin et al, 2004) and converted to position weight matrices

(PWMs) using the TFBSTools R package (Tan & Lenhard, 2016).

PWMs were trimmed to eliminate consecutive stretches of low infor-

mation content (< 0.2) on either terminus. To identify genes likely

regulated by a particular TF, a combination of TF knockout expres-

sion and ChIP-chip experiments was used, as similarly described in

Gonçalves et al (2017). Genome-wide gene expression profiles for

837 gene-knockout strains were obtained from three studies (Chua

et al, 2006; Hu et al, 2007; Kemmeren et al, 2014), 148 of which

were a known TF with a defined PWM. Studies provided either a

Z-score or P-value for each gene as a measure of over or under-

expression, relative to the distribution of values for all genes. Two-

tailed P-values were computed from Z-scores when a P-value was

not provided. In cases where TF knockout was repeated between

studies, the lowest P-value for each gene was used. ChIP-chip tracks

for 355 TFs were collected from four studies (Harbison et al, 2004;

Tachibana et al, 2005; Rhee & Pugh, 2011; Venters et al, 2011) via

the Saccharomyces genome database. Of the 355 of the TFs, 144

(56%) had a defined PWM. Potential binding sites were then only

searched for in TF-gene pairs with a P-value below 0.01 and the

corresponding ChIP-chip region upstream of the regulated gene. A

normalized log score of 0.80 was used as the cut-off for defining

putative binding sites. Similarly, for H. sapiens, 454 TF PWMs were

generated from JASPAR PFMs. ENCODE clustered ChIP-seq data

were obtained for 161 TFs, of which 72 had a PWM. Only those

regions were scored against the corresponding PWM. For E. coli, a

total of 1,905 TF-matching sequences across 84 TFs were obtained

from RegulonDB (Gama-Castro et al, 2016) and used to construct

PWMs. A total of 2,416 experimentally identified TFBS were

obtained for 79/84 TFs from RegulonDB. These sites were used as

putative binding sites for downstream variant predictions.

Potential target sequences were scored against the PWM using

the log-scoring scheme defined in Wasserman and Sandelin (2004)

and normalized to the best and worst matching sequence to the

PWM. The resulting score lies between 0 and 1, where 1 signifies

strong predicted binding by the factor, whereas 0 signifies predicted

lack of binding. Potential binding sites were scored in the presence

(Swt) and absence (Smt) of a variant. Three separate metrics are used

to quantify the change in binding between the reference and alter-

nate allele. The first one is simply the difference in the normalized

log score, Swt � Smt, where a large positive value indicates loss of

binding. The second is the difference in binding percentile. Here,

random oligonucleotides are used to generate a negative distribution

of log normalized scores for each TF. The percentile of each wild-

type pwt and mutant scores pmt is computed from this distribution,

and the difference, pwt � pmt, is used to quantify the magnitude of

impact. The last is the difference in the relative information content.

This can be thought of as the difference of letter height in a

sequence logo. Given that the wildtype and mutant bases have rela-

tive frequencies of fwt and fmt, respectively, and a position has an IC

value of c, then this is computed as (fwt � c) � (fmt � c). This value

ranges from 0 to 2, where 0 indicates little to no impact on a critical

base, and 2 indicates a strong one.

Implementation of mutfunc

Described predictors were used to precompute effects for all amino

acid and nucleotide substitutions. The mutfunc web server at

http://mutfunc.com uses the Java and Scala-based Play Framework

v1.3.7 backend (http://www.playframework.org) along with a

MySQL database. The front end utilizes a modified version of the

Twitter Bootstrap UI library (http://getbootstrap.com/). Visualiza-

tion tools used include a modified version of the neXtProt feature

viewer v0.1.52 (https://github.com/calipho-sib/feature-viewer) for

interactive visualization of protein sequence features, WebGL protein

viewer v1.1 for interactive visualization of protein structures v1.8.1

(https://github.com/biasmv/pv) and a modified version of the JSAV

v.1.10 library (https://github.com/AndrewCRMartin/JSAV) for visu-

alization of multiple sequence alignments.

