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Abstract: Macrocyclic polymers present an important class of macromolecules, displaying the
reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring
expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here
describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to
chain-propagation reactions in the polymerization system. The radical crossover reactions extensively
occurred at 105–125 ◦C, eventually producing high molecular weight polymers with multiple inherent
dynamic covalent bonds (NOC bonds). A subsequent ring-contraction radical crossover reaction and
the second ring-expansion radical crossover reaction are also described. The major products for the
respective three stages were shown to possess cyclic morphologies by the molecular weight profiles
and the residual ratios for the NOC bonds (φ in %). In particular, the high φ values ranging from ca.
80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability
of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to
produce macrocyclic polymers via a one-step vinyl polymerization.

Keywords: cyclic alkoxyamine; radical crossover reaction; ring-expansion reaction; ring-contraction
reaction; ring-expansion vinyl polymerization; living radical polymerization; nitroxide-mediated
controlled radical polymerization (NMP); macrocyclic polymer; cyclic topology

1. Introduction

Considerable attention has been payed to macromolecular architectures containing cyclic
topologies [1–22], where the progress in the synthetic methods for cyclic polymers including
ring-closing and/or ring-expansion methods has greatly contributed to the field [23–31]. However,
ring-expansion “vinyl” polymerization as a tool to generate cyclic polymers via a one-step vinyl
polymerization is relatively unexplored, including those based on the nitroxide-mediated controlled
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radical polymerization (NMP) [32–35], reversible addition fragmentation chain transfer (RAFT)
polymerization [36], living cationic polymerization [37–40], and others [41]. We have recently
developed intramolecularly-tethered alkoxyamine derivatives as cyclic NMP initiators [34,35],
envisioning to achieve the synthesis of cyclic, vinyl-based polymers. In particular, styrene was
polymerized with a cyclic NMP initiator, and the morphologies of the resulting high molecular
weight polymers were discussed in terms of their radius of gyrations [35]. The reaction system is,
however, not fully characterized primarily due to the occurrence of radical ring-crossover reactions,
running in parallel to the conventional chain-growth propagation reactions, which in consequence
lead to non-uniform polymer chain constructions. Thus, it is of great interest to exclude the vinyl
polymerization reaction from the system and verify the “ring-expansion radical crossover reaction”.
We here report on methodology to understand the ring-crossover reactions taking place during the
polymerization systems with cyclic NMP initiators. We expect that simplified information on this
process is provided from the structural analyses of the products obtained by radical crossover reactions
because the molecular weight profiles and spectroscopic data become clearer due to the absence
of the large polymer units constructed by vinyl polymerizations. As displayed in Scheme 1, cyclic
alkoxyamine 1 is heated in the absence of any polymerizable vinyl monomer at the appropriate
temperatures where NMP-polymerization is normally taking place. The reactions of 1 are performed
using diverse conditions and the structures of the resulting polymer 2 are characterized to clarify the
temperature effects and time-dependent changes. In this paper, we further report the heating reaction
of polymer 2 under highly diluted conditions using a solvent to demonstrate the “ring-contract radical
crossover reaction”. Finally, the capability for “the second ring-expansion radical crossover reaction”
is explored to ensure the presence of cyclic morphologies in polymer 2.
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Scheme 1. Synthetic pathways of this paper starting from the heating reactions of cyclic and acyclic
alkoxyamines together with the structures of the main products for the respective stages.

2. Materials and Methods

2.1. Materials

Cyclic alkoxyamine 1 was prepared according to the literature [35]. Other materials were obtained
from commercial sources and used as received unless otherwise stated.
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2.2. Methods