Chemical genetic screening

The screening was carried out in 1,536 format on synthetic complete

media with the addition of the appropriate chemical at a specific

concentration. The Singer RoToR (Singer Instruments, UK) was used

to replicate screening plates in 1,536 format. Agar plates were

pinned onto the conditioned media and allowed to grow for 48 or

72 h at 30°C (unless specified otherwise). Each experiment was

replicated once for quality control. After incubation, plates were

imaged and colony sizes were extracted using IRIS version v0.9.7

(Kritikos et al, 2017) with the “Colony growth” profile, which

extracts colony size, circularity and opacity from each colony in

each plate. Individual strains were scored using the E-MAP soft-

ware, which transforms colony sizes into s-scores (Collins et al,

2006). In brief, a surface correction algorithm is applied to each

plate, the outer frame effect is corrected by bringing the two outer-

most rows and columns to the plate middle median. All the plates

are then normalized to the overall median, followed by a variance

correction and finally the s-score calculation. The resulting s-scores

are quantile normalized in each condition separately, and final

s-scores from both replicates are averaged.

Calculating gene and complex disruption scores

Scores produced by different predictors were standardized in order

to reflect the likelihood of identifying a deleterious mutation (Pdel).

For SIFT, a curated gold-standard set of 8,083 variants in 1,346 yeast

genes with known tolerated or deleterious effects were obtained
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from Jelier et al (2011). The negative natural logarithm of the SIFT

score was binned by 0.5, and for each bin, the proportion of delete-

rious variants was computed. A binomial logistic regression was fit

to the proportion values and used to compute subsequent Pdel
values for subsequent SIFT scores. For FoldX, 964 gold-standard

mutations across 34 experimentally identified proteins structures

with both experimentally quantified ΔΔG values and FoldX-

predicted ΔΔG values were obtained from Guerois et al (2002). A

variant was labelled destabilizing if ΔΔG was > 1. Mutations were

binned by predicted ΔΔG at intervals of 0.4, and for each bin, the

proportion of destabilizing variants was computed. A binomial

logistic regression model was similarly fit to the data and used to

compute subsequent Pdel for FoldX-predicted ΔΔG values. For vari-

ants disrupting start or stop codons, we assigned Pdel value of 1.

Since nonsense variants occurring closer to the C-terminal of a

protein are less likely to impact function, we only assign Pdel value

of 1 for nonsense variants occurring in the first 50% of the protein;

otherwise, a value of 0 was used. Gene burden scores are then

computed as the variant with the maximum Pdel score and described

the predicted likelihood that a protein has an affected function

(PAF). Similarly, for protein complexes the maximum Pdel score for

any complex subunit was selected to reflect the protein complex PAF
score. Variants with a MAF > 20% were considered unlikely to be

deleterious given their high frequency in the population and were

discarded prior to the burden score analysis.

Genotype-to-phenotype association analysis

The associations were carried out using the MatrixEQTL R package

(Shabalin, 2012) with the modelLINEAR mode. The significance of

the association was measured using a t-statistic. For the associa-

tions, genes and complex binarized PAF scores were used as geno-

types where a PAF score above or below 0.9 is given a value 1 and 0,

respectively, and growth phenotypes are used in lieu of gene expres-

sion. A P-value threshold of 0.001 was used for all associations, and

multiple testing correction was carried out using the false discovery

method. Effect size was computed using Glass’s Δ. For the case (P)

and control (n) group, differences in the mean were computed rela-

tive to the standard deviation of one of the groups. Given the mean

(li) and standard deviation (ri) for a given group i, this is computed

as Δi = (lP � ln)/ri. For robustness, this was computed in both

direction and the final effect size, Δ, is reported as the minimum

absolute value of effect sizes in both directions.

Data availability

The precomputed impact of single nucleotide variants in human,

yeast and E. coli is available through the mutfunc web interface

(www.mutfunc.com). Bug reports and feature requests can be
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