The 1H and 13C NMR spectra were recorded using a JEOL JNM-ECX400 instrument (Tokyo, Japan).
The size exclusion chromatography (SEC) analysis was performed using a system equipped with a
Shodex GPC-System 21 (Tokyo, Japan), a SYSTEM INSTRUMENTS WP-03 Plus pump (Hachioji, Japan),
a Shodex DEGAS degasser, Shodex KF-806L (8.0 mm × 300 mm, average bead size: 10 µm, exclusion
limit: 2 × 104 kg·mol−1), KF-804L (8.0 mm × 300 mm, average bead size: 7 µm, exclusion limit:
4 × 103 kg·mol−1), K-803 (8.0 mm × 300 mm, average bead size: 6 µm, exclusion limit: 70 kg·mol−1)
columns, a Shodex RI-71S, and a TOSOH UV-802 using (Tokyo, Japan) THF as the eluent at a flow
rate of 1.0 mL·min−1 at 40 ◦C. The weight average molecular weight (Mw), the molecular weight
distribution (Mw/Mn), and the molecular weight at the peak top (Mp) were determined by the RI
based on linear PSt standards (Tosoh Co., Tokyo, Japan) with the Mws of 775,000, 422,000, 186,000,
114,000, 44,100, 16,700, 8300, 5120, 2360, 870, 500, and 110.

2.3. Ring-Expansion Radical Crossover Reaction (Synthesis of 2)

Cyclic alkoxyamine 1 (21 mg, 35 µmol) was placed in a 2 mL dry glass ampule and then degassed
in vacuo. After being flame-sealed under a vacuum, the ampule was allowed to stand at 115 ◦C for 3 h.
The reaction was stopped by rapid cooling with liquid nitrogen to produce polymer 2-V as a pale yellow
viscous liquid (recovered yield, 20 mg; 93%). Data for 2-V: 1H NMR (500 MHz, CDCl3): δ 7.45–7.14 (m,
phenyl-H), 4.90 (m, CHON), 4.57 (OCH2-phenyl), 3.64–2.31 (br, OCH2CH2O, OCH2(CH2)2CH2O, NCH,
OCH2(CH2)2CH2O), OCH2C(CH3)2N and CH(CH3)2), 1.67–0.20 (br, CH3CH(-phenyl)O, CH(CH3)2

and NC(CH3)2). Mw = 38,000, Mw/Mn = 24.8. Mp = 58,400.

2.4. Ring-Contraction Radical Crossover Reaction (Synthesis of 5)

A mixture of 2-V (19 mg) and 1,3-dichlorobenzene (8.6 mL) was placed in a dry glass ampule with
a magnetic stir bar and then degassed by five freeze−evacuate−thaw cycles. After being flame-sealed
under a vacuum, the ampule was stirred at 115 ◦C for 9 h. The polymerization was stopped by
rapid cooling with liquid nitrogen. The mixture was evaporated to dryness to give product 5-V as a
yellow oil (recovered yield, 14 mg; 77%). Data for 5-V: 1H NMR (500 MHz, CDCl3): δ 7.44–7.15 (m,
phenyl-H), 4.91 (m, CHON), 4.57 (OCH2-phenyl), 3.67–2.33 (m, OCH2CH2O, OCH2(CH2)2CH2O, NCH,
OCH2(CH2)2CH2O, OCH2C(CH3)2N and CH(CH3)2), 1.63–0.18 (m, CH3CH(-phenyl)O, CH(CH3)2

and NC(CH3)2). Mw = 690, Mw/Mn = 1.87. Mp = 231.

2.5. Second Ring-Expansion Radical Crossover Reaction (Synthesis of 6)

The same procedure as that for the synthesis of 2 was applied for 5-V (14 mg) to give
6-V (recovered yield, 11 mg; 78%) Data for 6-V: 1H NMR (500 MHz, CDCl3): δ 7.45–7.15 (m,
phenyl-H), 4.90 (m, CHON), 4.55 (OCH2-phenyl), 3.65–2.32 (m, OCH2CH2O, OCH2(CH2)2CH2O,
NCH, OCH2(CH2)2CH2O, OCH2C(CH3)2N, CH(CH3)2), 1.61–0.20 (m, CH3CH(-phenyl)O, CH(CH3)2

and NC(CH3)2). Mw = 13,500, Mw/Mn = 6.59. Mp = 14,700.

3. Results and Discussion

3.1. Ring-Expansion Radical Crossover Reaction

3.1.1. Temperature Effect

Cyclic alkoxyamine 1 was heated in the bulk condition without any vinyl monomers (Scheme 1).
The reactions were performed at diverse temperatures such as 105, 115, 125, and 135 ◦C for 12 h to
afford products 2-I, 2-II, 2-III, and 2-IV, respectively (entries 1–4 in Table 1). Figure 1a shows size
exclusion chromatography (SEC) traces of 1 and products 2-I~IV. The trace of 1 exhibited a sharp peak
at the retention time (RT) of 32 min. The traces of 2-I~III are first described, which showed the broad
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peaks due to high molecular weight polymer species at the RTs ranging from 19 to 27 min together
with the multiple peaks due to oligomeric species at the RTs ranging from 27 to 30 min. The peaks
attributable to monomeric species were observed at the RTs of 31 and 32 min as will be described later
in the paper. Thus, the extensive occurrences of radical ring-crossover reactions were clearly revealed,
which would be featured phenomena for alkoxyamine derivatives with cyclic morphologies.

Table 1. Conditions and results for the radical crossover reactions.

Entry Starting Material Temp. (◦C) Time (h) Product Code Mw
1 Mw/Mn

1 Mp
1 φ 2 (%)

1 1 105 12 2-I 42,800 18.1 57,100 93
2 1 115 12 2-II 29,600 11.0 24,900 90
3 1 125 12 2-III 13,600 7.04 12,400 74
4 1 135 12 2-IV 2930 3.33 446 -
5 3 (control) 115 12 4 506 1.06 426 90
6 1 115 3 2-V 38,000 24.8 58,400 98
7 1 115 6 2-VI 26,600 11.3 28,600 92

8 (=2) 1 115 12 2-VII (=2-II) 29,600 11.0 24,900 90
9 1 115 24 2-VIII 20,300 8.5 19,300 82
10 1 125 3 2-IX 38,600 15.9 50,600 92
11 1 125 6 2-X 23,500 9.27 24,500 84

12 (=3) 1 125 12 2-XI (=2-III) 13,600 7.04 12,400 74
13 1 125 24 2-XII 10,300 6.11 9940 64

1 Determined by SEC in THF based on the calibrations using linear PSt standards. 2 Residual ratios for NOC bonds
determined by 1H NMR spectra.

The SEC measurement provided the weight average molecular weight (Mw) and the molecular
weight distribution (Mw/Mn) based on a calibration using linear PSt standards. As listed in Table 1,
the Mw values ranged from 13,600 to 42,800 and Mw/Mn values ranged from 7.04 to 18.1 for 2-I~III
(entries 1–3). The molecular weight at the peak top (Mp) would be the appropriate value to discuss the
tendencies for this system showing multimodal SEC profiles. The Mp values for the main products
were 57,100 for 2-I, 24,900 for 2-II, and 12,400 for 2-III. As the molecular weight of 1 is 602, the
respective Mp values corresponded to the 65-, 30-, and 15-mers. However, this estimation is very rough
because the Mp values were linear PSt-based apparent ones, whereas again supports the extensive
occurrences of radical ring-crossover reactions. The Mp values tended to decrease as the reaction
temperatures increased, as shown in Figure 1a. The 2-IV system (Figure 1a and entry 4 in Table 1)
showed a different feature as compared to the others in which the major peak was observed in the low
molecular weight regions at the RTs ranging from 30 to 32 min. We previously reported that acyclic
alkoxyamine 3 (Scheme 1) was prepared as a linear counterpart of 1 and used as an initiator for the
polymerization of styrene [36]. In this study, we newly performed the heating reaction of 3 to give
product 4 (Entry 5 in Table 1). Figure 1a shows the SEC traces of 3 and 4 in which both exhibited
sharp peaks at the RT of 31 min. Hence, no significant change was observed for the molecular weight
profiles for the 3 system. It should be stated that the result that the RT of 3 (31 min) is shorter than
that of 1 (32 min) is rationalized by a compact cyclic structure of 1. Furthermore, this RT difference is
advantageous for the mechanism clarification. For the 2-I~IV systems, the peaks were observed at the
RTs of 31 and 32 min (Figure 1a) and we assigned the respective peaks to those for the linear (cleaved)
unimer and the cyclic (tethered) one.

Figure 2 shows the 1H NMR spectra of 1 and 2-I~IV. The characteristic signal due to the methine
proton in the alkoxyamine moieties (a, 1H) appeared at 4.9 ppm for the spectrum of 1. The fact that the
corresponding signals were observed for 2-I~2-III suggested the presence of dynamic covalent bonds
(NOC bonds) even after the reactions. The signal due to the methylene protons in the benzyl position
(b, 2H) was also observed at 4.5 ppm for the spectrum of 1. We determined the Ia/Ib values where the
Ia and Ib denote the integrations (peak areas) of the signals (a) and (b), respectively. The Ia/Ib values
were 1.0/2.0 for 1, 0.93/2.0 for 2-I, 0.90/2.0 for 2-II, and 0.74/2.0 for 2-III. The Ia/Ib values would be
equivalent to the residual ratios for NOC bonds (φ in %). The φ values were 93% for 2-I, 90% for 2-II,
and 74% for 2-III as listed in entries 1-3 in Table 1. Thus, a large amount of NOC bonds remained
in the products obtained at the reaction temperatures of 105–125 ◦C. On the other hand, for 2-IV
obtained at the temperature of 135 ◦C, the occurrences of side reactions were suggested by the NMR
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analysis. The signals (x) at 6.7 ppm, (y) at 5.7 ppm, and (z) at 5.2 ppm appeared for the spectrum of
2-IV (Figure 2). As judged from the chemical shifts and coupling constants, the signals were assignable
to the vinyl protons formed as a result of irreversible heterolysis (disproportionation) of the NOC
bonds. The similar signals were also observed for 2-III (Figure 2), whereas their intensities were very
weak. We reached the conclusion that “ring-expansion radical crossover reaction” extensively occurred
at 105–125 ◦C, eventually producing high molecular weight polymers with inherent multiple NOC
bonds as shown in Scheme 1.
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3.1.2. Time-Dependent Changes

The reactions of 1 were performed for different times such as 3, 6, 12, and 24 h to elucidate
time-dependent changes. Figure 1b shows the SEC traces of the products 2-V~VIII and 2-IX~XII,
which were obtained for the 115 and 125 ◦C systems, respectively. Table 1 summarizes the results
for the characterizations of 2-V~VIII (Entries 6–9) and 2-IX~XII (Entries 10–13). The Mw values
ranged from 10,300 to 38,600. The Mw/Mn values were between 6.11 and 24.8. The Mp values ranged
from 9940 to 58,400. Thus, high molecular weight polymers were formed as a result of the radical
ring-crossover reactions. The φ values varied from 64% to 98%. In general, both the Mp and φ values
were high for the systems at 115 ◦C as compared to those at 125 ◦C (Table 1); for example, the highest
values were Mp = 58,400 and φ = 98% for 2-V. It should be noticed that the SEC trace showed the
peaks at the RT of 32 min (Figure 1b). Thus, 2-V~XII include considerable amounts of cyclic (tethered)
unimers. The traces also exhibited the peak or shoulder attributable to linear (cleaved) unimers at the
RT of 31 min. As judged from the peak intensities, the cyclic unimers were preferentially formed over
the linear ones throughout the reactions for the 115 ◦C system, while the formation of the linear ones
increased with the increasing reaction times for the 125 ◦C system. This result supported that 115 ◦C is
a suitable temperature in the view point of preventing ring cleavages.

3.2. Ring-Contraction Radical Crossover Reaction

In order to ensure the performance of the cyclic alkoxyamine system, we exploited the
“ring-contraction radical crossover reaction” (Scheme 1). Polymer 2-V with the Mp for the main
peak of 58,400 was heated at 115 ◦C in 1,3-dichlorobenzene under a highly diluted condition such
as 0.003 M (Entry 14 in Table 2). The reaction for 9 h produced a product 5-V. Figure 3 shows the
SEC trace of 5-V with the Mw(Mw/Mn) of 690(1.87) and the Mp for the main peak of 231. The trace
exhibited multimodal peaks only in the low molecular weight regions with the RTs ranging from 29 to
32 min and the main peak with the RT of 32 min was assigned to a cyclic (tethered) unimer. The NOC
bonds remained with the high φ value of 90%. Similar results for these ring-expansion/contraction
phenomena were previously reported by Otsuka and coworkers [42]. They described the results using
phrases “polymerization of macrocyclic alkoxyamine” and “depolymerization of poly(alkoxyamine)”
in the paper, where they have studied the dynamic covalent polymer systems based on the
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as persistent radicals.
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Table 2. Condition and results for the ring-contraction radical crossover reaction and subsequent
second ring-expansion radical crossover reaction.

Entry Starting Material Temp. (◦C) Time (h) Product Code Mw
1 Mw/Mn

1 Mp
1 φ 2 (%)

14 2-V 115 9 5-V 690 1.87 231 90

15 5-V 115 3 6-V 13,500 6.59 14,700 84
1 Determined by SEC in THF based on the calibrations using linear PSt standards. 2 Residual ratios for NOC bonds
determined by 1H NMR spectra.
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We here summarize radical crossover reactions for the cyclic systems, which significantly differs
from those for the acyclic system. Scheme 2 shows the radical reactions starting from two kinds of
alkoxyamines in this study. No change has been brought by the intermolecular radical crossover
reactions for the acyclic system in terms of molecular weights and morphologies as experimentally
shown in this study. The applications based on the radical exchange reactions have been discussed
elsewhere [43–46]. On the other hand, for the cyclic system, the inherent dynamic covalent bond
(NOC bond) takes place on a homolytic cleavage to generate a reactive benzyl radical and a persistent
nitroxide radical (Scheme 2). A subsequent recombination reaction provides opportunities for the
NOC bond exchange. The ring-expansion reactions proceed when the intermolecular recombination
reactions occur, in which a prime driving force would be a decrease in the ring strain, resulting in
the large increase in the molecular weights. This phenomenon is attributable to an inherent NOC
bond in a cycle or multiple NOC bonds in a linear chain. The result of this study is originally due
to the inherent NOC bond in a cycle because 1 possesses only one dynamic covalent bond. Under
highly diluted conditions where the intermolecular reaction would not be accepted, intramolecular
recombination would proceed, eventually returning to the original cyclic unimer.

3.3. Second Ring-Expansion Radical Crossover Reaction

When taking into account the above-mentioned mechanisms, the result that the main components
in 5-V was not a cleaved unimer but a tethered one with the high φ value of 90% motivated us to
demonstrate the “second ring-expansion radical crossover reaction”. We performed the reaction of 5-V
at 115 ◦C for 3 h in the bulk condition to produce products 6-V (Entry 15 in Table 2). Figure 3 shows
the SEC trace of 6-V with the Mw(Mw/Mn) of 13,500(6.59) and the Mp for the main peak of 14,700.
The trace again showed the broad peaks due to high molecular weight polymer species at the RTs
ranging from 21 to 27 min together with the multiple peaks due to the oligomeric species at the RTs
ranging from 27 to 30 min. The monomeric species were also observed at the RTs of 31 and 32 min.
Therefore, the featured reactions due to the “cyclic” alkoxyamine system again extensively occurred to
produce 6-V with a high φ value of 84%. This result strongly supports that 2-V (and also 5-V) contains
polymeric species with cyclic morphologies.
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4. Conclusions

A series of radical ring-crossover reactions were verified using the strategy that cyclic alkoxyamine
and their reaction products were heated at the NMP temperatures without any vinyl monomers.
The extensive occurrences of “ring-expansion radical crossover reaction” were clearly revealed,
which would be featured phenomena for alkoxyamine derivatives with cyclic morphologies, eventually
producing high molecular weight polymers with inherent dynamic covalent bonds. The “ring-contract
radical crossover reaction” was performed for the resulting polymer and subsequently the “second
ring-expansion radical crossover reaction” was demonstrated, which strongly supported the presence
of high amounts of cyclic morphologies throughout the series of reactions.
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